About the macroscopic dimension of certain PSC-Manifolds

DMITRY BOLOTOV

In this note we give a partial answer to Gromov's question about macroscopic dimension filling of a closed spin PSC–Manifold's universal covering.

57R19; 57R20

1 Introduction

The following definition was given by M Gromov in [3].

Definition 1.1 Let V be a metric space. We say that $\dim_{\varepsilon} V \leq k$ if there exists a k-dimensional polyhedron P and a proper uniformly co-bounded map $\phi: V \to P$ such that $\operatorname{Diam}(\phi^{-1}(p)) \leq \varepsilon$ for all $p \in P$. A metric space V has the macroscopic $\dim_{\mathrm{mc}} V \leq k$ if $\dim_{\varepsilon} V \leq k$ for some possibly large $\varepsilon < \infty$. If k is as minimal as possible, we say that $\dim_{\mathrm{mc}} V = k$.

Gromov also posed the following conjecture.

Conjecture C1 Let (M^n, g) be a closed Riemannian *n*-manifold with torsion free fundamental group and $(\widetilde{M}^n, \widetilde{g})$ be the universal covering of M^n with the pull-back metric. Suppose that $\dim_{mc}(\widetilde{M}^n, \widetilde{g}) < n$. Then $\dim_{mc}(\widetilde{M}^n, \widetilde{g}) < n-1$.

Remark 1.2 In fact the macroscopic dimension $\dim_{mc}(\widetilde{M}^n, \widetilde{g})$ of the universal covering \widetilde{M}^n of M does not depend on a particular choice of a Riemannian metric g on M, since the Riemannian manifolds $(\widetilde{M}^n, \widetilde{g})$ and $(\widetilde{M}^n, \widetilde{g}')$ are quasi-isometric for any two metrics g and g' on M.

This conjecture is true for n = 3 (see Bolotov [1]). In [2] the author shown that it fails for n > 3.

Actually this question arose in M Gromov's works in connection with the study of PSC–manifolds, ie manifolds admitting a Positive Scalar Curvature metric.

The following is Gromov's PSC-conjecture.

Published: 6 January 2009

Conjecture C2 Let (M^n, g) be a closed Riemannian PSC-manifold with torsion free fundamental group, and let $(\widetilde{M}^n, \widetilde{g})$ be the universal covering of M^n with the pull-back metric, then $\dim_{mc}(\widetilde{M}^n, \widetilde{g}) < n - 1$.

Let us also recall the Gromov-Lawson-Rosenberg conjecture.

Conjecture 1.3 Let M^n be a closed spin manifold, $\pi = \pi_1 M^n$, and let $f: M^n \to B\pi$ be a classifying map. Then M^n admits a PSC-metric if and only if

$$A \circ f_*([M^n]_{KO}) = 0$$

in $KO_n(C_r^*(\pi))$, where $[M^n]_{KO} \in KO_n(M^n)$ is the corresponding fundamental class in KO-theory, $C_r^*(\pi)$ is the reduced C^* -algebra of the group π , and

A: $KO_*(B\pi) \rightarrow KO_*(C_r^*(\pi))$

is the assembly homomorphism of homology theories.

Remark 1.4 $f_*[M^n]_{KO}$ depends only on the bordism class $[M^n, f] \in \Omega_n^{\text{Spin}}(B\pi)$ (see Hitchin [5], Gromov–Lawson [4]).

The following important theorem is proved by J Rosenberg.

Theorem 1.5 (Rosenberg [6]) Let M^n be a spin manifold, $\pi = \pi_1 M^n$, and $f: M^n \to B\pi$ be a classifying map. If M^n is a PSC-manifold then $A \circ f_*[M^n]_{KO} = 0$.

Recall that the Strong Novikov Conjecture asserts the following.

Conjecture 1.6 The assembly map A: $KO_*(B\pi) \to KO_*(C_r^*(\pi))$ is a monomorphism.

In this paper we prove the following theorem.

Main Theorem Let M^n be a closed spin PSC-manifold and $\pi = \pi_1 M^n$. Suppose that $cd \pi \le n-1$ and that the Strong Novikov Conjecture holds for π . Then Conjecture C2 is true for M^n as well.

Remark 1.7 Clearly, for the proof of this result it is sufficient to show that the classifying map $f: M^n \to B\pi$ can be deformed into the (n-2)-skeleton of $B\pi$. In this case the covering map $\tilde{f}: \widetilde{M} \to \widetilde{B}\pi^{(n-2)}$ would yield the result. Also notice that the Main Theorem is nontrivial only in the case $cd\pi = n-1$.

2 Proof of Main Theorem

Proof Let *M* be an oriented, closed, *n*-dimensional, spin manifold with torsion free fundamental group π . Notice that the Main Theorem is trivial for n = 2. Moreover, since $cd\pi \neq 2$ for n = 3, we will assume that $n \ge 4$. Suppose also that $cd \pi = n - 1$ and $[M] = 0 \in \Omega_n^{\text{Spin}}(*)$.

Consider the following composition of maps:

$$M \stackrel{f}{\longrightarrow} B\pi \stackrel{p}{\longrightarrow} B\pi/B\pi^{(n-2)},$$

where p is the factor-map to the factor-space $B\pi/B\pi^{(n-2)}$ of $B\pi$ by its (n-2)-skeleton.

Since $cd\pi = n - 1$, we can assume that dim $B\pi = n - 1$ and $B\pi/B\pi^{(n-2)}$ is homeomorphic to a bouquet of (n-1)-dimensional spheres.

We can also assume that M is endowed with cellular decomposition having only one cell in each dimensions 0 and n, and that f is a cellular map. Let $f^{(n-2)}$ be the restriction of f to the (n-2)-skeleton of M. The first obstruction class $[c_f^{n-1}]$ for the extension of $f^{(n-2)}$ to the (n-1)-skeleton belongs to the group $H^{n-1}(M, \pi_{n-2}(B\pi^{(n-2)}))$. Notice that by Hurewicz's theorem

$$\pi_{n-2}(B\pi^{(n-2)}) \cong H_{n-2}(B\pi^{(n-2)},\mathbb{Z}[\pi])$$

is a free $\mathbb{Z}[\pi]$ -module. Hence by Poincaré duality with twisted coefficients

$$H^{k}(M, \oplus_{i}\mathbb{Z}[\pi]) \cong H^{k}_{c}(\widetilde{M}, \oplus_{i}\mathbb{Z}) \cong H_{n-k}(\widetilde{M}, \oplus_{i}\mathbb{Z}).$$
(*)

Since $H_1(\widetilde{M}, \bigoplus_i \mathbb{Z}) = 0$, we can extend $f^{(n-2)}$ to a map $f^{(n-1)}: M^{(n-1)} \to B\pi^{(n-2)}$ changing (if necessary) $f^{(n-2)}$ on the (n-2)-skeleton, but not changing $f^{(n-2)}$ on the (n-3)-skeleton.

Since $B\pi$ is a $K(\pi, 1)$ -space, we can also extend $f^{(n-1)}$ to the map $\hat{f}: M \to B\pi$. In the sequel we will denote this map \hat{f} by f.

Notice that the first obstruction $c_f^n \in C^n(M, \pi_{n-1}(B\pi^{(n-2)}))$ for an extension of $f^{(n-1)}$ to all of M can be represented as a composition of $\mathbb{Z}[\pi]$ -module homomorphisms:

$$c_f^n: C_n(M, \mathbb{Z}[\pi]) \cong \pi_n(M, M^{(n-1)}) \xrightarrow{\partial} \pi_{n-1}(M^{(n-1)}) \xrightarrow{f_*^{(n-1)}} \pi_{n-1}(B\pi^{(n-2)}).$$

Consider the following commutative diagram:

$$\begin{array}{cccc} \pi_n(M, M^{(n-1)}) & \stackrel{f_*}{\longrightarrow} & \pi_n(B\pi, B\pi^{(n-2)}) \\ & \downarrow_{\partial} & & \downarrow_{\partial} \\ \pi_{n-1}(M^{(n-1)}) & \stackrel{f_{*}^{(n-1)}}{\longrightarrow} & \pi_{n-1}(B\pi^{(n-2)}) \end{array}$$

Notice that $\pi_n(B\pi, B\pi^{(n-2)}) \xrightarrow{\partial} \pi_{n-1}(B\pi^{(n-2)})$ is an isomorphism. This can easily be seen from the exact sequence of the pair $(B\pi, B\pi^{(n-2)})$ since $\pi_i(B\pi) = 0$ for $i \ge 2$.

Recall that $n \ge 4$ and

$$\pi_n(B\pi, B\pi^{(n-2)}) \cong \pi_n(\widetilde{B}\pi, \widetilde{B}\pi^{(n-2)}) \cong \pi_n(\widetilde{B}\pi/\widetilde{B}\pi^{(n-2)})$$

is a free $\mathbb{Z}_2[\pi]$ -module.

Using Poincaré duality for the $\mathbb{Z}[\pi]$ -module $\Lambda = \pi_n(\widetilde{B}\pi/\widetilde{B}\pi^{(n-2)})$ it is not hard to verify that

$$H^n(M,\Lambda) \cong \Lambda \otimes_{\mathbb{Z}[\pi]} \mathbb{Z} \cong \oplus_i \mathbb{Z}_2.$$

Consider the following commutative diagram:

Clearly, $\pi_n(M, M^{(n-1)}) \otimes \mathbb{Z} \cong \pi_n(M/M^{(n-1)}) \cong \pi_n(S^n)$ and

$$\pi_n(B\pi, B\pi^{(n-2)}) \otimes \mathbb{Z} \cong \pi_n(B\pi/B\pi^{(n-2)}) \cong \pi_n(\underset{i}{\vee} S^{n-1}).$$

We conclude that $[c_f] = (\overline{f_*} \circ \otimes \mathbb{Z})(c)$, where *c* is a generator of free module $\pi_n(M, M^{(n-1)})$, and $[c_f]$ is represented by the map (as an element of the homotopy group $\pi_n(\bigvee S^{n-1})$):

$$M/M^{(n-1)} \cong S^n \xrightarrow{\bar{f}} B\pi/B\pi^{(n-2)} \cong \bigvee_i S^{n-1}.$$

Consider the following commutative diagram:

$$M \xrightarrow{q} S^{n} \xrightarrow{id} S^{n}$$

$$f \downarrow \qquad \qquad \qquad \downarrow \bar{f} \qquad \qquad \downarrow h \qquad (**)$$

$$B\pi \xrightarrow{p} \bigvee_{i} S^{n-1} \xrightarrow{p_{k}} S^{n-1}$$

Suppose that for some k the map $p_k \circ \overline{f}$ is not null-homotopic, where p_k is the projection on the k-factor of the bouquet. The map

$$p_k \circ p \circ f \colon M \to S^{n-1}$$

induces a composition of homomorphisms

$$p_{k*} \circ p_* \circ f_* \colon KO_n(M) \to KO_n(S^{n-1}).$$

Clearly, if

$$p_{k*} \circ p_* \circ f_*[M]_{KO} = (h \circ q)_*[M]_{KO} \neq 0,$$

then $f_*[M]_{KO} \neq 0$ as well.

Lemma 2.1 Let $\Omega_n^{\text{Spin}}(S^{n-1})$ be the *n*th bordism group of S^{n-1} . Then $[(M, h \circ q)] = [(S^n, h)]$ in $\Omega_n^{\text{Spin}}(S^{n-1})$.

Proof Since $[M] = 0 \in \Omega_n^{\text{Spin}}(*)$, there exists an (n + 1)-dimensional spin manifold W with $\partial W = M$. Let $B \subset W$ be a small open ball and

$$i: D^n \times I \to W \setminus B$$

be a regular normal neighborhood of the transversal segment $i: 0 \times I \to W \setminus B$, such that $i(0,0) \in M$ and $i(0,1) \in \partial \overline{B} \cong S^n$. Define the following map:

$$i(D^n \times I) \xrightarrow{\text{retraction}} i(D^n \times 0) \xrightarrow{\text{quotient}} i(D^n \times 0) / i(\partial D^n \times 0) \cong S^n \xrightarrow{h} S^{n-1}.$$

We can extend it to the map $F: W \setminus B \to S^{n-1}$ which is constant outside $i(D^n \times I)$. Clearly, the restriction $F|_M$ is homotopic to $h \circ q$ in M and the restriction $F|_{\partial \overline{B}}$ is homotopic to h in $\partial \overline{B}$.

Since $(h \circ q)_*[M]_{KO}$ depends only on the bordism class in $\Omega_n^{\text{Spin}}(S^{n-1})$ (Hitchin [5]), we obtain from Lemma 2.1 that

$$(h \circ q)_*[M]_{KO} = h_*[S^n]_{KO}.$$

We will now show that $[h] \in \pi_1^s$ represents a non-zero element $h_*[S^n]_{KO}$ in $KO_n(S^{n-1})$.

By assumption h is not homotopic to zero. Therefore h must be homotopic to the Hopf (n-3)-suspension $H: S^n \to S^{n-1}$ which induces a homomorphism $H_*: KO_n(S^n) \to S^{n-1}$ $KO_n(S^{n-1})$. But $H_*[S^n]_{KO} \neq 0$. Indeed, let \overline{S}^1 be a circle with nontrivial spin structure and $pr: S^{n-1} \times \overline{S}^1 \to S^n$ be the natural projection. Using framed surgery along generating circle \overline{S}^1 it is easy to verify that:

$$[(S^n, H)] = [(S^{n-1} \times \overline{S}^1, pr)] \in \Omega_n^{\operatorname{Spin}}(S^{n-1}).$$

But

$$KO_n(S^{n-1}) = KO_n(\mathbb{R}^{n-1}) \oplus KO_n(*).$$

Moreover, $pr_*[(S^{n-1} \times \overline{S}^1)]_{KO}$ is equal to the generator of

$$KO_n(\mathbb{R}^{n-1}) \cong KO_{n-1}(\mathbb{R}^{n-1}) \otimes KO_1(*) \cong \mathbb{Z} \otimes \mathbb{Z}_2 \cong \mathbb{Z}_2$$

and

$$h_*[S^n]_{KO} = H_*[S^n]_{KO} = pr_*[(S^{n-1} \times \overline{S}^1)]_{KO} \neq 0.$$

Thus both $(h \circ q)_*[M]_{KO}$ and $f_*[M]_{KO}$ are non-zero.

Therefore if the Strong Novikov Conjecture is true, then by Theorem 1.5. M does not admit a PSC-metric.

We conclude that if M is a PSC-manifold, then $[\overline{f}] = 0$. Therefore f can be deformed to the (n-2)-skeleton of $B\pi$ and by Remark 1.7 dim_{mc} $\widetilde{M} \leq n-2$.

In the case when $[M] \neq 0 \in \Omega_n^{\text{Spin}}(*)$ we can consider the manifold $M \times S^1$ representing $0 \in \Omega_{n+1}^{\text{Spin}}(*)$. Clearly, $M \times S^1$ is a PSC-manifold whenever M is a PSC-manifold. Let us consider the following diagram:

where the symbol S means a suspension.

For the natural cell decomposition of $M \times S^1$ the result for M follows from the previous discussion of $M \times S^1$ taking into account that if $h \sim H$, then $Sh \sim SH$. \Box

Corollary 2.2 The counterexamples to the Conjecture C1 constructed in [2] do not admit PSC-metrics.

I would like to thank professors A Dranishnikov, M Gromov, J Rosenberg and S Stolz for their professional help. I thank the management of IHES for their hospitality during my visit in November 2007.

References

- D V Bolotov, Macroscopic dimension of 3-manifolds, Math. Phys. Anal. Geom. 6 (2003) 291–299 MR1997917
- [2] D V Bolotov, Gromov's macroscopic dimension conjecture, Algebr. Geom. Topol. 6 (2006) 1669–1676 MR2253461
- [3] M Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, from: "Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993)", Progr. Math. 132, Birkhäuser, Boston (1996) 1–213 MR1389019
- [4] **M Gromov**, **HB Lawson**, *Positive curvature and the Dirac operator on complete Riemannian manifolds*, Publ. Math. I.H.E.S 58 (1983) 295–408
- [5] N Hitchin, Harmonic spinors, Advances in Math. 14 (1974) 1–55 MR0358873
- [6] J Rosenberg, C*-algebras, positive scalar curvature, and the Novikov conjecture. III, Topology 25 (1986) 319–336 MR842428

B Verkin Institute for Low Temperature Physics, Lenina Ave 47 Kharkov 61103, Ukraine

bolotov@univer.kharkov.ua

Received: 13 June 2008 Revised: 8 December 2008