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Poincaré duality complexes in dimension four

HANS JOACHIM BAUES

BEATRICE BLEILE

Generalising Hendriks’ fundamental triples of PD3 –complexes, we introduce funda-
mental triples for PDn –complexes and show that two PDn –complexes are orientedly
homotopy equivalent if and only if their fundamental triples are isomorphic. As
applications we establish a conjecture of Turaev and obtain a criterion for the existence
of degree 1 maps between n–dimensional manifolds. Another main result describes
chain complexes with additional algebraic structure which classify homotopy types of
PD4 –complexes. Up to 2–torsion, homotopy types of PD4 –complexes are classified
by homotopy types of chain complexes with a homotopy commutative diagonal.

57P10; 55S35, 55S45

Introduction

In order to study the homotopy types of closed manifolds, Browder and Wall intro-
duced the notion of Poincaré duality complexes. A Poincaré duality complex, or
PDn –complex, is a CW–complex X whose cohomology satisfies a certain algebraic
condition. Equivalently, the chain complex yC .X / of the universal cover of X must
satisfy a corresponding algebraic condition. Thus Poincaré complexes form a mixture
of topological and algebraic data and it is an old quest to provide purely algebraic data
determining the homotopy type of PDn –complexes. This has been achieved for nD 3,
but, for nD 4, only partial results are available in the literature.

Homotopy types of 3–manifolds and PD3 –complexes were considered by Thomas [17],
Swarup [15] and Hendriks [9]. The homotopy type of a PD3 –complex X is deter-
mined by its fundamental triple, consisting of the fundamental group � D �1.X /, the
orientation character ! and the image in H3.�;Z

!/ of the fundamental class ŒX �.
Turaev [18] provided an algebraic condition for a triple to be realizable by a PD3 –
complex. Thus, in dimension 3, there are purely algebraic invariants which provide a
complete classification.

Using primary cohomological invariants like the fundamental group, characteristic
classes and intersection pairings, partial results were obtained for nD 4 by imposing
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conditions on the fundamental group. For example, Hambleton, Kreck and Teichner
classified PD4 –complexes with finite fundamental group having periodic cohomology
of dimension 4 (see Hambleton and Kreck [6], Teichner [16] and Hambleton, Kreck
and Teichner [7]). Cavicchioli and Hegenbarth [4] and Hegenbarth and Piccarreta [8]
studied PD4 –complexes with free fundamental group, as did Hillman [10], who also
considered PD4 –complexes with fundamental group a PD2 –group [11]. Recently,
Hillman [12] considered homotopy types of PD4 –complexes whose fundamental group
has cohomological dimension 2 and one end.

It is doubtful whether primary invariants are sufficient for the homotopy classification
of PD4 –complexes in general and we thus follow Ranicki’s approach [13; 14] who
assigned to each PDn –complex X an algebraic Poincaré duality complex given by
the chain complex yC .X /, together with a symmetric structure. However, Ranicki
considered neither the realizability of such algebraic Poincaré duality complexes nor
whether the homotopy type of a PDn –complex is determined by the homotopy type of
its algebraic Poincaré duality complex.

This paper presents a structure on chain complexes which completely classifies PD4 –
complexes up to homotopy. The classification uses fundamental triples of PD4 –
complexes, and, in fact, the chain complex model yields algebraic conditions for
the realizability of fundamental triples.

A fundamental triple of formal dimension n � 3 comprises an .n�2/–type T , a
homomorphism !W �1.T /! Z=2Z and a homology class t 2 Hn.T;Z!/. There is a
functor,

�CW PDn
C �! Trpn

C;

from the category PDn
C of PDn –complexes and maps of degree one to the category

Trpn
C of triples and morphisms inducing surjections on fundamental groups. Our first

main result is:

Theorem 3.1 The functor �C reflects isomorphisms and is full for n� 3.

Corollary 3.2 Take n � 3. Two closed n–dimensional manifolds or two PDn –
complexes, respectively, are orientedly homotopy equivalent if and only if their funda-
mental triples are isomorphic.

Corollary 3.2 extends results of Thomas [17], Swarup [15] and Hendriks [9] for
dimension 3 to arbitrary dimension and establishes Turaev’s conjecture [18] on PDn –
complexes whose .n�2/–type is an Eilenberg–Mac Lane space K.�1X; 1/. Corollary
3.2 is even of interest in the case of simply connected or highly connected manifolds.
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Theorem 3.1 also yields a criterion for the existence of a map of degree one between
PDn –complexes, recovering Swarup’s result for maps between 3–manifolds and Hen-
driks’ result for maps between PD3 –complexes.

In the oriented case, special cases of Corollary 3.2 were proved by Hambleton and
Kreck [6] and Cavicchioli and Spaggiari [5]. In fact, in [6], Corollary 3.2 is obtained
under the condition that either the fundamental group is finite or the second rational
homology of the 2–type is nonzero. Corresponding conditions were used in [5] for
oriented PD2n –complexes with .n�1/–connected universal covers, and Teichner ex-
tended the approach of [6] to the nonoriented case in his thesis [16]. Our result shows
that the conditions on finiteness and rational homology used in these papers are not
necessary.

It follows directly from Poincaré duality and Whitehead’s Theorem that the functor �C
reflects isomorphisms. To show that �C is full requires work. Given PDn –complexes
Y and X , n � 3, and a morphism f W �CY ! �CX in Trpn

C , we first construct a
chain map �W yC .Y /! yC .X / preserving fundamental classes, that is, ��ŒY � D ŒX �.
Then we use the category Hc

kC1
of homotopy systems of order .kC 1/ introduced by

the first author in [1] to realize � by a map xf W Y !X with �C. xf /D f .

Our second main result describes algebraic models of homotopy types of PD4 –
complexes. We introduce the notion of PDn –chain complex and show that PD3 –
chain complexes are equivalent to PD3 –complexes up to homotopy. In Section 5 we
show that PD4 –chain complexes classify homotopy types of PD4 –complexes up to
2–torsion. In particular, we obtain:

Theorem 5.3 The functor yC induces a 1–1 correspondence between homotopy types
of PD4 –complexes with finite fundamental group of odd order and homotopy types of
PD4 –chain complexes with homotopy commutative diagonal and finite fundamental
group of odd order.

This result is a consequence of the following.

Theorem Let C be a PD4 –chain complex with homotopy commutative diagonal,
fundamental group � and homology module H2 D H2.C /. If H0.�;ƒ

2H!
2
/ has no

2–torsion, then C is realizable by a PD4 –complex, and the 2–torsion group ker H� in
Theorem 5.1 acts transitively and effectively on the set of realizations.

To obtain a complete homotopy classification of PD4 –complexes, we study the chain
complex of a 2–type in Section 6. We compute this chain complex up to dimension 4
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in terms of Peiffer commutators in pre-crossed modules. This allows us to introduce
PD4 –chain complexes together with a ˇ–invariant, and we prove:

Corollary 7.4 The functor yC induces a 1–1 correspondence between homotopy types
of PD4 –complexes and homotopy types of ˇ–PD4 –chain complexes.

Corollary 7.4 highlights the crucial rôle of Peiffer commutators for the homotopy
classification of 4–manifolds.

The proofs of our results rely on the obstruction theory in [1] for the realizability of
chain maps which we recall in Section 8.

Acknowledgements The authors wish to express their gratitude to the referee for
the particularly thorough and extremely helpful report. The second author gratefully
acknowledges the support of the Max Planck Institute for Mathematics in Bonn during
work on this project.

1 Chain complexes

Let X n denote the n–skeleton of the CW–complex X . We call X reduced if X 0 D �

is the base point. The objects of the category CW0 are reduced CW–complexes X

with universal covering pW yX ! X , such that p.y�/D �, where y� 2 yX 0 is the base
point of yX . Here the n–skeleton of yX is yX n D p�1.X n/. Morphisms in CW0 are
cellular maps f W X ! Y and homotopies in CW0 are base point preserving. A map
f W X !Y in CW0 induces a unique covering map yf W yX ! yY with yf .y�/D y�, which
is equivariant with respect to ' D �1.f /.

We consider pairs .�;C /, where � is a group and C a chain complex of left modules
over the group ring ZŒ��. We write ƒ D ZŒ�� and C for .�;C /, whenever �
is understood. We call .�;C / free if each Cn , n 2 Z, is a free ƒ–module. Let
augW ƒ ! Z be the augmentation homomorphism, defined by aug.g/ D 1 for all
g 2 � . Every group homomorphism, 'W � ! � 0 , induces a ring homomorphism
']W ƒ! ƒ0 , where ƒ0 D ZŒ� 0�. A chain map is a pair .';F /W .�;C /! .� 0;C 0/,
where ' is a group homomorphism and F W C!C 0 a '–equivariant chain map, that is a
chain map of the underlying abelian chain complexes, such that F.�c/D'].�/F.c/ for
�2ƒ and c 2C . Two such chain maps are homotopic, .';F /' . ;G/ if 'D and
if there is a '–equivariant map ˛W C !C 0 of degree C1 such that G�F D d˛C˛d .

A pair .�;C / is a reduced chain complex if C0Dƒ with generator �, CiD 0 for i < 0

and H0C DZ such that C0Dƒ!H0C DZ is the augmentation of ƒ. A chain map,
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.'; f /W .�;C /! .� 0;C 0/, of reduced chain complexes, is reduced if f0 is induced by
'] , and a chain homotopy ˛ of reduced chain maps is reduced if ˛0 D 0. The objects
of the category H0 are reduced chain complexes and the morphisms are reduced chain
maps. Homotopies in H0 are reduced chain homotopies. Every chain complex .�;C /
in H0 is equipped with an augmentation "W C !Z in H0 . The ring homomorphism
Z!ƒ yields the co–augmentation �W Z! C , where we view ZD .0;Z/ as chain
complex with trivial group � D 0 concentrated in degree 0. Note that "�D idZ , and
the composite �"W C ! C is the trivial map.

For an object X in CW0 , the cellular chain complex C. yX / of the universal cover
yX is given by Cn. yX /D Hn. yX

n; yX nC1/, the n–th relative singular homology of the
pair . yX n; yX n�1/. The fundamental group � D �1.X / acts on C. yX /, and viewing
C. yX / as a complex of left ƒ–modules, we obtain the object yC .X /D .�;C. yX // in
H0 . Moreover, a morphism f W X ! Y in CW0 induces the homomorphism �1.f /

on the fundamental groups and the �1.f /–equivariant map yf W yX ! yY which, in turn,
induces the �1.f /–equivariant chain map yf�W C. yX /! C. yY / in H0 . As yf preserves
base points, yC .f /D .�1.f /; yf�/ is a reduced chain map. We obtain the functor

(1–1) yC W CW0 �!H0:

The chain complex C in H0 is 2–realizable if there is an object X in CW0 such that
yC .X 2/Š C�2 , that is, yC .X 2/ is isomorphic to C in degree � 2.

Remark 1.1 A chain complex C in H0 is 2–realizable if and only if C is realizable,
up to isomorphism, by an object in the category Hc

3
(compare Section 3.2 in [1]).

Hence the condition of 2–realizability is needed to apply the obstruction theory in
Section 8.

Given two objects X and Y in CW0 , their product again carries a cellular structure
and we obtain the object X �Y in CW0 with base point .�;�/ and universal cover
.X �Y /yD yX � yY , so that

(1–2) yC .X �Y /D .� ��;C. yX /˝Z C. yY //:

For i D 1; 2, let pi W X �X !X be the projection onto the i –th factor. A diagonal
�W X !X �X in CW0 is a cellular map with pi�' idX in CW0 for i D 1; 2. A
diagonal on .�;C / in H0 is a chain map .ı;�/W .�;C /! .� ��;C ˝Z C / in H0

with ıW �! � ��;g 7! .g;g/, such that pi�' idC for i D 1; 2, where p1D id˝ "
and p2 D "˝ id.
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The diagonal .ı;�/ in H0 is homotopy associative if the diagram

C
� //

�
��

C ˝Z C

id˝�
��

C ˝Z C
�˝id // C ˝Z C ˝Z C

commutes up to chain homotopy in H0 . The diagonal .ı;�/ in H0 is homotopy
commutative if the diagram

C
� //

� ''PPPPPPPPPPPPPP C ˝Z C

T
��

C ˝Z C

commutes up to chain homotopy in H0, where T is given by T .c˝d/D.�1/jcjjd jd˝c:

By the cellular approximation theorem, every object, X , in CW0 has a diagonal
�W X ! X �X in CW0 . Applying the functor yC to such a diagonal, we obtain
the diagonal yC .�/ in H0 . This raises the question of realizability, that is, given a
diagonal .ı;�/W yC .X /! yC .X /˝Z

yC .X / in H0 , is there a diagonal � in CW0 with
yC .�/D .ı;�/? As yC .�/ is homotopy associative and homotopy commutative for
any diagonal � in CW0 , homotopy associativity and homotopy commutativity of
.ı;�/ are necessary conditions for realizability.

To discuss questions of realizability for a functor �W A! B, we consider pairs .A; b/,
where bW �A Š B is an equivalence in B. Two such pairs are equivalent, written
.A; b/� .A0; b0/, if and only if there is an equivalence gW A0ŠA in A with �gDb�1b0 .
The classes of this equivalence relation form the classes of �–realizations of B :

(1–3) Real�.B/D f.A; b/ j bW �AŠ Bg=� :

We say that B is �–realizable if Real�.B/ is nonempty. The functor �W A! B is
representative if all objects B in B are �–realizable. Further, we say that � reflects
isomorphisms if a morphism f in A is an equivalence whenever �.f / is an equivalence
in B. The functor � is full if, for every morphism xf W �.A/! �.A0/ in B, there is a
morphism f W A!A0 in A, such that �.f /D xf . We then say xf is �–realizable.

2 PD–chain complexes and PD–complexes

We begin with a description of the cap product on chain complexes. We fix a ho-
momorphism !W � ! Z=2Z D f0; 1g which gives rise to the anti-isomorphism of
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rings, xW ƒ!ƒ, defined by xgD .�1/!.g/g�1 for g 2� . With the left ƒ–module M

we associate the right ƒ–module M ! having the same underlying abelian group and
action given by �:mDm:x� for m 2M and � 2ƒ. Proceeding analogously for a right
ƒ–module N , we obtain a left ƒ–module !N . We put

Hn.C;M
!/D Hn.M

!
˝ƒ C /; Hk.C;M /D H�k.Homƒ.C;M //:

To define the !–twisted cap product \ for a chain complex C in H0 with diagonal
.ı;�/, write �.c/D

P
iCjDn;˛ c0i;˛˝ c00j ;˛ for c 2 C . Then

\ W Homƒ.C;M /�k ˝Z .Z
!
˝ƒ C /n! .M !

˝ƒ C /n�k

 ˝ .z˝ c/ 7!
X
˛

z .c0k;˛/˝ c00n�k;˛

for every left ƒ–module M . Passing to homology and composing with

H�.C;M /˝Z H�.C ˝Z C;Z!/! H�.Homƒ.C;M /
�
˝Z

�
Z! ˝ƒ .C ˝Z C ///;

Œ �˝Œy� 7! Œ ˝y�;

we obtain

(2–1) \ W Hk.C;M /˝Z Hn.C;Z
!/! Hn�k.C;M

!/:

A PDn –chain complex C D ..�;C /; !; ŒC �; �/ consists of a free chain complex .�;C /
in H0 with � finitely presented and H1C D 0, a group homomorphism !W �!Z=2Z,
a fundamental class ŒC � 2Hn.C;Z!/ and a diagonal �W C !C ˝C in H0 , such that

(2–2) \ ŒC �W Hr .C;M /! Hn�r .C;M
!/I ˛ 7! ˛\ ŒC �

is an isomorphism of abelian groups for every r 2 Z and every left ƒ–module M . A
morphism of PDn –chain complexes f W ..�;C /; !; ŒC �; �/! ..� 0;C 0/; !0; ŒC 0�; �0/ is
a morphism .'; f /W .�;C /! .� 0;C 0/ in H0 such that !D!0' and .f ˝f /�'�0f .
The category PDn

� is the category of PDn –chain complexes and morphisms between
them. Homotopies in PDn

� are reduced chain homotopies. The subcategory PDn
�C

of PDn
� is the category consisting of PDn –chain complexes and oriented or degree 1

morphisms of PDn –chain complexes, that is, morphisms f W C!D with f�ŒC �D ŒD�.

Wall [20] showed that it is enough to demand that (2–2) be an isomorphism for M Dƒ.
If 1 ˝ x 2 Z! ˝ƒ Cn represents the fundamental class ŒC �, where Ci is finitely
generated for i 2 Z, then \ ŒC � in (2–2) is an isomorphism if and only if

(2–3) \ 1˝xW C � D !Homƒ.C;!ƒ/!ƒ˝ƒ C D C

is a homotopy equivalence of chain complexes of degree n. Here finite generation
implies that C � is a free chain complex.
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Lemma 2.1 Every PDn –chain complex is homotopy equivalent in PDn
� to a 2–

realizable PDn –chain complex.

Proof This follows from Theorem III 2.9, Proposition III 2.13 and Theorem III 2.12
in [1].

A PDn –complex X D .X; !; ŒX �; �/ consists of an object X in CW0 with finitely
presented fundamental group �1.X /, a group homomorphism !W �1X ! Z=2Z, a
fundamental class ŒX � 2 Hn.X;Z!/ and a diagonal �W X ! X �X in CW0 , such
that . yC X; !; ŒX �; yC�/ is a PDn –chain complex. A morphism of PDn –complexes
f W .X; !; ŒX �; �/! .X 0; !0; ŒX 0�; �0/ is a morphism f W X !X 0 in CW0 such that
! D !0�1.f /. The category PDn is the category of PDn –complexes and morphisms
between them. Homotopies in PDn are homotopies in CW0 . The subcategory PDn

C of
PDn is the category consisting of PDn –complexes and oriented or degree 1 morphisms
of PDn –complexes, that is, morphisms f W X ! Y with f�ŒX �D ŒY �.

Remark 2.2 Our PDn –complexes have finitely presented fundamental groups by
definition and are thus finitely dominated by Proposition 1.1 in [21].

Let X be a PDn –complex with n � 3. We say that X is standard, if X is an
n–dimensional CW–complex with exactly one n–cell en . We say that X is weakly
standard, if X has a subcomplex X 0 with X DX 0[en , where X 0 is n–dimensional and
satisfies Hn.X 0;B/D0 for all coefficient modules B . In this sense X 0 is homologically
.n�1/–dimensional. Of course standard implies weakly standard with X 0 DX n�1 .

Remark Every compact connected manifold M of dimension n has the homotopy
type of a finite standard PDn –complex.

Remark 2.3 Wall’s Theorem 2.4 in [20] and Theorem E in [19] imply that, for n� 4,
every PDn –complex is homotopy equivalent to a standard PDn –complex and, for nD3,
every PD3 –complex is homotopy equivalent to a weakly standard PD3 –complex.

Let C be a PDn –chain complex with n � 3. We say that C is standard, if C is
2–realizable, Ci D 0 for i > n, and Cn DƒŒen�, where Œen� 2 Cn . We say that C is
weakly standard, if C is 2–realizable and has a subcomplex C 0 with C D C 0˚ƒŒen�,
where C 0 is n–dimensional and satisfies Hn.C 0;B/D 0 for all coefficient modules B .

Remark 2.4 A PDn –complex, X , is homotopy equivalent to a finite standard, standard
or weakly standard PDn –complex if and only if the PDn –chain complex yC X is
homotopy equivalent to a finite standard, standard or weakly standard PDn –chain
complex, respectively.
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3 Fundamental triples

Homotopy types of 3–manifolds and PD3 –complexes were considered by Thomas [17],
Swarup [15] and Hendriks [9]. In particular, Hendriks and Swarup provided a criterion
for the existence of degree 1 maps between 3–manifolds and PD3 –complexes, respec-
tively. In this section we generalize these results to manifolds and Poincaré duality
complexes of arbitrary dimension.

Let k –types be the full subcategory of CW0=' consisting of CW–complexes X in
CW0 with �i.X /D 0 for i > k . We define the k –th Postnikov functor

Pk W CW0! k�types:

For X in CW0 we obtain PkX by “killing homotopy groups”, that is, we choose a CW–
complex PkX with .kC1/–skeleton .PkX /kC1DX kC1 and �i.PkX /D0 for i >k .
For a morphism f W X ! Y in CW0 we may choose a map Pf W PkX !PkY which
extends the restriction f kC1W X kC1! Y kC1 as �i.PkY /D 0 for i > k . Then the
functor Pk assigns PkX to X and the homotopy class of Pf to f . Different choices of
PkX yield canonically isomorphic functors Pk . The CW–complex P1X DK.�1X; 1/

is an Eilenberg–Mac Lane space and, as a functor, P1 is equivalent to the fundamental
group functor �1 . There are natural maps

(3–1) pk W X �! PkX

in CW0=' extending the inclusion X kC1 � PkX .

For n � 3, a fundamental triple T D .X; !; t/ of formal dimension n consists of an
.n�2/–type X , a homomorphism !W �1X!Z=2Z and an element t 2Hn.X;Z!/. A
morphism .X; !X ; tX /! .Y; !Y ; tY / between fundamental triples is a homotopy class
ff gW X!Y of maps of the .n�2/–types, such that !X D!Y �1.f / and f�.tX /D tY .
We obtain the category Trpn of fundamental triples T of formal dimension n and the
functor

� W PDn
C=' �! Trpn; X 7�! .Pn�2X; !X ;pn�2�ŒX �/:

Every degree 1 morphism Y ! X in PDn
C induces a surjection �1Y ! �1X on

fundamental groups (see for example Browder [3]) and hence we introduce the subcat-
egory Trpn

C � Trpn consisting of all morphisms inducing surjections on fundamental
groups. Then the functor � yields the functor

(3–2) �CW PDn
C=' �! Trpn

C:

As a main result in this section we show:

Theorem 3.1 The functor �C reflects isomorphisms and is full for n� 3.
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As corollaries we mention:

Corollary 3.2 Take n � 3. Two n–dimensional manifolds, respectively two PDn –
complexes, are orientedly homotopy equivalent if and only if their fundamental triples
are isomorphic.

Remark For n D 3, Corollary 3.2 yields the results by Thomas [17], Swarup [15]
and Hendriks [9]. Turaev reproves Hendriks’ result in the appendix of [18], although
the proof needs further explanation. We reprove the result in a more algebraic way.

Remark Turaev conjectures in [18] that his proof for nD 3 has a generalization to
PDn –complexes whose .n�2/–type is an Eilenberg–Mac Lane space K.�; 1/. Corol-
lary 3.2 proves this conjecture.

Take PDn –complexes X and Y and a diagram:

(3–3)

Y
pn�2 //

xf

��

Pn�2Y

f

��
X

pn�2 // Pn�2X:

Corollary 3.3 For n � 3, there is a degree 1 map xf rendering Diagram (3–3) ho-
motopy commutative if and only if f induces a surjection on fundamental groups, is
compatible with the orientations !X and !Y , that is, !X�1.f /D !Y , and

f�pn�2�ŒY �D pn�2�ŒX �:

Remark Swarup [15] and Hendriks [9] prove Corollary 3.3 for 3–manifolds and
PD3 –complexes, respectively.

Remark For a homotopy equivalence f between oriented PD4 –complexes, the map
xf corresponds to the map h in Hambleton and Kreck [6, Lemma 1.3]. The reader is

invited to compare our proof with that of [6, Lemma 1.3] which shows the existence of
h but not the fact that h is of degree 1.

By Remark 2.3, Theorem 3.1 is a consequence of Lemma 3.4 and Lemma 3.5 below.

Lemma 3.4 The functor �C reflects isomorphisms.

Proof This is a consequence of Poincaré duality and Whitehead’s Theorem.
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Remark For n � 3, let Œn=2� be the integer part of n=2. Associating with a PDn –
complex, X , the pre-fundamental triple .P Œn=2�X; !X ;p Œn=2��ŒX �/, there is an ana-
logue of Lemma 3.4, namely, an orientation preserving map between PDn –complexes is
a homotopy equivalence if and only if the induced map between pre-fundamental triples
is an isomorphism. However, pre-fundamental triples do not determine the homotopy
type of a PDn –complex as in Corollary 3.2, as is demonstrated by the fake products
X D .Sn _ Sn/[˛ e2n , where ˛ is the sum of the Whitehead product Œ�1; �2� and
an element �1ˇ with ˇ 2 �2n�1.S

n/ having trivial Hopf invariant. Pre-fundamental
triples coincide with the fundamental triple for nD 3 and nD 4. It remains an open
problem to enrich the structure of a pre-fundamental triple to obtain an analogue of
Corollary 3.2.

Lemma 3.5 Let X and Y be standard PDn –complexes for n� 4 and weakly standard
for nD 3 and let f W �CY ! �CX be a morphism in Trpn

C . Then f is �C–realizable
by a map xf W Y !X in PDn

C with �C xf D f .

For the proof of Lemma 3.5, we use:

Lemma 3.6 Let X DX 0[ en be a weakly standard PDn –complex. Then yCn.X / has
a generator Œe�, corresponding to the cell en , such that yCnX D yCnX 0˚ƒŒe� and that
the cycle 1˝ Œe� 2 Z! ˝ƒ yCnX represents the fundamental class ŒX �. Let femgm2M

be a basis of yCn�1X D yCn�1X 0 . Then the coefficients famgm2M ; am 2ƒ for m2M ,
of the linear combination dnŒe�D

P
amŒem�, generate I.�1X / as a right ƒ–module,

where I.�/ denotes the augmentation ideal ker.augW ƒ! Z/.

Proof Poincaré duality implies Hn.X;Z!/ŠH 0.X;Z/Š Z. Hence 1˝d maps a
multiple of the generator 1˝ Œe� of Z!˝ƒ yCn.X /DZ!˝ƒƒŒe�ŠZ to zero, that is,
there is an ` 2N such that

0D 1˝ d.`.1˝ Œe�//D `.1˝ d Œe�/D `.1˝
X

m2M

amŒem�/

D `
X

1:am˝ Œem�D `
X

m2M

aug.am/˝ Œem�:

Since Z!˝ƒ yCn�1.X /DZ!˝ƒ
L

m2M ƒŒem�Š
L

m2M Z!˝ƒƒŒem�D
L

m2M Z
is free as abelian group, aug.am/ D 0 and hence am 2 I.�1X / for every m 2M .
Therefore 1˝ d.1˝ Œe�/D 0 and 1˝ Œe� 2 Z! ˝ƒ yCn.X / is a cycle representing a
generator of the group Hn.X;Z!/. We may assume, without loss of generality, that
the orientation of e is such that 1˝ e represents the fundamental class ŒX �. Further,
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Poincaré duality implies that Hn.X;!ƒ/ŠZ and hence I.�1X /Š im.d�/Œe�� , where
Œe��W ƒŒe�!ƒ; Œe� 7! 1. But, for every ' 2!Homƒ. yCn�1.X /;

!ƒ/,�
d�'

�
Œe�D '.d Œe�/D '

�X
amŒem�

�
D

X
am'Œem�D

�X
'Œem�amŒe�

�
�
Œe�;

and hence I.�1X / is generated by famgm2M as a left ƒ–module. Thus I.�1X / is
generated by famgm2M as a right ƒ–module.

Lemma 3.7 Let xX DX 0[f e3 be a weakly standard PD3 –complex. Then we can
choose a homotopy f ' g so that X D X 0 [g e3 admits a splitting, yC2X D S ˚

d3. yC3X 0/, as a direct sum of ƒ–modules satisfying d3Œe� 2 S .

Proof As X 0 is homologically 2–dimensional, yC . xX / admits a splitting,

yC2. xX /D im d 03˚S;

as direct sum of ƒ–modules, where d 0
3
W yC3.X

0/! yC2.X
0/. Thus d3Œe� 2 yC2. xX /D

im d 0
3
˚S decomposes as a sum d3Œe�D ˛Cˇ , with ˛ 2 im d 0

3
and ˇ 2 S . Since ˛ ,

viewed as a map S2!X 0 , is homotopically trivial in X 0 , there is a homotopy f ' g ,
where g represents ˇ , such that X DX 0[g e3 has the stated properties.

We turn to proving Lemma 3.5. Certain aspects of the proof for the case nD 3 differ
from that for the case n � 4. Those parts of the proof pertaining to the case n D 3

appear in square brackets [ . . . ]. [For nD 3 we assume that X DX 0[g e3 is chosen
as in Lemma 3.7.]

Proof of Lemma 3.5 Given X D X 0 [g en and Y D Y 0 [g0 e
0n and a morphism

' D ff gW �.Y /D .Q; !Y ; tY /! �.X /D .P; !X ; tX / in Trpn
C , the diagram

X n�1 �X 0 �X
p // P D Pn�2X

Y n�1 � Y 0 � Y

x�

OO

p0 // QD Pn�2Y;

f

OO

commutes in CW0 , where p and p0 coincide with the identity morphisms on the
.n�1/–skeleta, and where x� is the restriction of f . For n� 4, we have X 0 DX n�1

and Y 0 D Y n�1 . We obtain the following commutative diagram of chain complexes
in H0 :

yC X n�1 � yC X
p� // yC P

yC Y n�1 � yC Y

x��

OO

p0� // yC Q:

f�

OO
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For n � 4, we construct a morphism .�; �/W r.Y /! r.X / in the category Hc
n�1

of
homotopy systems of order .n� 1/ (see Section 8), rendering the diagram

r.X /
r.p/ // r.P /

r.Y /
r.p0/ //

.�;�/

OO

r.Q/

r.f /

OO
(3–4)

homotopy commutative in Hc
n�1

. Here �W yC Y ! yC X and �W Y n�2! X n�2 is the
restriction of x� above.

[For n D 3, the map x� itself need not extend to a map Y 0 ! X 0 . But, since Y 0 is
homologically 2–dimensional, there is a map �0W Y 0 ! X 0 inducing �1�

0 D �1' .
Since we may assume that Q is obtained from Y by attaching cells of dimension � 3,
we can choose f representing ' with p�0 D fp0 .]

We write � D �1X; � 0 D �1Y; ƒ D ZŒ�� and ƒ0 D ZŒ� 0� and let Œe0� 2 yCnY and
Œe� 2 yCnX be the elements corresponding to the n–cells en and e0n , respectively, n� 3.
Since ff g is a morphism in Trpn

C , we obtain f�p0�ŒY �D p�ŒX � in Hn.P;Z!/ and
hence

f�p
0
�Œe
0��p�Œe� 2 im.d W yCnC1P ! yCnP /C I.�/ yCnP:

Thus there are elements x 2 yCnC1P and y 2 I.�/ yCnP with

(3–5) f�p
0
�Œe
0��p�Œe�D dxCy:

Let fe0mgm2M be a basis of yCn�1Y . By Lemma 3.6,

(3–6) d Œe0�D
X

amŒe
0
m�;

for some am 2 ƒ
0;m 2 M , where famgm2M generate I.� 0/ as right ƒ0–module.

Since 'D�1.f / is surjective, I.�/ is generated by f'.am/gm2M as right ƒ–module,
and we may write

(3–7) y D
X

m2M

'.am/zm;

for some zm 2
yCnP;m 2 M , since there is a surjection

L
m2M ƒŒm� � I.�/ of

right ƒ–modules which maps the generator Œm� to '.am/. Then (3–5) implies that
d.f�p

0
�Œe
0��p�Œe�/D dy D

P
m2M '.am/dzm , whence

(3–8) p�d Œe�D
X

m2M

'.am/f�p
0
�Œe
0
m��

X
m2M

'.am/dzm:
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We define the '–equivariant homomorphism

(3–9) x̨nW
yCn�1Y ! yCnP by x̨n.Œe

0
m�/D�zm:

For n� 4, we define �W yC Y ! yC X by �Œe0�D Œe� and

(3–10) �i D

(
yCn�1.x�/C d x̨n for i D n� 1;

yCi.x�/ for i < n� 1:

[For n D 3 we use the splitting yC2Y D S ˚ d3
yC3Y 0 in Lemma 3.7 and define

�i W yCiY ! yCiX by �3Œe0�D Œe�; �3j yC3Y 0 D yC3�
0 , and

�2jS D . yC2�
0
C d x̨3/jS;

�2jd3
yC3Y 0 D yC2�

0
jd3
yC3Y 0;

�i D yCi� for i < 2:�

To ensure that � is a chain map, it is now enough to show that d�Œe0�D �d Œe0�. But,
for the injection yC .p/, we obtain

yCn�1.p/�d Œe
0�D yCn�1.p/. yCn�1.x�/C d x̨n/d Œe

0�

D yCn�1.p ı x�/d Œe
0�C yCn�1.p/

�
d x̨n

� X
m2M

amŒe
0
m�
��

D yCn�1.f ıp0/d Œe0�C yCn�1.p/
X

m2M

'.am/d x̨nŒe
0
m�

D

X
m2M

'.am/ yCn�1.f ıp0/Œe0m��
yCn�1.p/

X
m2M

'.am/dzm

D yCn�1.p/d Œe�D yCn�1.p/d�Œe
0�; by .3–8/:

[For n D 3, Theorem 4.3 now implies that there is a map xf W Y ! X such that
yC . xf /D � . Then �. xf /D f , xf is a degree 1 map and the proof is complete for nD 3.]

Now let n� 4. To check that .�; �/ is a morphism in Hc
n�1

, note that the attaching map
satisfies the cocycle condition and hence, by its definition, the map �n�1 commutes
with attaching maps in r.X / and r.Y /, since yCn�1x� has this property. We must
show that Diagram (3–4) is homotopy commutative. But r.f /D .f�; �/ and r.p/D

.p�; j /; r.p
0/D .p0�; j

0/, where j and j 0 are the identity morphisms on X n�2DPn�2

and Y n�2 D Qn�2 , respectively. Hence we must find a homotopy ˛W .p��; �/ '

.f�p
0
�; �/ in Hc

n�1
, that is, '–equivariant maps

˛iC1W
yCiY ! yCiC1P; i � n� 1;
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such that

f�gCgn�1˛n�1 D f�g;(3–11)

.p��/i � .f ıp0/i D ˛id C d˛iC1 for i � n� 1;(3–12)

where gn�1 is the attaching map of .n�1/–cells in P . Define ˛ by ˛nC1Œe
0�D�x

(see (3–5)) and

(3–13) ˛i D

(
x̨n for i D n;

0 for i < n:

Then ˛ satisfies (3–11) trivially. For i D n� 1, we obtain

.p��/n�1� .f ıp0/n�1 D �n�1�
yCn�1.f /

D �n�1�
yCn�1.x�/

D d˛n; by .3–10/ and .3–13/:

For i D n, we evaluate (3–12) on Œe0�. By (3–5),

.p�� �f�p
0
�/Œe
0�D p�Œe��f�p

0
�Œe
0�D�dx�y:

On the other hand,

.d˛nC1C˛nd/Œe0�D d˛nC1Œe
0�C˛n

X
m2M

amŒe
0
m�; by .3–6/;

D�dx�
X

m2M

'.am/zm; by .3–13/ and .3–9/;

D�dx�y by .3–7/:

Hence ˛ satisfies (3–12) and Diagram (3–4) is homotopy commutative.

To construct a morphism xf W Y !X in PDn
C with �. xf /D f , consider the obstruction

O.�; �/ 2 Hn.Y; �n�1X / (see Section 8) and note that p induces an isomorphism
p�W �n�1X ! �n�1P (see Baues [1, II.4.8]). Hence the obstruction for the composite
r.p/.�; �/ coincides with p�O.�; �/, where p� is an isomorphism. On the other hand,
the obstruction for r.f /r.p0/ vanishes, since this map is �–realizable. Thus, by the
homotopy commutativity of (3–4), p�O.�; �/DO.r.f /r.p0//D0, so that O.�; �/D0

and there is a �–realization .�; z�0/ of .�; �/ in Hc
n . Since HnC1.Y; �nX /D 0, there

is a �–realization .�; xf / of .�; z�0/ in Hc
nC1

. As Y D Y n , X D X n and � is, by
construction, compatible with fundamental classes, xf W Y !X is a degree 1 map in
PDn
C realizing the map f in Trpn

C .
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4 PD3–complexes

The fundamental triple of a PD3 –complex consists of a group � , an orientation !
and an element t 2 H3.�;Z

!/. Here we use the fact that the homology of a group �
coincides with the homology of the corresponding Eilenberg–Mac Lane space K.�; 1/.
In general, it is a difficult problem to actually compute H3.�;Z

!/. The homotopy type
of a PD3 –complex is characterized by its fundamental triple, but not every fundamental
triple occurs as the fundamental triple of a PD3 –complex. Turaev [18] uses the invariant
�C .t/ to characterize those fundamental triples which are realizable by a PD3 –complex.
Let Trp3

C;� be the full subcategory of Trp3
C consisting of fundamental triples satisfying

Turaev’s realization condition. Then Theorem 3.1 implies:

Theorem 4.1 The functor

�CW PD3
C='! Trp3

C;�

reflects isomorphisms and is representative and full.

Remark Turaev does not mention that the functor �C is actually full and thus only
proves the first part of the following corollary, which is one of the consequences to
Theorem 4.1.

Corollary 4.2 The functor �C yields a 1–1 correspondence between oriented homo-
topy types of PD3 –complexes and isomorphism types of fundamental triples satisfying
Turaev’s realization condition. Moreover, for every PD3 –complex X , there is a surjec-
tion of groups

�CW AutC.X /! Aut.�.X //;

where AutC.X / is the group of oriented homotopy equivalences of X in PD3
C= '

and Aut.�.X // is the group of automorphisms of the triple �.X / in Trp3
C which is a

subgroup of Aut.�1X /.

As every 3–manifold has the homotopy type of a finite standard PD3 –complex, the
question arises which fundamental triples in Trp3

C correspond to finite standard PD3 –
complexes. While Turaev does not discuss this question, we use the concept of PD3 –
chain complexes (see Section 2) in the category PD3

� to do so.

Theorem 4.3 The functor yC W PD3= ' �! PD3
�= ' reflects isomorphisms and is

representative and full.

Proof This follows from Theorem 10.1 and Theorem 10.2 in Section 10.
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Corollary 4.4 The functor yC yields a 1–1 correspondence between homotopy types
of PD3 –complexes and homotopy types of PD3 –chain complexes. Moreover, for every
PD3 –complex X there is a surjection of groups

yC W Aut.X / �! Aut. yC .X //:

Remark 4.5 Corollary 4.4 implies that the diagonal of every PD3 –chain complex is,
in fact, homotopy associative and homotopy commutative.

Connecting the functor yC and the functor �C , we obtain the diagram

PD3
C='

yC //

�C $$IIIIIIIII
PD3
�C='

��yyttttttttt

Trp3
C;�

where �C determines �� together with a natural isomorphism �� yC Š �C .

Corollary 4.6 Each of the functors yC ; �C and �� reflects isomorphisms and is full
and representative.

By Remark 2.4, the functor yC yields a 1–1 correspondence between homotopy types of
finite standard PD3 –complexes and finite standard PD3 –chain complexes, respectively.

5 Realizability of PD4–chain complexes

Given a PD4 –chain complex C , we define an invariant O.C / which vanishes if
and only if C is realizable by a PD4 –complex. To this end we recall the quadratic
functor � (see also (4.1) on page 13 in [1]). A function f W A! B between abelian
groups is called a quadratic map if f .�a/ D f .a/, for a 2 A, and if the function
A�A!B; .a; b/ 7!f .aCb/�f .a/�f .b/ is bilinear. There is a universal quadratic
map


 W A! �.A/;

such that for all quadratic maps f W A ! B there exists a unique homomorphism
f �W �.A/! B satisfying f �
 D f . Using 
 , we obtain the Whitehead product
map

P W A˝A �! �.A/;

a˝ b 7�! Œa; b�D 
 .aC b/� 
 .a/� 
 .b/:
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With the exterior product ^2A of the abelian group A we obtain the natural exact
sequence

(5–1) �.A/
H
�!A˝A �!^2A �! 0;

where H maps 
 .a/ to a˝ a for a 2 A (see also page 14 in [1]). The composite
PH W �.A/ ! �.A/ coincides with 2id�.A/ . In fact, PH maps 
 .a/ to Œa; a� D

2
 .a/. J H C Whitehead [23] introduced the functor �k ; k � 3, assigning to each CW–
complex the image of the inclusion homomorphism for homotopy groups of skeleta,
�k.X

k�1/ ! �k.X
k/, and showed that there is a natural isomorphism �3.X / Š

�.�2X /.

Theorem 5.1 Let C D ..�;C /; !; ŒC �; �/ be a PD4 –chain complex with homology
module H2.C; ƒ/DH2 . Then there is an invariant

O.C / 2 H0.�;^
2H!

2 /

with O.C /D 0 if and only if there is a PD4 –complex X such that yC .X / is isomorphic
to C in PD4

�='. Moreover, if O.C /D 0, the group

ker
�
H�W H0.�; �.H

!
2 // �! H0.�;H

!
2 ˝H!

2 /
�

acts transitively and effectively on the set Real yC .C / of realizations of C in PD4='.
Here ker H� is 2–torsion.

Proof First note that

(5–2) H4.C;^2H2/Š H0.C;^
2H!

2 /Š H0.�;^
2H!

2 /:

By Lemma 2.1, we may assume that C is 2–realizable. By Remark 1.1 and Proposition
8.3, there is a 4–dimensional CW–complex X together with an isomorphism yC X Š

.�;C /. The CW–complex X yields the homotopy systems
D
X in Hc

3
and xX in Hc

4

with xX D r.X / and
D
X D �X . By Theorem 10.1, we may choose a diagonal

D
�W
D
X !

D
X˝

D
X inducing �W C!C˝C , whose homotopy class is determined by �. However,

D
� need not be �–realizable. Lemma 9.1 shows that there is an obstruction

(5–3) O0 DO xX ; xX˝ xX .
D
�/ 2 H4.C; �3. xX ˝ xX //

which vanishes if and only if there is a diagonal x�W xX ! xX ˝ xX realizing
D
�. Note

that O0 is determined by the diagonal � on C , since the obstruction only depends
on the homotopy class of

D
�. By Theorem 10.2, the existence of x� realizing

D
� also
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implies the existence of �X W X !X �X realizing x�. But

�3. xX ˝ xX /Š �.�2. xX ˝ xX //

Š �.�2.X �X //

Š �.�2˚�2/ where �2 D �2X:

Applying Lemma 9.2 (1), we see that

O0 2 ker pi� .i D 1; 2/;

where pi W �2˚�2! �2 is the i –th projection. Now

�.�2˚�2/D �.�2/˚�2˝�2˚�.�2/

and hence O0 yields O00 2 H4.C; �2 ˝ �2/. While the homotopy type of
D
X is

determined by C , the homotopy type of xX is an element of Real�.
D
X / and the group

H4.C; �.�2// acts transitively and effectively on this set of realizations. To describe
the behaviour of the obstruction under this action using Lemma 9.3, we first consider
the homomorphism

r D��� �1�� �2�W �.�2/ �! �.�2˚�2/;

where �W �2!�2˚�2 maps x 2�2 to �1.x/C �2.x/, and �i W �2!�2˚�2 denotes
the i –th inclusion. For x 2 �2 , we obtain

r.
 .x//D 
 .�1.x/C �2.x//� 
 .�1.x//� 
 .�2.x//

D Œ�1.x/; �2.x/�

D x˝x 2 �2˝�2 � �.�2˚�2/;

showing that r coincides with H W �.�2/! �2˝�2: Given ˛ 2 H4.C; �.�2//, the
obstruction O00˛ DO xY ; xY˝xY .

D
�/ with xY D xX C˛ satisfies

O00˛ DO00CH�˛;

by Lemma 9.3. The exact sequence

H4.C; �.�2// �! H4.C; �2˝�2/ �! H4.C;^2�2/ �! 0

allows us to identify the coset of im H� represented by O00 with an element

O 2 H4.C;^2H2/;

where H2 D H2.C; ƒ/ Š �2 . By the isomorphisms (5–2), this element yields the
invariant

O 2 H0.�;^
2H!

2 /
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with the stated properties. Given that O00 vanishes, the obstruction O00˛ vanishes if and
only if ˛ 2 ker H� , and Proposition 8.3 yields the result on Real yC .C /. We observe
that ker H� is 2–torsion as H�.x/D 0 implies 2x D P�H�x D 0.

Theorem 5.2 Let C D ..�;C /; !; ŒC �; �/ be a PD4 –chain complex for which � is
homotopy commutative. Then the obstruction O.C / is 2–torsion, that is, 2O.C /D 0.

Proof Lemma 9.2 (2) states

O0 2 ker.id��T�/�;

where id is the identity on �2˚�2 and T is the interchange map on �2˚�2 with
T �1D �2 and T �2D �1 . So T induces the map �id on ^2�2 and the result follows.

Remark Lemma 9.2 (3) concerning homotopy associativity of the diagonal does not
yield a restriction of the invariant O.C /.

Theorem 5.3 The functor yC induces a 1–1 correspondence between homotopy types
of PD4 –complexes with finite fundamental group of odd order and homotopy types of
PD4 –chain complexes with homotopy commutative diagonal and finite fundamental
group of odd order.

Proof Since � is of odd order, the cohomology H0.�;M / is odd torsion and the
result follows from Theorem 5.1.

Remark By Theorem 5.3, every PD4 –chain complex with homotopy commutative
diagonal and odd fundamental group has a homotopy associative diagonal.

Up to 2–torsion, Theorem 5.1 yields a correspondence between homotopy types of
PD4 –complexes and homotopy types of PD4 –chain complexes. In Section 7 we provide
a precise condition for a PD4 –chain complex to be realizable by a PD4 –complex.

6 The chains of a 2–type

The fundamental triple of a PD4 –complex X comprises its 2–type T D P2X and an
element of the homology H4.T;Z

!/. To compute H4.T;Z
!/, we construct a chain

complex P .T / which approximates the chain complex yC .T / up to dimension 4. Our
construction uses a presentation of the fundamental group as well as the concepts of
pre-crossed module and Peiffer commutator. To introduce these concepts, we work with
right group actions as in [1], and define P .T / as a chain complex of right ƒ–modules.
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With any left ƒ–module M we associate a right ƒ–module in the usual way by setting
x:˛ D ˛�1:x , for ˛ 2 � and x 2M , and vice versa.

A pre-crossed module is a group homomorphism @W �2 ! �1 together with a right
action of �1 on �2 , such that

@.x˛/D�˛C @xC˛ for x 2 �2; ˛ 2 �1;

where we use additive notation for the group law in �1 and �2 , as in [1]. For x;y 2 �2 ,
the Peiffer commutator is given by

hx;yi D �x�yCxCy@x :

A pre-crossed module is a crossed module, if all Peiffer commutators vanish. A map of
pre-crossed modules, .m; n/W @! @0 is given by a commutative diagram

�2
m //

@

��

�0
2

@0

��
�1

n // �0
1

in the category of groups, where m is n–equivariant. Let cross be the category
of crossed modules and such morphisms. A weak equivalence in cross is a map
.m; n/W @! @0 , which induces isomorphisms coker@Š coker@0 and ker @Š ker @0 , and
we denote the localization of cross with respect to weak equivalences by Ho.cross/.
By an old result of Whitehead–Mac Lane, there is an equivalence of categories

x�W 2–types �!Ho.cross/

(compare Theorem III 8.2 in [1]). The functor x� carries a 2–type T to the crossed
module @W �2.T;T

1/! �1.T
1/:

A pre-crossed module is totally free, if �1 D hE1i is a free group generated by a set
E1 and �2 D hE2 ��1i is a free group generated by a free �1 –set E2 ��1 with the
obvious right action of �1 . A function f W E2!hE1i yields the associated totally free
pre-crossed module @f W �2! �1 with @f .x/D f .x/ for x 2E2 . Let Pein.@f /� �2

be the subgroup generated by n–fold Peiffer commutators and put x�2 D �2=Pei2.@f /.
Let crossD be the category whose objects are pairs .@f ;B/, where @f is a totally free
pre-crossed module @f W �2! �1 and B is a submodule of ker.@W x�2! �1 ). Further,
a morphism mW .@f ;B/! .@f 0 ;B

0/ in crossD is a map @f ! @f 0 which maps B into
B0 . Then there is a functor

qW crossD �! cross �!Ho.cross/;
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which assigns to .@f ;B/ the crossed module x�2=B! �1 , and one can check that q is
full and representative. Given any map gW T ! T 0 between 2–types, we may choose
a map DgW .@f ;B/! .@f 0 ;B

0/ in crossD representing the homotopy class of g via the
functor q and the equivalence x� . We call Dg a map associated with g .

Given an action of the group � on the group M and a group homomorphism 'W N!� ,
a '–crossed homomorphism hW N !M is a function satisfying

h.xCy/D .h.x//'.y/C h.y/ for x;y 2N:

By an old result of Whitehead [22], the totally free crossed module x�2! �1 enjoys
the following properties.

Lemma 6.1 Let X 2 be a 2–dimensional CW–complex in CW0 with attaching map
of 2–cells f W E2! hE1i D �1.X

1/. Then there is a commutative diagram

�2.X
2;X 1/

@ // �1.X
1/

x�2

@f // �1

identifying @ with the totally free crossed module @f . Moreover, the abelianiza-
tion of x�2 coincides with yC2.X

2/, identifying the kernel of @f with the kernel of
d2W
yC2.X

2/ ! yC1.X
2/, and @f determines the boundary d2 via the commutative

diagram

x�2

@f //

h2

��

�1

h1

��
yC2.X

2/
d2 // yC1.X

2/:

Here h2 is the quotient map and h1 is the .qW �1! �1.X
2//–crossed homomorphism

which is the identity on the generating set E1 . Each map @f ! @f 0 induces a chain
map yC2.X

2/! yC2.X
02/ where X 2 and X 02 are the 2–dimensional CW–complexes

with attaching maps f and f 0 , respectively.

In addition to Lemma 6.1, we need the following result on Peiffer commutators, which
was originally proved in IV (1.8) of [1] and generalized in a paper with Conduché [2].
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Lemma 6.2 With the notation in Lemma 6.1, there is a short exact sequence

0 �! �.K/ �! yC2.X
2/˝ yC2.X

2/
w
�! Pei2.@f /=Pei3.@f / �! 0;

where K D ker d2 D �2X 2 and w maps x˝y to the Peiffer commutator h�; �i with
�; � 2 �2 representing x and y , respectively.

Definition 6.3 Given a 2–type T in 2–types, we define the chain complex P .T /D

P .@f ;B/ as follows. Let f W E2!hE1i be the attaching map of 2–cells in T and put
CiD

yCi.T /. Then the 2–skeleton of P .T / coincides with yC .T 2/, that is, Pi.T /DCi

for i � 2, and Pi.T /D 0 for i > 4. To define P4.T /, let H be the map in (5–1) and
put B D im.d W C3! C2/ and rB DB˝BCH ŒB;C2� as a submodule of C2˝C2 .
Then P4.T / is given by the quotient

P4.T /D C2˝C2=rB:

To define P3.T /, we use Lemma 6.1, Lemma 6.2 and the identification �2T 2 D

ker.d W C2! C1/ and put �2 D �2=Pei3.@f /. Then P3.T / is given by the pullback
diagram

P3.T / // //

xd

��

�2=wrB

����
B // // �2T 2 // // x�2:

The chain complex P .T / is determined by the commutative diagram

P4.T /
d // P3.T /

xd

## ##HHHHHHHHH
//

��

��

P2.T / // P1.T / // P0.T /

C2˝C2=rB
�w // �2=wrB B // // C2

// C1
// C0:

Clearly, P .T /D P .@f ;B/ depends only on the pair .@f ;B/ and yields a functor

P W crossD �!H0:

The homology of P .T / is given by

Hi.P .T //D

8̂<̂
:

0 for i D 1 and i D 3;

H2C D �2T for i D 2;

�.�2.T // for i D 4:
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Lemma 6.4 Given a 2–type T , there is a chain map

x̌W yC .T / �! P .T /

inducing isomorphisms in homology in degree � 4. The map x̌ is natural in T up to
homotopy, that is, a map gW T ! T 0 between 2–types yields a homotopy commutative
diagram

yC .T /

x̌

��

g� // yC .T 0/

x̌

��
P .T /

D
g� // P .T 0/;

where Dg� is induced by a map DgW @f ! @f 0 associated with g .

For a proof of Lemma 6.4, we refer the reader to diagram (1.2) in Chapter V of [1]. In
order to compute the fourth homology or cohomology of a 2–type T with coefficients,
choose a pair .@f ;B/ representing T and a free chain complex C together with a
weak equivalence of chain complexes

C
�
�! P .@f ;B/:

Then, for right ƒ–modules M and left ƒ–modules N ,

H4.T;M /D H4.C ˝M /;

H4.T;N /D H4.Homƒ.C;N //:

This allows the computation of H4 in terms of chain complexes only, as is the case
for the computation of group homology in Section 4. Of course, it is also possible
to compute the homology of T in terms of a spectral sequence associated with the
fibration

K.�2.T /; 2/ �! T �!K.�1.T /; 1/:

However, in general, this yields nontrivial differentials, which may be related to the
properties of the chain complex P .@f ;B/.

7 Algebraic models of PD4–complexes

Let X be a 4–dimensional CW–complex and let

p2W X �! P2X D T

be the map to the 2–type of X , as in (3–1). Then p2 yields the chain map

ˇW yC .X /
p2�
�! yC .T /

x̌
�

�! P .T /D P .@f ;B/;
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where @f is given by the attaching map of 2–cells in X and B D im.d3W
yC3.X /!

yC2.X //. We call the chain map ˇ the cellular boundary invariant of X .

Lemma 7.1 Suppose X and X 0 are 4–dimensional CW–complexes. A chain map
'W yC .X /! yC .X 0/ is realizable by a map gW X ! X 0 in CW0 , that is, ' D g� , if
and only if the diagram

yC .X /
' //

ˇ

��

yC .X 0/

ˇ0

��
P .@f ;B/

D
' // P .@f 0 ;B

0/

commutes up to homotopy. Here D'W @f ! @f 0 is a map in crossD inducing the map
'�2W

yC .X 2/! yC .X 02/ as in Lemma 6.1.

Proof By Lemma 6.4, the diagram

yC .X /
' //

p2�

��

yC .X 0/

p2�

��
yC .T /

g� // yC .T 0/

is homotopy commutative, where g is given by q.
D
g/ in Ho.cross/. Since p2� and

g� are realizable, the obstruction OX ;X 0.'/ vanishes.

The next definition relies on the theory of quadratic chain complexes from [1], in
particular, we use the tensor product of quadratic chain complexes defined in [1]. We
hope to discuss explicit examples of this definition elsewhere.

Definition 7.2 A ˇ–PD4 –chain complex is a PD4 –chain complex ..�;C /; !; ŒC �; �/
together with a totally free pre-crossed module @f inducing d2W C2! C1 and a chain
map

ˇW C �! P .@f ;B/

which is the identity in degree � 2. Here B D im.d3W C3! C2/, the diagram

C
� //

ˇ
��

C ˝C

ˇ˝

��
P .@f ;B/

D

�� // P .@f˝f ;B
˝/
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commutes up to homotopy and ˇ is the cellular boundary invariant ˇ� of a totally
free quadratic chain complex � defined in V (1.8) of [1]. Further, ˇ˝ is the cellular
boundary invariant of the quadratic chain complex � ˝ � defined in Section IV 12
of [1], and there is an explicit formula expressing ˇ˝ in terms of ˇ , which we do
not recall here. The function f ˝ f is the attaching map of 2–cells in the product
X 2�X 2 , where X 2 is given by f , and B˝ is the image of d3 in C˝C . The map

D
�

in crossD is chosen such that
D
� induces � in degree � 2 as in Lemma 7.1. Let PD4

�;ˇ

be the category whose objects are ˇ–PD4 –chain complexes and whose morphisms are
maps ' in PD4

� such that the diagram

C
' //

ˇ
��

C 0

ˇ0

��
P .@f ;B/

D
' // P .@f 0 ;B

0/

is homotopy commutative, where D' induces '�2 as in Lemma 7.1.

Theorem 7.3 The functor yC yields a functor

yC W PD4='�! PD4
�;ˇ='

which reflects isomorphisms and is representative and full.

Proof Since C is 2–realizable, there is a 4–dimensional CW–complex X with
yC .X / D C and cellular boundary invariant ˇ . Compare Remark 1.1. By Lemma
7.1, the diagonal � is realizable by a diagonal X ! X �X , showing that X is a
PD4 –complex. By Lemma 7.1, a map ' is realizable by a map X !X 0 .

Corollary 7.4 The functor yC induces a 1–1 correspondence between homotopy types
of PD4 –complexes and homotopy types of ˇ–PD4 –chain complexes.

The functor � in Section 3 yields the diagram of functors

(7–1) PD4
C='

yC //

�C ##HHHHHHHHH
PD4
�C;ˇ

='

��yyttttttttt

Trp4
C

where �C determines �� together with a natural isomorphism �� yC Š �C .

Corollary 7.5 The functor �� in (7–1) reflects isomorphisms and is full.
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8 Homotopy systems of order .k C 1/

To investigate questions of realizability, we work in the category Hc
kC1

of homotopy
systems of order .k C 1/. Let CWk

0 be the full subcategory of CW0 consisting of
k –dimensional CW–complexes. A 0–homotopy H in CW0 , denoted by '0 , is a
homotopy for which Ht is cellular for each t; 0� t � 1.

Let k � 2. A homotopy system of order .kC1/ is a triple X D .C; fkC1;X
k/, where

X k is an object in CWk
0 , C is a chain complex of free �1.X

k/–modules, which
coincides with yC .X k/ in degree � k , and where fkC1 is a homomorphism of left
�1.X

k/–modules such that

CkC1

d

��

fkC1 // �k.X
k/

j

��
Ck �k.X

k ;X k�1/
hkoo

commutes. Here d is the boundary in C ,

hk W �k.X
k ;X k�1/

p�1
�

Š
// �k. yX

k ; yX k�1/
h

Š
// Hk. yX

k ; yX k�1/;

given by the Hurewicz isomorphism h and the inverse of the isomorphism on the
relative homotopy groups induced by the universal covering pW yX ! X . Moreover,
fkC1 satisfies the cocycle condition

fkC1d.CkC2/D 0:

Given an object X in CW0 , the triple r.X / D . yC .X /; fkC1;X
k/ is a homotopy

system of order .kC 1/, where X k is the k –skeleton of X , and

fkC1W
yCkC1.X /Š �kC1.X

kC1;X k/
@ // �k.X

k/

is the attaching map of .kC1/–cells in X . A morphism or map between homotopy
systems of order .kC 1/ is a pair

.�; �/W .C; fkC1;X
k/! .C 0;gkC1;Y

k/;
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where �W X k ! Y k is a morphism in CW0= '
0 and the �1.�/–equivariant chain

map �W C ! C 0 coincides with yC�.�/ in degree � k such that

CkC1

fkC1

��

�kC1 // C 0
kC1

gkC1

��

�k.X
k/ ��

// �k.Y
k/

commutes. We also write �1X D�1.X
k/ for an object X D .C; fkC1;X

k/ in Hc
kC1

.

To define the homotopy relation in Hc
kC1

, we use the action

(8–1) ŒX k ;Y �' ��Hk.X k ; '��kY /! ŒX k ;Y �' ; .F; f˛g/ 7! F Cf˛g;

where ŒX n;Y �' is the set of elements in ŒX n;Y � which induce ' on the fundamental
groups (see (2.4)(3) on page 45 in [1]). Two morphisms

.�; �/; .� 0; �0/W .C; fkC1;X
k/! .C 0;gkC1;Y

k/

are homotopy equivalent in Hc
kC1

if �1.�/D�1.�
0/D' and if there are '–equivariant

homomorphisms j̨C1W Cj ! C 0
jC1

for j � k such that

f�gCgkC1˛kC1 D f�
0
g;

� 0i � �i D ˛id C d˛iC1; i � kC 1;

where f�g denotes the homotopy class of � in ŒX k ;Y k � and C is the action (8–1).

Given homotopy systems X D .C; fkC1;X
k/ and Y D .C 0;gkC1;Y

k/, consider

X ˝Y D .C ˝Z C 0; hkC1; .X
k
�Y k/k/;

where we choose CW–complexes X kC1 and Y kC1 with attaching maps fkC1 and
gkC1 , respectively, and hkC1 is given by the attaching maps of .kC1/–cells in
X kC1 �Y kC1 . Then X ˝Y is a homotopy system of order .kC 1/, and

˝W Hc
kC1 �Hc

kC1!Hc
kC1

is a bifunctor, called the tensor product of homotopy systems. The two projections
p1W X ˝Y ! X and p2W X ˝Y ! Y in Hc

kC1
are given by the projections of the

tensor product and the product of CW–complexes. Similarly, we obtain the inclusions
�1W X !X ˝Y and �2W Y !X ˝Y . Then p1�1 D idX and p2�2 D idY , while p1�2
and p2�1 yield the trivial maps.
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There are functors

(8–2) CW0
r // Hc

kC1
� // Hc

k
C // H0

for k � 3, with r.X /D . yC .X /; fkC1;X
k/ such that r D �r . We write �X D xX for

objects X in Hc
kC1

. As X ˝Y D �.X˝Y /D xX˝ xY , the functor �, like r and C , is
a monoidal functor between monoidal categories. There is a homotopy relation defined
on the category Hc

kC1
such that these functors induce functors between homotopy

categories

CW0='
r // Hc

kC1
=' � // Hc

k
='

C // H0=' :

For k�3, Whitehead’s functor �k factors through the functor r W CW!Hc
k

, so that the
cohomology �Hm. xX ; '

��k. xY //DHm.C; '��k. xY // is defined, where 'W �1
xX!�1

xY

and xX and xY are objects in Hc
k

.

Consider f D .�; �/W xX ! xY in Hc
k

, where xX D �X and xY D �Y . To describe the
obstruction to realizing f by a map X ! Y in Hc

kC1
for objects X D .C; fkC1;X

k/

and Y D .C 0;gkC1;Y
k/, choose F W X k! Y k in CW='0 extending �W X k�1 !

Y k�1 and for which yC�F coincides with � in degree � k . Then

CkC1

fkC1

��

�kC1 // C 0
kC1

gkC1

��

�k.X
k/

F� // �k.Y
k/

need not commute and the difference O.F /D�gkC1�kC1CF�fkC1 is a cocycle in
Hom'.CkC1; �k. xY //. Theorem II 3.3 in [1] implies:

Proposition 8.1 The map f D .�; �/W xX ! xY in Hc
k

can be realized by a map
f0D .�; �0/W X!Y in Hc

kC1
if and only if OX ;Y .f /DfO.F /g2�HkC1. xX ; '��k

xY /

vanishes. The obstruction O is a derivation, that is, for f W xX ! xY and gW xY ! xZ ,

(8–3) OX ;Z .gf /D g�OX ;Y .f /Cf
�OY;Z .g/;

and OX ;Y .f / depends on the homotopy class of f only.

Denoting the set of morphisms X ! Y in Hc
kC1

= ' by ŒX;Y �, and the subset of
morphisms inducing ' on the fundamental groups by ŒX;Y �' � ŒX;Y �, there is a
group action

ŒX;Y �' ��Hk. xX ; '��k
xY /

C
�! ŒX;Y �' ;

where xX D �X and xY D �Y . Theorem II 3.3 in [1] implies:
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Proposition 8.2 Given morphisms f0; f
0

0
2 ŒX;Y �' , then �f0 D �f

0
0
D f if and only

if there is an ˛ 2�Hk. xX ; '��k
xY / with f 0

0
D f0C˛ . In other words, �Hk. xX ; '��k

xY /

acts transitively on the set of realizations of f . Further, the action satisfies the linear
distributivity law

(8–4) .f0C˛/.g0Cˇ/D f0g0Cf�ˇCg�˛:

For the functor � in (8–2), Theorem II 3.3 and Proposition II 3.13 in [1] imply:

Proposition 8.3 For all objects X in Hc
kC1

and for all ˛ 2�HkC1. xX ; �k
xX /, there is

an object X 0 in Hc
kC1

with �.X 0/D �.X /D xX and OX ;X 0.id xX /D ˛ . We then write
X 0 DX C˛ .

Now let Y be an object in Hc
k

. Then the group �HkC1.Y; �kY / acts transitively and
effectively on Real�.Y / via C, provided Real�.Y / is nonempty. Moreover, Real�.Y /
is nonempty if and only if an obstruction O.Y / 2�HkC2.Y; �kY / vanishes.

For objects X and Y in Hc
kC1

and a morphism f W xX ! xY in Hc
k

, Proposition 8.1
and Proposition 8.3 yield

(8–5) OXC˛;YCˇ.f /DOX ;Y .f /�f�˛Cf
�ˇ

for all ˛ 2�HkC1. xX ; �k
xX / and ˇ 2�HkC1. xY ; �k

xY /. Given another object Z in Hc
kC1

with �Z D xZ ,

OX˝Z;Y˝Z .f ˝ id xZ /Dx�1� xp
�
1OX ;Y .f /;(8–6)

OZ˝X ;Z˝Y .id xZ ˝f /Dx�2� xp
�
2OX ;Y .f /;(8–7)

where x�1W xX ! xX ˝ xZ and xp1W
xX ˝ xZ! xX are, respectively, the inclusion of and

projection onto the first factor and x�2 and xp2 are defined analogously. We obtain

(8–8) .X C˛/˝ .Y Cˇ/D .X ˝Y /Cx�1� xp
�
1˛Cx�2� xp

�
2ˇ:

9 Obstructions to the diagonal

Let k�2. A diagonal on X D .C; fkC1;X
k/ in Hc

kC1
is a morphism, �W X!X˝X ,

such that, for i D 1; 2, the diagram

(9–1)
X

� //

id
''PPPPPPPPPPPPPPP X ˝X

pi

��
X
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commutes up to homotopy in Hc
kC1

. Applying the functor r W CW0!Hc
k

to a diagonal
�W X !X �X in CW0 , we obtain the diagonal r.�/W r.X /! r.X /˝ r.X / in Hc

k
.

Lemma 9.1 Suppose X is an object in Hc
kC1

. Then every �–realizable diagonal
x�W xX D �X ! xX ˝ xX in Hc

k
=' has a �–realization �W X !X ˝X in Hc

kC1
='

which is a diagonal in Hc
kC1

.

Proof Suppose �0W X !X ˝X is a �–realization of x� in Hc
kC1

. The projection
p`W X ! X ˝X realizes the projection xp`W xX ! xX ˝ xX and hence p`�

0 realizes
xp` x� for ` D 1; 2. Now the identity on X realizes the identity on xX and xp`� is
homotopic to the identity on xX by assumption. Hence p`�

0 and the identity on X

realize the same homotopy class of maps for `D 1; 2. The group �Hk. xX ; �k
xX / acts

transitively on the set of realizations of this homotopy class by Proposition 8.2, whence
there are elements ˛` 2�Hk. xX ; �k

xX / such that

fp`�
0
gC˛` D fidX g for `D 1; 2;

where ff g denotes the homotopy class of the morphism f in Hc
kC1

. We put

f�g D f�0gC �1˛1C �2˛2:

By Proposition 8.2,

fp`�g D fp`g.f�
0
gC �1˛1C �2˛2/

D fp`�
0
gC xp`��1˛1C xp`��2˛2

D fp`�
0
gC˛` D fidX g:

Lemma 9.2 For X in Hc
kC1

, let �xX W xX ! xX ˝ xX be a diagonal on xX D �X in Hc
k

.
Then we obtain, in HkC1. xX ; �k. xX ˝ xX //,

(1) OX ;X˝X .�xX / 2 ker xpi� for i D 1; 2,

(2) OX ;X˝X .�xX / 2 ker.id xX ��T�/� if �xX is homotopy commutative and

(3) OX ;X˝X .�xX / 2 ker
�
x�1;2� �x�2;3�C .�xX ˝ id xX /� � .id xX ˝�xX /�

�
�

if �xX is
homotopy associative.

Proof By definition, xpi�xX ' id xX for i D 1; 2. As the identity on xX is realized by
the identity on X and xpi W

xX ˝ xX ! xX is realized by pi W X ˝X !X , Proposition
8.1 implies OX ;X˝X .id xX /D 0 and OX˝X ;X . xpi/D 0. Since O is a derivation, we
obtain

0DOX ;X . xpi�xX /D xpi�OX ;X˝X .�xX /C�
�
xX
OX˝X ;X . xpi/D xpi�OX ;X˝X .�xX /;
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and hence OX ;X˝X .�xX / 2 ker xpi� for i D 1; 2. If �xX is homotopy commutative,
then

OX ;X˝X .�xX /DOX ;X˝X .T�xX /D T�OX ;X˝X .�xX /;

since OX˝X ;X˝X .T /D0, as T is �–realizable. So OX ;X˝X .�xX /2ker.idxX ��T�/� .
For 1� k < `;� 3, let �k;`W X ˝X !X ˝X ˝X denote the inclusion of the k –th
and `–th factors and suppose �xX is a homotopy commutative diagonal in Hc

k
. Then

OX ;X˝X˝X ..�xX ˝ id xX /�xX / D OX ;X˝X˝X ..id xX ˝�xX /�xX /, as the obstruction
depends on the homotopy class of a morphism only, and

OX ;X˝X˝X .�xX ˝ id xX /Dx�1;2� xp
�
1OX ;X˝X .�xX /

OX ;X˝X˝X .id xX ˝�xX /Dx�2;3� xp
�
2OX ;X˝X .�xX /;

by (8–6) and (8–7). Omitting the objects in the notation for the obstruction, we obtain

O..�xX ˝ id xX /�xX /D�
�
xX
O.�xX ˝ id xX /C .�xX ˝ id xX /�O.�xX /

D��xX
x�1;2� xp

�
1O.�xX /C .�xX ˝ id xX /�O.�xX /

Dx�1;2�. xp1�xX /
�O.�xX /C .�xX ˝ id xX /�O.�xX /

Dx�1;2�O.�xX /C .�xX ˝ id xX /�O.�xX /:

Similarly, we obtain

O..id xX ˝�xX /�xX /Dx�2;3�O.�xX /C .�xX ˝ id xX /�O.�xX /;

which proves (3).

Question Given a �–realizable object xX with a diagonal �xX W xX ! xX ˝ xX in Hc
k

,
is there an object X with �X D xX and a diagonal �X W X !X ˝X in Hc

kC1
such

that ��X D�xX ?

Let X in Hc
kC1

be a �–realization of xX . By Proposition 8.3, any �–realization
X 0 of xX is of the form X 0 D X C ˛ for some ˛ 2 �HkC1. xX ; �k

xX /. By (8–8),
X 0˝X 0 D .X ˝X /Cx�1� xp

�
1
˛Cx�2� xp

�
2
˛ and as the obstruction O is a derivation, we

obtain

OX 0;X 0˝X 0.�xX /DOXC˛;.XC˛/˝.XC˛/.�xX /

DOX ;X˝X .�xX /��xX �˛C�
�
xX
.x�1� xp

�
1˛C �2� xp

�
2˛/

DOX ;X˝X .�xX /� .�xX ��x�1��x�2�/˛;

since ��x�i� xp�i Dx�i�. xpi�/
� Dx�i� , for i D 1; 2.
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Lemma 9.3 For X in Hc
kC1

, let �xX W xX ! xX ˝ xX be a diagonal on xX D �X

in Hc
k

and let X 0 D X C ˛ for some ˛ 2 �HkC1. xX ; �k
xX /. Then we obtain, in

HkC1. xX ; �k. xX ˝ xX /,

OX 0;X 0˝X 0.�xX /DOX ;X˝X .�xX /� .�xX ��x�1��x�2�/˛:

10 PDn–homotopy systems

A PDn –homotopy system X D .X; !X ; ŒX �; �X / of order .k C 1/ consists of an
object X D .C; fkC1;X

k/ in Hc
kC1

, a group homomorphism !X W �1X ! Z=2Z,
a fundamental class ŒX � 2 Hn.C;Z!/ and a diagonal �W X ! X ˝ X in Hc

kC1

such that .C; !X ; ŒX �; �X / is a PDn –chain complex. A map f W .X; !X ; ŒX �; �X /!

.Y; !Y ; ŒY �; �Y / of PDn –homotopy systems of order .kC 1/ is a morphism in Hc
kC1

such that !X D !Y �1.f / and .f ˝ f /�X '�Y f , and we thus obtain the category
PDn

ŒkC1�
of PDn –homotopy systems of order .k C 1/. Homotopies in PDn

ŒkC1�
are

homotopies in Hc
kC1

, and restricting the functors in (8–2), we obtain, for k � 3, the
functors

(10–1) PDn r // PDn
ŒkC1�

� // PDn
Œk�

C // PDn
�:

These functors induce functors between homotopy categories:

PDn='
r // PDn

ŒkC1�
=' � // PDn

Œk�
=' C // PDn

�=' :

Theorem 10.1 The functor C W PDn
Œ3�
='�! PDn

�=' is an equivalence of categories
for n� 3.

Proof The functor C is full and faithful by Theorem III 2.9 and Theorem III 2.12
in [1]. By Lemma 2.1, every PDn –chain complex, xX D .D; !; ŒD�; x�/, in PDn

� is
2–realizable, that is, there is an object X 2 in CW2

0 such that yC .X 2/DD�2 , and we
obtain the object X D .D; f3;X

2/ in Hc
3

. As C is monoidal, full and faithful, the
diagonal x� on xX is realized by a diagonal � on X and hence .X; !; ŒD�; �/ is an
object in PDn

Œ3�
with C.X /D xX .

Theorem 10.2 For n�3, the functor r W PDn='�!PDn
Œn�
=' reflects isomorphisms,

is representative and full.

Proof That r reflects isomorphisms follows from Whitehead’s Theorem.
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Poincaré duality implies �HnC1.Y; �nY / D �HnC2.Y; �nY / D 0, for every object
Y D .Y; !Y ; ŒY �; �Y / in PDn

Œn�
. Hence, by Proposition 8.3, Y D �.X / for some

object X in Hc
nC1

, and, by Proposition 8.1, the diagonal �Y is �–realizable. Thus
Lemma 9.1 guarantees the existence of a diagonal �X W X ! X ˝X in Hc

nC1
with

��X D �Y . The homomorphism !Y and the fundamental class ŒY � determine a
homomorphism !X W �1X ! Z=2Z and a fundamental class ŒX � 2 Hn.C;Z!/, such
that X D .X; !X ; ŒX �; �X / is an object in PDn

ŒnC1�
. Inductively, we obtain an object

.Xk ; !Xk
; ŒXk �; �Xk

/ realizing .Y; !Y ; ŒY �; �Y / in PDn
Œk�

for k > n, and in the limit
an object X D .X; !X ; ŒX �; �X / in PDn with r.x/D Y .

Proposition 8.1 together with the fact that, by Poincaré duality, �Hk.X;B/ D 0 for
k > n and every ƒ–module B , implies that r is full.

References
[1] H J Baues, Combinatorial homotopy and 4–dimensional complexes, de Gruyter Expo-

sitions in Math. 2, de Gruyter, Berlin (1991) MR1096295 With a preface by R Brown
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