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A Toda bracket in the stable homotopy groups of spheres

XIUGUI LIU

Let p be a prime number greater than five. In the p–local stable homotopy groups of
spheres, H Toda and J Lin, respectively, constructed the elements


s 2 �2sp3�2p2�2p�2sC1.S/;

!m;n 2 �2pnC1�2pnC2pmC1�2pmC2p�6.S/

of order p . In this paper, we show the nontriviality of the Toda bracket h
s;p; !m;ni

in the stable homotopy groups of spheres, where n > mC 2> 6 , 3 6 s < p .

55Q45, 55T15; 55S10

1 Introduction

We are interested in the problem of detecting nontrivial elements in the stable homotopy
groups of spheres. So far, several methods have been found to determine the stable
homotopy groups of spheres. For example we have the classical Adams spectral
sequence (ASS) [1] based on the Eilenberg–MacLane spectrum KZp , whose E2 –term
is Exts;t

A
.Zp;Zp/ and Adams differential given by

zdr W E
s;t
r �!EsCr;tCr�1

r ;

where A denotes the mod p Steenrod algebra. We also have the Adams–Novikov
spectral sequence (ANSS) (see Miller, Ravenel and Wilson [7] and Ravenel [8]) based
on the Brown–Peterson spectrum BP .

Throughout the paper, we fix a prime p > 7, and put q D 2.p � 1/. From Liule-
vicius [6], Ext1;�

A
.Zp;Zp/ has Zp –basis consisting of a0 2 Ext1;1

A
.Zp;Zp/, hi 2

Ext1;p
i q

A
.Zp;Zp/ for all i > 0 and Ext2;�

A
.Zp;Zp/ has Zp –basis consisting of ˛2 ,

a2
0

, a0hi .i > 0/, gi .i > 0/, ki .i > 0/, bi .i > 0/ and hihj .j > iC2; i > 0/ whose
internal degrees are 2qC 1, 2, piqC 1;piC1qC 2piq , 2piC1qCpiq , piC1q and
piqCpj q , respectively.

Let M be the Moore spectrum modulo the prime p given by the cofibration

S
p
! S

i
!M

j
!†S;
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where S is the sphere spectrum localized at the prime p . Let ˛W †qM !M be the
Adams map and V .1/ be its cofibre given by the cofibration

†qM
˛
!M

i0

! V .1/
j 0

!†qC1M:

This spectrum V .1/ is the known Toda–Smith spectrum. Let V .2/ be the cofibre of
the �2 –map ˇW †.pC1/qV .1/! V .1/ given by the cofibration

†.pC1/qV .1/
ˇ
! V .1/

xi
! V .2/

xj
!†.pC1/qC1V .1/:

Let 
 W †q.p2CpC1/V .2/! V .2/ be the �3 –map.

Definition 1.1 We define, for t >1, the ˇ–element ˇtDj 0jˇt i 0i 2�qŒtpC.t�1/��2.S/

and the 
 –element 
t D jj 0 xj
 txi i 0i 2 �qŒtp2C.t�1/pC.t�2/��3.S/. Here the maps i ,
i 0 , xi , ˇ , j , j 0 , xj and 
 are given above.

Theorem 1.2 With notation as above, we have:

(1) (Smith [9]) For p > 5 and t > 1, ˇt 6D 0 in ��.S/.

(2) (Toda [10]) For p > 7 and t > 1, 
t 6D 0 in ��.S/.

In [2], R Cohen constructed a certain infinite family denoted by �k 2�q.pkC1C1/�3.S/,
k > 1. �k is represented by

h0bk 2 Ext3;q.p
kC1C1/

A
.Zp;Zp/

in the ASS.

Using the method of ANSS, C-N Lee [3] proved that ˇp�1
1

�k is nontrivial for all k , ie,

b
p�1
0

h0bk

is a permanent cycle in the ASS and converges nontrivially to

ˇ
p�1
1

�k :

This result gives another infinite family of homotopy elements in the stable homotopy
groups of spheres.

In [4], J Lin constructed a new nontrivial element, called !m;n , in �q.pnCpmC1/�4.S/

of order p , which is represented by

h0.hmbn�1� hnbm�1/ 2 Ext4;q.p
nCpmC1/

A
.Zp;Zp/

in the ASS. On the way to proving the main result, he detected a new family in the
stable homotopy groups of M and gave the following theorem.
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Theorem 1.3 [4] Let p > 7, n > mC 2 > 4 and hn 2 Ext1;p
nq

A
.Zp;Zp/. Then

.i/�.h0hnhm/ 2 Ext3;q.p
nCpmC1/

A
.H�M;Zp/

is a permanent cycle in the ASS and converges to a nontrivial element

�m;n 2 �q.pnCpmC1/�3.M /:

In [5], X Liu obtained the following theorem.

Theorem 1.4 [5] Let p > 7, 0 6 s < p� 3. Then there exists the third Greek letter
element

z
sC3 2 ExtsC3;qŒ.sC3/p2C.sC2/pC.sC1/�Cs
A

.Zp;Zp/;

and z
sC3 converges to the 
 –element


sC3 2 �qŒ.sC3/p2C.sC2/pC.sC1/��3.S/

in the ASS.

In this paper, I will use the new family of homotopy elements in ��.M / in [4] to detect
a �m;n –related family of filtration sC 6 in the stable homotopy groups of spheres.

Theorem 1.5 Let p > 7, n > mC 2> 6 and 0 6 s < p� 3. Then the product

h0hnhmz
sC3 2 ExtsC6;t.s/
A

.Zp;Zp/

is a permanent cycle in the ASS and converges to a nontrivial family of homotopy
elements

jj 0 xj
 sC3xi i 0�m;n 2 �t.s/�s�6.S/;

where t.s/D qŒpnCpmC .sC 3/p2C .sC 2/pC .sC 2/�C s .

As the referee told me, in fact I show the nontriviality of Toda bracket h
sC3;p; !m;ni

in the stable homotopy groups of spheres and give the following theorem.

Theorem 1.6 Let p > 7, n > mC 2> 6 and 0 6 s < p� 3. Then the Toda bracket

h
sC3;p; !m;ni � �t.s/�s�6.S/

is essential. Here, t.s/D q
�
pnCpmC .sC 3/p2C .sC 2/pC .sC 2/

�
C s .

The May spectral sequence (MSS) and the ASS play very important roles in the proofs
of the main results. The proof of our theorem is completely elementary.

The paper is arranged as follows: after giving some propositions on the MSS in
Section 2, we will make use of the MSS to obtain two low-dimensional Ext groups in
Section 3. Section 4 is devoted to showing Theorem 1.5.
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2 The May spectral sequence (MSS)

For computing the stable homotopy groups of spheres with the ASS, we must compute
the E2 –term of the ASS, Ext�;�

A
.Zp;Zp/. The most successful method for computing

Ext�;�
A
.Zp;Zp/ is the MSS.

From [8], there is a May spectral sequence (MSS) fEs;t;�
r ; dr g which converges to

Exts;t
A
.Zp;Zp/ with E1 –term

.2:1/ E
�;�;�
1

DE.hm;i jm> 0; i > 0/˝P .bm;i jm> 0; i > 0/˝P .an j n > 0/;

where E is the exterior algebra, P is the polynomial algebra, and

hm;i 2E
1;2.pm�1/pi ;2m�1
1

; bm;i 2E
2;2.pm�1/piC1;p.2m�1/
1

; an 2E
1;2pn�1;2nC1
1

:

One has
dr W E

s;t;u
r !EsC1;t;u�r

r

and if x 2E
s;t;�
r and y 2E

s0;t 0;�
r , then

dr .x �y/D dr .x/ �yC .�1/sx � dr .y/:

There exists a graded commutativity in the MSS:

x �y D .�1/ss0Ct t 0y �x

for x;y D hm;i ; bm;i or an . The first May differential d1 is given by8̂̂̂<̂
ˆ̂:

d1.hi;j / D
P

0<k<i

hi�k;kCj hk;j ;

d1.ai/ D
P

06k<i

hi�k;kak ;

d1.bi;j / D 0:

For each element x 2E
s;t;�
1

, we define dim x D s , deg x D t . Then we have

.2:2/

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

dim hi;j D dim ai D 1;

dim bi;j D 2;

deg a0 D 1;

deg hi;j D q.piCj�1
C � � �Cpj /;

deg bi;j D q.piCj
C � � �CpjC1/;

deg ai D q.pi�1
C � � �CpC 1/C 1;

where i > 1, j > 0.
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A Toda bracket in the stable homotopy groups of spheres 225

By the knowledge on the p–adic expression in number theory, we see that for each
integer t > 0, it can be expressed uniquely as

t D q.cnpn
C cn�1pn�1

C � � �C c1pC c0/C e;

where 0 6 ci < p (0 6 i < n), p > cn > 0, 0 6 e < q .

Theorem 2.3 [5] With notation as above, let s1 be a positive integer with 0< s1<p .
If s1 < cj for some 0 6 j 6 n, then in the MSS, we have that the Zp –module

E
s1;t;�
1

D 0:

Let s2 and t 0 be two arbitrary positive integers. Suppose

t 0 D q.c0npn
C c0n�1pn�1

C � � �C c01pC c00/C e0;

where 0 6 c0i < p (0 6 i < n), p > c0n > 0, 0 6 e0 < q . Suppose a generator of
E

s2;t
0;�

1
is of the form h D x1x2 � � �xs3

2 E
s2;t
0;�

1
, where xi is one of ak , hr;j or

bu;z , 0 6 k 6 nC 1, 0 6 r C j 6 nC 1, 0 6 uC z 6 n, r > 0, j > 0, u> 0, z > 0.
By (2.2) we can assume

deg xi D q.ci;npn
C � � �C ci;1pC ci;0/C ei ;

where ci;j D 0 or 1, ei D 1 if xi D aki
, or ei D 0. Then we have

deg hD

s3X
iD1

deg xi D q

�� s3X
iD1

ci;n

�
pn
C � � �C

� s3X
iD1

ci;1

�
pC

s3X
iD1

ci;0

�
C

s3X
iD1

ei :

Denote
s3X

iD1

ci;j and
s3X

iD1

ei

by xcj and xe , 0 6 j 6 n, respectively.

Theorem 2.4 With notation as above. Suppose that there exists some 0< j 6 n such
that xcj D s3 .

(1) If there also exist two integers i1 and i2 such that 0 6 i1 < i2 < j and s3 >
xci1
> xci2

, then h cannot exist.

(2) If there also exists an integer i such that 0 6 i < j and s3 > xe > xci , h cannot
exist.

(3) If there also exist two integers i 0
1

and i 0
2

such that j < i 0
1
< i 0

2
6 n and s3 >

xci0
2
> xci0

1
, then h cannot exist.

Proof By (2.2), we easily get the desired result.
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3 Application of the MSS to two Ext groups

In this section, we make use of the MSS to determine two Ext groups which will be
used in the proof of Theorem 1.5.

Lemma 3.1 Let p > 7, n > mC 2 > 6, 0 6 s < p � 3 and r > 1. Then the May
E1 –term satisfies

E
sC6�r;t.s/C1�r;�
1

D

8<:
0 r > 2I

0 r D 1 and s < p� 4I

M r D 1 and s D p� 4:

Here t.s/ D q
�
pnCpmC .sC 3/p2C .sC 2/pC .sC 2/

�
C s and M is the Zp –

module generated by nine elements

gi 2E
pC1;t.p�4/;.2nC1/p�2n�9
1

.1 6 i 6 8/

g9 2E
pC1;t.p�4/;.2mC1/p�2m�9
1

;

where
g1D a

p�4
n hn;0h4;0hn�2;2hn�3;3h1;m;

g2D a
p�4
n hn;0hmC1;0hn�2;2h1;3hn�m;m;

g3D a
p�4
n hn;0h4;0hn�2;2hm�2;3hn�m;m;

g4D a
p�4
n hn;0hmC1;0h2;2hn�3;3hn�m;m;

g5D a
p�4
n hn;0h4;0hm�1;2hn�3;3hn�m;m;

g6D a
p�5
n amC1hn;0h4;0hn�2;2hn�3;3hn�m;m;

g7D a
p�5
n a4hn;0hmC1;0hn�2;2hn�3;3hn�m;m;

g8D a
p�4
n hmC1;0h4;0hn�2;2hn�3;3hn�m;m;

g9D a
p�4
m hm;0h4;0hm�2;2hm�3;3h1;n:

Proof When r > sC 4, we can easily show that in the MSS E
sC6�r;t.s/C1�r;�
1

D 0.
Thus in the rest of the proof, we assume that 1 6 r < sC4. Consider hD x1x2 � � �xl 2

E
sC6�r;t.s/�rC1;�
1

in the MSS, where xi is one of ak , hr;j or bu;z , 0 6 k 6 nC 1,
0 6 r C j 6 nC 1, 0 6 uC z 6 n, r > 0, j > 0, u> 0, z > 0. Assume that

deg xi D q.ci;npn
C ci;n�1pn�1

C � � �C ci;1pC ci;0/C ei ;

where ci;j D 0 or 1, ei D 1 if xi D aki
, or ei D 0. It follows that

dim hD

lX
iD1

dim xi D sC 6� r;

Algebraic & Geometric Topology, Volume 9 (2009)



A Toda bracket in the stable homotopy groups of spheres 227

deg hD

lX
iD1

deg xi D q

�� lX
iD1

ci;n

�
pn
C � � �C

� lX
iD1

ci;1

�
pC

� lX
iD1

ci;0

��
C

� lX
iD1

ei

�
D q

�
pn
Cpm

C .sC 3/p2
C .sC 2/pC .sC 2/

�
C .sC 1� r/:

Note that dim hi;j D dim ai D 1, dim bi;j D 2, 1 6 r < sC4 and 0 6 s <p�3. From
dim hD

Pl
iD1 dim xi D sC 6� r we have l 6 sC 6� r < pC 3� r 6 pC 2:

We claim that sC 1� r > 0. Otherwise, we would have
Pl

iD1 ei 6 l 6 pC 1. On the
other hand, by 1 6 r < sC4 and p > 7, we would have

Pl
iD1 ei D qC .s� r C1/ >

2p� 2� 3 > pC 2 which contradicts
Pl

iD1 ei 6 l 6 pC 1. The claim is proved.

Using 0 6 sC 3; sC 2; sC 1� r < p and the knowledge on p–adic expression in
number theory, we have

.3:2/

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

lP
iD1

ei D sC 1� r C��1q; ��1 > 0I

lP
iD1

ci;0C��1 D sC 2C�0p; �0 > 0I

lP
iD1

ci;1C�0 D sC 2C�1p; �1 > 0I

lP
iD1

ci;2C�1 D sC 3C�2p; �2 > 0I

lP
iD1

ci;3C�2 D 0C�3p; �3 > 0I

lP
iD1

ci;4C�3 D 0C�4p; �4 > 0I

:::
:::

lP
iD1

ci;m�1C�m�2 D 0C�m�1p; �m�1 > 0I

lP
iD1

ci;mC�m�1 D 1C�mp; �m > 0I

lP
iD1

ci;mC1C�m D 0C�mC1p; �mC1 > 0I

:::
:::

lP
iD1

ci;n�1C�n�2 D 0C�n�1p; �n�1 > 0I

lP
iD1

ci;nC�n�1 D 1:
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From ei D 0 or 1, ci;j D 0 or 1, and l 6 pC 1, we easily have that

.��1; �0; �1; �2/D .0; 0; 0; 0/:

Consider the fifth equality of (3.2)
Pl

iD1 ci;3 D 0C �3p . By ci;3 D 0 or 1, and
l 6 pC 1, we get that �3 D 0 or 1.

Case 1 �3 D 0. We claim �4 D 0. If �4 D 1, we would have
Pl

iD1 ci;2 D sC 3,Pl
iD1 ci;3D0,

Pl
iD1 ci;4Dp . From

Pl
iD1 ci;2D sC3 and (2.2), there would be sC3

factors among h such that deg xiDq.higher terms on pCp2C lower terms on p/Cıi ,
where ıi may equal 0 or 1. Similarly, from

Pl
iD1 ci;4 D p , there would be p factors

among h such that deg xiDq.higher terms on pCp4C lower terms on p/Cıi . Thus,
by l 6 pC 1 and (2.2), there would be at least pC sC 3� .pC 1/D sC 2 factors in
h such that deg xi D q.higher terms on pCp4Cp3Cp2C lower terms on p/C ıi .
Thus we would have

Pl
iD1 ci;3 > sC 2 which contradicts

Pl
iD1 ci;3 D 0. The claim

is proved.

By induction on j , we have

�j D 0 .4 6 j 6 n� 1/:

Then we have the following:

Subcase 1.1 If there are two factors h1;n and h1;m in h, then up to sign hDh1;nh1;m
zh

with zh 2E
sC4�r;qŒ.sC3/p2C.sC2/pC.sC2/�C.sC1�r/;�
1

.

When r D 1, by an argument similar to that used in the proof of Theorem 1.1 of [5],
E

sC3;qŒ.sC3/p2C.sC2/pC.sC2/�Cs;�
1

D 0.

When r > 2, E
sC4�r;qŒ.sC3/p2C.sC2/pC.sC2/�C.sC1�r/;�
1

D 0 by Theorem 2.3 From
the above discussion we have there cannot exist two factors h1;n and h1;m in h.

Similarly, we can show the following.

Subcase 1.2 There cannot exist two factors h1;n and b1;m�1 in h.

Subcase 1.3 There cannot exist two factors b1;n�1 and h1;m in h.

Subcase 1.4 There cannot exist two factors b1;n�1 and b1;m�1 in h.

Case 2 �3 D 1. When r > 3, it is easy to see that �3 is impossible to equal 1.
Thus in the rest of the proof, we assume r 6 2. From the sixth equality of (3.2),Pl

iD1 ci;4C 1D �4p , and 0 6
Pl

iD1 ci;4 6 l 6 pC 1, we can deduce that

�4 D 1:
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By induction on j , we have

�j D 1 .4 6 j 6 m� 1/:

Now consider the .mC2/–nd equality of (3.2),
Pl

iD1 ci;mC 1 D 1C �mp . Noting
that 0 6

Pl
iD1 ci;m 6 l 6 pC 1, we have that �m D 0 or 1.

Subcase 2.1 �m D 1. Consider the .mC3/–rd equality of (3.2),
Pl

iD1 ci;mC1C 1D

�mC1p . Using 0 6
Pl

iD1 ci;mC1 6 l 6 pC 1, we can have that

�mC1 D 1:

By induction on j , we can show

�j D 1 .mC 1 6 j 6 n� 1/:

Thus we have

.��1; �0; �1; �2; �3; : : : ; �m; �mC1; : : : ; �n�1/D .0; 0; 0; 0; 1; : : : ; 1; 1; : : : ; 1/:

From the fifth equality of (3.2),
Pl

iD1 ci;3 D p , using ci;3 D 0 or 1, we have that
l > p . Note that l 6 sC 5. Thus s > p� 5. By 0 6 s < p� 3, we have that s may
equal p� 5 or p� 4.

(i) When s D p�4, hD x1x2 � � �xl 2E
pC2�r;t.p�4/C1�r;�
1

. From the first equality
of (3.2),

Pl
iD1 ei D p� 3� r and (2.2), there exist .p� 3� r/ factors among h such

that
deg xi D q.higher terms on p/C 1:

Similarly, from
Pl

iD1 ci;n�1 D p� 1, there exist .p� 1/ factors among h such that

deg xi D q.pn�1
C lower terms on p/C ıi ;

where ıi may equal 0 or 1. Noting l 6 pC 1 and (2.2), we have that there exist at
least .p� 3� r/C .p� 1/� .pC 1/D p� 5� r factors in h such that

deg xi D q.pn�1
C � � �CpC 1/C 1;

ie, there exist at least .p � 5� r/ an ’s among h. By the graded commutativity of
E
�;�;�
1

, we can let hD a
p�5�r
n xp�4�r � � �xl . Then h0 D xp�4�r � � �xl 2 E

7;t 00;�
1

,
where t 00D t.p�4/�.p�5�r/ deg an . From

Pl
iD1 ci;3 D p , we have l > p . Recall

that l 6 pC 1. Thus p 6 l 6 pC 1.

If l D p , then

hD ap�5�r
n xp�4�r � � �xp 2E

pC2�r;t.p�4/C1�r;�
1

h0 D xp�4�r � � �xp 2E
7;t 00;�
1

:and
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Note that
Pp

iDp�4�r
ci;3D rC5;

Pp
iDp�4�r

ci;4D rC4 and
Pp

iDp�4�r
ci;mD rC5.

By Theorem 2.4, we have E
7;t 00;�
1

D 0. Thus in this case h cannot exist.

If l D pC 1, then we can see that in this case r cannot equal 2 by dim hD pC 2� r

and dim xi D 1 or 2. Thus in this case r must equal 1. Then hD a
p�6
n xp�5 � � �xpC1 2

E
pC1;t.p�4/;�
1

and h0 D xp�5 � � �xpC1 2E
7;t 00;�
1

. It is easy to get that dim xi D 1 for
p� 5 6 i 6 pC 1, ie,

h0 2E.hm;i jm> 0; i > 0/˝P .an j n > 0/;

and there exist at least five factors in h0 such that

deg xi D q.higher terms on pCpm
Cpm�1

C� � �Cp4
Cp3

C lower terms on p/Cıi

by
PpC1

iDp�5
ci;3 D 6,

PpC1
iDp�5

ci;m D 6 and (2.2), where ıi may equal 0 or 1. We
can divide the seven factors of h0 into the following three disjoint classes, usingPpC1

iDp�5
ci;3D 6,

PpC1
iDp�5

ci;4D 5; : : : ;
PpC1

iDp�5
ci;m�1D 5;

PpC1
iDp�5

ci;mD 6 and
(2.2):8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

S1 D fx j deg xD q.higher terms on pCpmC� � �Cp3C lower terms on p/CıgI

jS1j D 5I

S2 D fx j deg x D q.higher terms on pCpm/gI

jS2j D 1I

S3 D fx j deg x D q.p3C lower terms on p/C ıgI

jS3j D 1:

Here ı may equal 0 or 1. Now we list the deg’s of the seven factors in the following
table.

deg xi higher terms pmq pm�1q � � � p3q lower terms
deg xp�5 higher terms C pmq C pm�1q C � � � C p3q C lower terms
deg xp�4 higher terms C pmq C pm�1q C � � � C p3q C lower terms
deg xp�3 higher terms C pmq C pm�1q C � � � C p3q C lower terms
deg xp�2 higher terms C pmq C pm�1q C � � � C p3q C lower terms
deg xp�1 higher terms C pmq C pm�1q C � � � C p3q C lower terms
deg xp higher terms C pmq

deg xpC1 p3q C lower terms

Similarly, from
PpC1

iDp�5
ci;mD 6,

PpC1
iDp�5

ci;mC1D 5, � � � ,
PpC1

iDp�5
ci;n�1D 5 and

(2.2), we know that there exist at least four factors in h0 such that

deg xi D q.pn�1
C � � �Cpm

C lower terms on p/C ıi ;

where ıi may equal 0 or 1. Then there exist two probabilities which are listed in the
following two tables.
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deg xi pn�1q � � � pmC1q pmq pm�1q � � � p3q lower terms
deg xp�5 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp�4 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp�3 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp�2 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp�1 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp pmq

deg xpC1 p3q C lower terms

Table 1

It is easy to see that in Table 1 the sixth factor is h1;m .

deg xi pn�1q � � � pmC1q pmq pm�1q � � � p3q lower terms
deg xp�5 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp�4 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp�3 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp�2 pn�1q C � � � C pmC1q C pmq C pm�1q C � � � C p3q C lower terms
deg xp�1 pmq C pm�1q C � � � C p3q C lower terms
deg xp pn�1q C � � � C pmC1q C pmq

deg xpC1 p3q C lower terms

Table 2

It is easy to see that in Table 2 the sixth factor is hn�m;m .

Consider Table 1. By h2
i;j D 0,

PpC1
iDp�5

ei D 2,
PpC1

iDp�5
ci;0D 4,

PpC1
iDp�5

ci;1D 4,PpC1
iDp�5

ci;2 D 5 and (2.2), we can get that the deg’s of the seven factors of h0 must
be the following.

deg xi pn�1q � � � pmq pm�1q : : : p3q p2q pq q 1

deg xp�5 pn�1q C � � � C pmq C pm�1q C � � � C p3q C p2q C pq C q C 1

deg xp�4 pn�1q C � � � C pmq C pm�1q C � � � C p3q C p2q C pq C q C 1

deg xp�3 pn�1q C � � � C pmq C pm�1q C � � � C p3q C p2q C pq C q

deg xp�2 pn�1q C � � � C pmq C pm�1q C � � � C p3q C p2q

deg xp�1 pn�1q C � � � C pmq C pm�1q C � � � C p3q

deg xp pmq

deg xpC1 p3q C p2q C pq C q

Thus by (2.2), we have that in this case h0D a2
nhn;0hn�2;2hn�3;3h1;mh4;0 . Then up to

sign h D a
p�4
n hn;0h4;0hn�2;2hn�3;3h1;m 2 E

pC1;t.p�4/;.2nC1/p�2n�9
1

, denoted by
g1.
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Now consider Table 2. Similarly, we also get E
pC1;t.p�4/;.2nC1/p�2n�9
1

has seven
generators g2; : : : ; g8.

From the above discussion, we get that in this case E
pC1;t.p�4/;�
1

has the eight
generators gi (1 6 i 6 8).

(ii) When s D p � 5, h D x1x2 � � �xl 2 E
pC1�r;t.p�5/C1�r;�
1

. From the equalityPl
iD1 ci;3 D p of (3.2), we have that l > p . Note that dim xi D 1 or 2. Since

dim hD
Pl

iD1 dim xi D pC 1� r , it follows that l 6 pC 1� r . Thus we have

p 6 l 6 pC 1� r:

It is easy to see that in this case r is impossible to equal 2. We only consider the case
r D 1. Thus we have that l D p and hD x1x2 � � �xp 2E

p;t.p�5/;�
1

. By Theorem 2.4,
we know that in this case, it is impossible for h to exist.

Subcase 2.2 �m D 0. By an argument similar to that used in the proof of �4 D 0 in
Case 1, we also get that in this case

�mC1 D 0:

By induction on j , we have that

�j D 0 .mC 1 6 j 6 n� 1/:

Thus we have

.��1; : : : ; �2; �3; : : : ; �m�1; �m; �mC1; : : : ; �n�1/D .0; : : : ; 0; 1; : : : ; 1; 0; 0; : : : ; 0/:

By (2.2), it is easy to see that in this case there exists a factor h1;n or b1;n�1 in h. By
the graded commutativity of E

�;�;�
1

, we can denote the h1;n or b1;n�1 by xl . Then
hD h00h1;n or hD h00b1;n�1 , where h00 D x1 � � �xl�1 .

(i) If xl Dh1;n , then h00Dx1 � � �xl�1 2E
sC5�r;t.s/�pnqC1�r;�
1

. In this case we havePl�1
iD1 ci;3 D p . Thus l > pC 1. Note that l 6 pC 2� r . It is easy to see that in this

case r is impossible to equal 2. Thus we only consider the case r D 1. Then l DpC1.
By dim xi D 2 or 1, we have that dim hD dim x1x2 � � �xpC1 D sC 5 > pC 1, then
s > p� 4. Note that 0 6 s < p� 3. It follows that s D p� 4. Then we have that

h00 D x1 � � �xp 2E
p;t.p�4/�pnq;�
1

:

By an argument similar to that used in the proof of Subcase 2.1 (i), we get that up
to sign hD a

p�4
m hm;0h4;0hm�2;2hm�3;3h1;n 2E

pC1;t.p�4/;.2mC1/p�2m�9
1

, denoted
by g9.
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(ii) If xl D b1;n�1 , then h00 D x1 � � �xl�1 2E
sC4�r;t.s/�pnqC1�r;�
1

. In this case we
have

Pl�1
iD1 ci;3 D p . Thus l � 1 > p , and then

dim h00 D

l�1X
iD1

dim xi > p:

On the other hand, we also have

dim h00 D sC 4� r < pC 1� r 6 p

by 0 6 s < p� 3. This yields a contradiction. Thus in this case, it is impossible for h

to exist.

Combining Cases 1 and 2, we complete the proof of the lemma.

Lemma 3.3 Let p > 7, n > mC 2> 6, 0 6 s < p� 3. Then the May E2 –term

E
sC5;t.s/;�
2

D 0:

Here, t.s/D qŒpnCpmC .sC 3/p2C .sC 2/pC .sC 2/�C s .

Proof When 06 s<p�4, from Lemma 3.1 we know that in the MSS, E
sC5;t.s/;�
1

D0.
Then we have

E
sC5;t.s/;�
2

D 0:

Now we consider the case s D p� 4. From Lemma 3.1 we have that

E
pC1;t.p�4/;�
1

D Zpfg1; g2; � � � ; g9g:

By the first May differential and graded commutativity of E
�;�;�
1

, we can easily get
that

d1.g1/D�a
p�4
n hn;0h4;0hn�2;2h1;3hn�4;4h1;mC � � � 6D 0;

d1.g2/D a
p�4
n hn;0hmC1;0hn�2;2h1;3h1;mhn�m�1;mC1C � � � 6D 0;

d1.g3/D a
p�4
n hn;0h4;0hn�2;2hm�2;3h1;mhn�m�1;mC1C � � � 6D 0;

d1.g4/D a
p�4
n hn;0hmC1;0h2;2hn�3;3h1;mhn�m�1;mC1C � � � 6D 0;

d1.g5/D a
p�4
n hn;0h4;0hm�1;2hn�3;3h1;mhn�m�1;mC1C � � � 6D 0;

d1.g6/D a
p�5
n amC1hn;0h4;0hn�2;2hn�3;3h1;mhn�m�1;mC1C � � � 6D 0;

d1.g7/D a
p�5
n a4hn;0hmC1;0hn�2;2hn�3;3h1;mhn�m�1;mC1C � � � 6D 0;

d1.g8/D a
p�4
n hmC1;0h4;0hn�2;2hn�3;3h1;mhn�m�1;mC1C � � � 6D 0;

d1.g9/D�a
p�4
m hm;0h4;0hm�2;2h1;3hm�4;4h1;nC � � � 6D 0:
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It is easy to check that a
p�4
n hn;0h4;0hn�2;2h1;3hn�4;4h1;m only appears in d1.g1/,

doesn’t appear in d1.gi/ (i > 2). Similarly, we can show that the eight elements

ap�4
n hn;0hmC1;0hn�2;2h1;3h1;mhn�m�1;mC1

ap�4
n hn;0h4;0hn�2;2hm�2;3h1;mhn�m�1;mC1

:::

ap�4
n hmC1;0h4;0hn�2;2hn�3;3h1;mhn�m�1;mC1

ap�4
m hm;0h4;0hm�2;2h1;3hm�4;4h1;n

only appear in d1.g2/, d1.g3/, � � � , d1.g8/ and d1.g9/ respectively. It follows
that d1.g1/, d1.g2/, � � � , d1.g9/ are linearly independent. Consequently, we have
E

pC1;t.p�4/;�
2

D 0.

Theorem 3.4 Let p > 7, n > mC 2> 6, 0 6 s < p� 3. Then the product

h0hnhmz
sC3 6D 0 2 ExtsC6;t.s/
A

.Zp;Zp/;

where t.s/D qŒpnCpmC .sC 3/p2C .sC 2/pC .sC 2/�C s .

Proof Since it is known that h1;i and as
3
h3;0h2;1h1;2 2E

�;�;�
1

are permanent cycles
in the MSS and converge nontrivially to

hi ; z
sC3 2 Ext�;�
A
.Zp;Zp/

for i > 0 respectively (see Theorem 1.4),

h1;0h1;nh1;masC3
3

h3;0h2;1h1;2 2E
sC6;t.s/;�
1

is a permanent cycle in the MSS and converges to h0hnhmz
sC3 2 ExtsC6;t.s/
A

.Zp;Zp/.

Case 1 When 0 6 s < p� 4, from Lemmas 3.1 and 3.3 we know that in the MSS

EsC5;t.s/;�
r D 0 .r > 1/:

Thus the permanent cycle h1;0h1;nh1;mas
3
h3;0h2;1h1;2 2E

sC6;t.s/;�
r does not bound

and converges to
h0hnhmz
sC3 2 ExtsC6;t.s/

A
.Zp;Zp/

nontrivially in the MSS, ie, h0hnhmz
sC3 6D 0 2 ExtsC6;t.s/
A

.Zp;Zp/.

Case 2 When s D p� 4, from Lemma 3.3 we have that E
pC1;t.p�4/;�
2

D 0. Thus

EpC1;t.p�4/;�
r D 0 .r > 2/:
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Meanwhile, in the MSS the third degree of h1;0h1;nh1;ma
p�4
3

h3;0h2;1h1;2 is 7p� 16

and none of the third degrees of the generators gi (1 6 i 6 9) is 7p � 15. Thus no
element hits h1;0h1;nh1;ma

p�4
3

h3;0h2;1h1;2 under the May differential d1 . From the
above discussion, h1;0h1;nh1;ma

p�4
3

h3;0h2;1h1;2 2E
pC1;t.p�4/;�
r does not bound in

the MSS and converges nontrivially to h0hnhmz
p�1 2 ExtpC2;t.p�4/
A

.Zp;Zp/. Thus
h0hnhmz
p�1 6D 0.

From Cases 1 and 2, Theorem 3.4 follows.

Theorem 3.5 Let p > 7, n > mC2> 6, 0 6 s < p�3, 2 6 r 6 sC6. Then we have

ExtsC6�r;t.s/�rC1
A

.Zp;Zp/D 0;

where t.s/D qŒpnCpmC .sC 3/p2C .sC 2/pC .sC 2/�C s .

Proof From Lemma 3.1, we have that in this case E
sC6�r;t.s/C1�r;�
1

D 0. By the
MSS, we easily have the desired result.

4 Proof of Theorem 1.5

From Theorem 1.3, i�.h0hnhm/ 2 Ext3;q.p
nCpmC1/

A
.H�M;Zp/ is a permanent cycle

in the ASS and converges to a nontrivial element �m;n 2 �q.pnCpmC1/�3.M /.

Consider the composition of maps ' D jj 0 xj
 sC3xi i 0�m;n . Since �m;n is represented
by i�.h0hnhm/ 2 Ext3;q.p

nCpmC1/
A

.H�M;Zp/ in the ASS, then the above ' is rep-
resented in the ASS by xc D .jj 0 xj
 sC3xi i 0i/�.h0hnhm/.

From Theorem 1.4 and the knowledge of Yoneda products we know that the composition

Ext0;0
A
.Zp;Zp/

.xii0i/�
����! Ext0;0

A
.H�V .2/;Zp/

.jj 0 xj/�.
�/
sC3

����������! ExtsC3;qŒ.sC3/p2C.sC2/pC.sC1/�Cs
A

.Zp;Zp/

is a multiplication up to nonzero scalar by

z
sC3 2 ExtsC3;qŒ.sC3/p2C.sC2/pC.sC1/�Cs
A

.Zp;Zp/:

Hence, xf is represented up to nonzero scalar by

xc D z
sC3h0hnhm 6D 0 2 ExtsC6;t.s/
A

.Zp;Zp/

in the ASS (cf Theorem 3.4).
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Moreover, from Theorem 3.5, we know that z
sC3h0hnhm cannot be hit by any differ-
ential in the ASS. Consequently, the corresponding homotopy element ' is nontrivial.
This shows Theorem 1.5.
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