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Geometry and rank of fibered hyperbolic 3—manifolds

IAN BIRINGER

Recall that the rank of a finitely generated group is the minimal number of elements
needed to generate it. In [22], M White proved that the injectivity radius of a closed
hyperbolic 3—manifold M is bounded above by some function of rank(m;(M)).
Building on a technique that he introduced, we determine the ranks of the fundamental
groups of a large class of hyperbolic 3—manifolds fibering over the circle.
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1 Introduction

Let X4 be the closed orientable surface of genus g and ¢: g — X g a homeomorphism.
We can construct a 3—manifold My, the mapping torus of ¢, as the quotient space

Mg = Xg x[0,1]/ ~, (x,0) ~ (¢(x), 1).

Thurston [19] has proven that if the map ¢: Xz — 3z is pseudo-Anosov then My
can be given a hyperbolic metric.

The fundamental group of My is given by an HNN-extension
1 —>m(Xg) > mi(My) - Z — 1.

Since rank(m;(Xg)) = 2g it follows that rank(m(My)) < 2g + 1. It is not hard to
construct examples where this inequality is strict, but it seems likely that if the gluing
map is complicated enough then equality should hold. As an illustration of this, J Souto
proved in [18] that given a pseudo-Anosov map ¢: Xz — X, we have for sufficiently
large powers ¢" of ¢ that rank(r1(Mgn)) = 2g + 1. Our main result is the following
extension of Souto’s theorem.

Theorem 1.1 Given € > 0 and a closed orientable surface X4, there are at most
finitely many e—thick hyperbolic 3—manifolds M fibering over S! with fiber ¥ g for
which rank(7;(M)) #2g + 1.
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Recall that the injectivity radius of a hyperbolic manifold M, written inj(M), is
defined to be half the length of a shortest homotopically essential loop in M, and M
is called e—thick if inj(M) > €.

It is worth noting that if € is small then there are many hyperbolic 3—manifolds
fibering over the circle that are e—thick. In fact, if ¢y,..., ¢, are pseudo-Anosov
homeomorphisms of Xg, then for large m the maps ¢, ..., ¢ freely generate a
subgroup of Mod(X¢) all of whose elements are monodromies of mapping tori with
a common lower bound on injectivity radius. This follows from combining work of
Farb—Mosher [10, Theorem 1.4], Kent-Leininger [12, Theorem 1.2] and Rafi [15,
Theorem 1.6]. It also demonstrates that Theorem 1.1 is strictly stronger than Souto’s
earlier result.

Results similar to Theorem 1.1 concerning the Heegaard genus of M are already
known; the strongest is due to Bachman and Schleimer [3]. Recall that the Heegaard
genus of a closed 3—manifold M is the smallest g = g(M) such that M can be
obtained by gluing two genus g handlebodies along their boundaries. It is easy to see
that when M fibers over the circle with fiber X4 then g(M) <2g + 1, and Bachman
and Schleimer show that g(M) =2g + 1 as long as the monodromy map of M has
translation distance at least 2¢ + 1 in the curve complex of X, . It is likely that the
conclusion of Theorem 1.1 is true under similar assumptions, but it is not yet clear to
us how to prove this.

Before beginning the bulk of this paper, let us sketch the idea behind the proof of Theo-
rem 1.1. Let M be a hyperbolic 3—manifold fibering over the circle with fiber X . Fol-
lowing a technique of White [22], we find a graph X with rank(sr; (X)) =rank(mr; (M))
and a 71 —surjective mapping f: X — M whose image has as small length as possible.
We show that if M has large diameter it is most efficient for X to use small edges to
fill out the fundamental group of the fiber and a long edge to circumnavigate M in the
horizontal direction. The subgraph of X consisting of all small edges then has rank
at least 2g, since it generates a subgroup of ; (M) isomorphic to 7;(Xg). But X
must have even larger rank, so 7; (M) =m1(X) >2g + 1.

The paper is organized as follows. We begin in Section 2 by recalling some standard
facts from the theory of Kleinian groups. In Section 3, we use a lemma of Souto and a
compactness argument to control the geometry of certain covers of doubly degenerate
hyperbolic manifolds homeomorphic to X x R. The minimal length graphs mentioned
above are formally introduced in Section 4, and Section 5 contains a proof of Theorem
1.1. We finish with an Appendix that fleshes out a result due to Souto [17] that gives a
convenient decomposition for minimal length 71 —surjective graphs in closed hyperbolic
3—manifolds.
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2 Preliminaries

Throughout the following, let M be a hyperbolic 3—manifold with finitely generated
fundamental group and no cusps. The resolution of Marden’s Conjecture by Agol [1]
and Calegari—Gabai [7] implies that M is homeomorphic to the interior of a compact 3—
manifold M . Consequently, the topological ends of M are in bijective correspondence
with the components of M , and each end E has a neighborhood homeomorphic to
JE x (0, 00), where JE is the component of M that E faces.

Since M has no cusps, its ends admit a simple geometric classification. Specifically,
recall that the convex core CC(M) is the smallest convex submanifold of M whose
inclusion is a homotopy equivalence; an end of M is called convex-cocompact if its
intersection with the convex core of M is compact, and degenerate otherwise. The
interested reader can consult Matuzaki and Tanaguchi [13] or Thurston [20] for a
deeper investigation of this classification—we will limit ourselves here to presenting
the prototypical example of a degenerate end, which is also the example most prevalent
in the work to come.

Example 2.1 Let My be the mapping torus of a pseudo-Anosov map ¢: Xg — Xg.
As mentioned in the introduction, 771 (Mg) decomposes as
1 - m(Zg) > mi(My) > 7Z — 1.

Let N be the cyclic cover of My corresponding to the subgroup 71(Xg). Then N is
homeomorphic to Xz x R, and since it regularly covers a closed manifold we have
CC(N) = N, implying that both ends of N are degenerate. Note that unwrapping
a fiber bundle structure for My gives a product structure N = X, x R with fibers
of bounded diameter, contrasting with the exponential growth of level surfaces in a
convex-cocompact end.

2.1 Simplicial hyperbolic surfaces
We record here some facts about negatively curved surfaces in hyperbolic 3—manifolds.

Definition 2.2 Let M be a hyperbolic 3—manifold. A simplicial hyperbolic surface
in M isamap f: S — M, where
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e S is aclosed surface equipped with a triangulation 7°
e/ maps each face of T to a totally geodesic triangle in M

e for each vertex v € T the angles between the f—images of the edges adjacent
to v sum to at least 2.

If f: S — M is a simplicial hyperbolic surface then we get a path-metric on S by
requiring that f preserves path lengths. The metric is smooth and hyperbolic away
from the vertices of T', at which there are possible excesses of angle. By the Gauss—
Bonnet Theorem, we have vol(S) < 27| x(S)|. Bounding the diameter of S by its
volume and injectivity radius, we obtain:

Bounded Diameter Lemma (Thurston) Assume f: S — M is an e —thick simpli-
cial hyperbolic surtace of genus g. Then diam(S) < §(2g —-2).

Mahler’s Compactness Theorem [4, E.1] states that the moduli space of e—thick
(smooth) hyperbolic surfaces of fixed genus is compact. Together with the following
Proposition, this provides a number of upper bounds on the geometry of e—thick
simplicial hyperbolic surfaces, albeit without explicit constants.

Proposition 2.1 (Smooth dominates simplicial) Let S be a closed surface and d a
metric on S that is the pullback metric for some simplicial hyperbolic surface. Then
there exists a smooth hyperbolic metric dyy, on S such that for all x,y € S

1
Ed(x, V) < dnyp(x, ),

where C > 0 depends only on the topological type of S. Note that if d is € —thick then
dhnyp is (e/C)—thick.

Proof of Proposition 2.1 Working in polar coordinates in small neighborhoods around
the singular points of d, we can explicitly deform d to obtain a smooth metric d” with
Gaussian curvature K < —1 that is bilipschitz to d with bilipschitz constant depending
only on the angles d has around the points in its singular locus. The argument is very
similar to the proof of the 277 —Theorem of Gromov and Thurston [5], so we will omit
it here. Since the Gauss-Bonnet Theorem gives an upper bound for the sum of these
singular angles, d and d’ are in fact C -bilipschitz for some C depending only on the
topological type of S'. Define dyy, to be the hyperbolic metric in the conformal class
of d’. The Ahlfors—Schwartz Lemma [2] states that distances measured in d’ are less
than or equal to distances in dpyp; this proves the desired inequality. O
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As an application, we can use Proposition 2.1 and a based version of Mahler’s Com-
pactness Theorem to show:

Corollary 2.2 (Short markings) Set I' = m{(Zg) and fix a generating set X C I'.
Then given €, g > 0 there is a constant L such that whenever f: S — M is an €—
thick simplicial hyperbolic surface of genus g and p € S, there is an isomorphism
®: I' - 71 (S, p) such that the image of each element of X can be represented by a
loop based at p of length less than L.

Observe that Corollary 2.2 is similar to Lemma 7.1 in [8], but it is slightly stronger
and more easily applied in our work in Section 3.

2.2 Algebraic and geometric convergence

Let I' be a finitely generated group and consider a sequence of discrete and faithful rep-
resentations p;: I' — PSL(2, C). If (p;) converges pointwise to poo: I' — PSL(2,C),
we usually say that (p;) is algebraically convergent with poo as its algebraic limit.
Alternatively, consider a sequence of subgroups G; C PSL(2, C); if these converge to
a subgroup G C PSL(2, C) in the Chabauty topology on closed subsets of PSL(2, C)
then we say that G; — G geometrically. The case where the two notions of convergence
agree is useful enough to warrant additional terminology. Specifically, if p; — poo
algebraically and p; (I") — poo(I") geometrically then one says that p; — poo Strongly.

One can interpret the geometric convergence of a sequence of subgroups G; — Goo C
PSL(2,C) in terms of the quotient manifolds M; = H?3/G;. If we fix a basepoint
and baseframe (p, f) for H3, for each i we can take the projection (p;, f;) as
a basepoint and baseframe for M;. Then G; — Goo geometrically if there exist
sequences of positive numbers €; — 0 and R; — oo, and (1 + ¢;)—bilipschitz maps
¢i: B(pi, Ri) > Mo sending (pi, fi) to (poo, foo). For future reference, we will call
the maps ¢; a sequence of almost isometric maps coming from geometric convergence.
Note that using this as our definition, we can speak about a geometrically convergent
sequence of framed hyperbolic 3-manifolds, or even based hyperbolic 3-manifolds if
we forget about the presence of a baseframe.

For a detailed study of algebraic and geometric convergence, see Matsuzaki and
Tanaguchi [13] and Benedetti and Petronio [4].

3 Short graphs in doubly degenerate ¥, x R

Assume that M is a hyperbolic 3—manifold without cusps that is homeomorphic
to Xg x R. Using Waldhausen’s Cobordism Theorem [21] and Ahlfors’ Finiteness
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Theorem [13], it is not hard to see that there is an explicit homeomorphism M = ¥, xR
such that CC(M) sits inside M as either

e Xg x[0,1], in which case M is convex cocompact
e Xg x[0,00), in which case M is called singly degenerate

e Y¢ xR, and then M is called doubly degenerate.

We mentioned in the introduction that Theorem 1.1 is an extension of an earlier theorem
of Souto [18]. A key ingredient in Souto’s proof was the following observation, which
is a consequence of the Covering Theorem of Canary and Thurston [9]. It was originally
proven by Scott—Swarup [16] in the case that M is the cyclic cover of a hyperbolic
3—manifold fibering over the circle.

Lemma 3.1 [18] Let M be a doubly degenerate hyperbolic 3—manifold homeomor-
phicto g xR and let I' C 71 (M) be a proper subgroup of rank at most 2g . Then I
is free, infinite index and convex-cocompact.

To prove Theorem 1.1, we need an improved version of Lemma 3.1 that gives a
diameter bound for the convex core of H3/ T in terms of inj(M) and the length of
a set of loops in M generating I". Our proof will be a compactness argument: we
define a topology on the set of wedges of k bounded length loops in e—thick doubly
degenerate hyperbolic 3—manifolds homeomorphic to Xg x R, show that the resulting
space is compact and then use continuity to show that there is an upper bound for the
corresponding convex core diameters.

Definition 3.1 Define G = G(e, L, k) to be the space of pairs (M, f), where

(1) M is a doubly degenerate e€—thick hyperbolic 3—manifold homeomorphic to
Yg xR

(2) f: AxS! = M is an L-Lipschitz map from the wedge of k circles, endowed
with some fixed metric.

We say that (M;, fi) > (Moo, foo) if

(1) (M;, x;) converges strongly to (Meso, *00), Where x; is the wedge point of
VAGUVED!

(2) there is a sequence ¢; of almost isometric maps coming from the geometric
convergence in (1) such that ¢; o f;: Az S! — M converges pointwise to

foo /\k Sl — Moo
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Here, (1) means that there are faithful representations p; of m1(Zg) into PSL(2,C)
which converge strongly to a representation ps such that the quotient manifolds
H?3/pi(71(Zg)) and H?/poo(1(Zg)) are isometric to (M, *;) and (Moo, *o00) as
based hyperbolic manifolds, where the projections of some fixed point in H?* are taken
as basepoints.

Proposition 3.2 G is compact.

Proof Let (M;, f;) be a sequence in G and assume that x; € M; is the wedge point
of fi(\xS!). For each i, Canary’s Filling Theorem [9] gives a simplicial hyperbolic
surface in M; with image passing through ;. Using the short markings of these
surfaces provided by Corollary 2.2 we can construct representations p;: m1(Xg) —
PSL(2,C) with H3/p;(Zg) = M; so that a fixed base point » € H*® projects to
each x; and up to passing to a subsequence, p; converges algebraically to some
Poo: T1(Xg) — PSL(2,C). Since our lower bound on injectivity radius persists
through algebraic limits, poo(771(X¢)) contains no parabolics. Work of Thurston and
Bonahon then implies that p; — pso strongly. Specifically, one must trace through
Thurston’s proof of [20, 9.2] with the hindsight provided by Bonahon’s Tameness
Theorem [6]. A statement of the resulting theorem is given by Canary in [9, 9.1] as a
prelude to a series of more general convergence theorems.

Set My, = H3/,ooo(2g) and let x5, € M be the projection of . Then (M;, ;)
converges geometrically to (Mo, *o0). The fundamental group of M, is isomorphic
to 1 (Zg), so Bonahon’s Tameness Theorem [6] implies that Mo, = ¥ ¢ xR . Moreover,
it follows from strong convergence and [14, Theorem 1.1] that the convex cores CC(M;)
converge geometrically to CC(Mo), thus M is doubly degenerate. We can construct
amap foo! /\i S! — My, by applying the Arzela—Ascoli theorem to the sequence of
maps ¢;o fir \x S! — M., where ¢; is a sequence of almost isometric maps coming
from geometric convergence. Clearly (M;, f;) converges to (Moo, foo) in G. |

Corollary 3.3 Let M be a doubly degenerate € —thick hyperbolic 3 —manifold homeo-
morphic to ¥g xR and let p € M be a basepoint. Assume that I' C (M, p) is a
proper subgroup that can be generated by 2g loops based at p of length less than L.
Then T is convex cocompact and the diameter of the convex core of H*/ T" is bounded
above by some constant depending only on L, € and g.

Proof Observe that I' determines an element (M, f) € G = G(e, L,2g), with the
extra property that f is not m—surjective. Our goal then is to show that if (M, f) € G
and f is not 7y —surjective, then the diameter of the convex core of the cover M, (y)
of M corresponding to the 7y image of f is bounded above. If not, there is a sequence
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(M;, f;) of such pairs where these diameters grow without bound. By compactness, we
may assume that (M;, f;) > (Meo, foo) in G. Infact, foo cannot be 71 —surjective. To
see this, note that by strong convergence there are a compact core K C M, and almost
isometric embeddings ¢;: K — M; that are m;—surjective for large i. Therefore, if
foo 18 7 —surjective, then so is ¢; o foo, Which is homotopic for large i to f;. As
/i is never mq—surjective, it follows that neither is fo. Lemma 3.1 then shows that
(Moo) 7, (fs) 18 cOnvex-cocompact.

The manifolds (M;)y, (s, converge algebraically to (Mco)y, (f.,) and since the limit
is convex-cocompact, it follows from [13, Proposition 7.39] that the convergence is
strong and the convex cores of the manifolds in the sequence converge geometrically
to that of the limit. Consequently, the diameters of these cores must also converge, and
therefore must be bounded. This is a contradiction. O

4 Carrier graphs

In the following, assume M is a closed hyperbolic 3—manifold.

Definition 4.1 A carrier graph for M is a graph X and amap f: X — M which
induces a surjection on fundamental groups.

Standing assumption In this paper we are interested in generating sets of minimal
size, which correspond to carrier graphs with rank(mq (X)) = rank(7;(M)). From
now on all carrier graphs will be assumed to have this property.

If a carrier graph f: X — M is rectifiable, we can pull back path lengths in M to
obtain an pseudo-metric on X . Collapsing to a point each zero-length segment in X'
yields a new carrier graph with an actual metric; from now on we will assume all carrier
graphs are similarly endowed. Define the length of a carrier graph to be the sum of the
lengths of its edges, and a minimal length carrier graph to be a carrier graph which has
smallest length (over all carrier graphs of minimal rank). An argument [22] using the
Arzela—Ascoli theorem shows that minimal length carrier graphs exist in any closed
hyperbolic 3—manifold.

The following Proposition shows that minimal length carrier graphs are geometrically

well behaved.

Proposition 4.1 (White [22]) Assume f: X — M is a minimal length carrier graph
in a closed hyperbolic 3—manifold M . Then X is trivalent with 2(rank({(M)) —1)
vertices and 3(rank(m{(M)) — 1) edges, each edge in X maps to a geodesic segment
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in M , the angle between any two adjacent edges is ZT” , and the image of any simple

closed path in X is an essential loop in M .

We conclude this section with a technical result that is instrumental in our proof of
Theorem 1.1. A slightly more general theorem was proven by Souto in [17], but the
proof given there is somewhat incomplete. We include a full proof of the more general
result in Appendix.

Proposition 4.2 (Chains of bounded length) Let M be a closed hyperbolic 3—
manifold with f: X — M a minimal length carrier graph. Then we have a sequence
of (possibly disconnected) subgraphs

g=YyCY1C...CYr =X

such that the length of any edge in Y;4+; \ Y; is bounded above by some constant
depending only on inj(M), rank (s (M)), length(Y;) and the diameters of the convex
cores of the covers of M corresponding to f (i (YI.] )), where Yil, ..., Y] are the
connected components of Y;.

5 Proof of Theorem 1.1

Fix €, g > 0 and assume that M is an e—thick hyperbolic 3—manifold fibering over
the circle with fiber X4 . The goal of this section is to prove that there are only finitely
many such M for which rank(mry(M)) # 2g + 1. We begin, however, with a quick
computation concerning the girth of M .

Definition 5.1 The waist length of M , denoted waist(M ), is the smallest length of a
loop in M that projects nontrivially to 71 (S!).

Proposition 5.1 (Fibered 3—manifolds have high BMI) Let M be an € —thick hyper-
bolic 3—manifold fibering over the circle with fiber X4 . Then

16
2diam(M) — —(2g —2) < waist(M ) < 2diam(M).
€

Proof Assume that y is a loop realizing the waist length of M . Canary’s Filling
Theorem [9] implies that every point in the cyclic cover of M corresponding to the
fundamental group of the fiber lies in the image of a simplicial hyperbolic surfaces for
which the inclusion map is a homotopy equivalence. Projecting down, this provides
an exhaustion of M by simplicial hyperbolic surfaces in the homotopy class of the
fiber. By homological considerations, any such surface must intersect 3. The Bounded
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Diameter Lemma (see Section 2) then implies that diam(M') < % waist(M )+ %(2—2 g).
This establishes the first inequality.

For the second, recall that the fundamental group of M is generated by the set of
all loops in M of length less than 2 diam(M ). Any generating set for 1 (M) must
contain a loop that projects nontrivially to 771 (S'), so the waist length of M is at most
twice its diameter. O

There are only finitely many hyperbolic 3—manifolds with diameter less than a given
constant [23]. Proposition 5.1 then gives a similar finiteness result for thick hyperbolic
3—manifolds fibering over the circle with a fixed fiber and bounded waist length.

We are now ready to prove the main result of this note.

Theorem 1.1 Given €,g > 0 there are at most finitely many € —thick hyperbolic
3—manifolds M fibering over S! with fiber X4 for which rank(rr;(M)) # 2g + 1.

Proof Assume that M is an e—thick hyperbolic 3—manifold fibering over the circle
with fiber ¥g and rank(m(M)) < 2g. We will show that the waist length of M is
bounded by some constant depending only on ¢ and g.

Let f: X — M be a minimal length carrier graph. By Proposition 4.2, there is a
constant L and a chain of (possibly disconnected) subgraphs

g=YyCY)C...CYr =X

with length(Y;+1) bounded above by some constant depending only on €, g, length(Y;)
and the diameters of the convex cores of the covers of M corresponding to the funda-
mental groups of the connected components of Y;.

Assume for the moment that no connected component of Y; runs all the way around
the waist of M, so that each lifts homeomorphically to the cyclic cover My (s,)
of M . Since rank(my(X)) < 2g, the components of ¥; have even smaller rank and
thus cannot generate the fundamental group of My, (s,). Therefore Corollary 3.3
applies to bound the diameters of the associated convex cores in terms of length(Y;),
€ and g. It follows that length(Y;41) is also bounded above by length(Y;), € and g.

Applying this argument iteratively, we obtain a length bound for the first subgraph Y;
that contains a loop that projects nontrivially to 7; (S'). The length bound depends on
€, g and the index of the subgraph, but since there are at most 3(rank(wy(M)) — 1)
edges in X the number of subgraphs in our chain is also limited. Therefore we have
that the waist length of M is bounded by a function of € and g. O
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Under slight modifications, the proof of Theorem 1.1 shows that for mapping tori
with large waist length there is only one Nielsen equivalence class of minimal size
generating sets for 1 (M). The interested reader may compare our proof with [17]
for more details.

5.1 3-Manifolds fibering over an orbifold

The arguments above also apply to hyperbolic 3—manifolds formed by gluing along
their boundaries two twisted interval bundles over a nonorientable surface. One usually
says that such a manifold M fibers over the orbifold S!/(z — —z). The two embedded
copies of the nonorientable surface are called the singular fibers, and the rest of M is
foliated by regular fibers, which are orientable and doubly cover the singular fibers.
We refer the reader to Hempel [11] for more information on the topology of such
manifolds.

If S1,S8, C M are the singular fibers and p € S; is a basepoint, then 7{(M, p) is
generated by 771 (S, p) and any loop freely homotopic into S, , but not into S;. Using
this, one can check that if the regular fibers have genus g, then

rank(r;(M)) < g + 2.

We then have the following analogue of Theorem 1.1:

Theorem 5.2 Given €, g > 0, there are at most finitely many hyperbolic 3 —manifolds
M fibering over S'/(z +— —z) with regular fiber X g for which rank(m;(M)) # g +2.

The proof is nearly the same. One takes a minimal length carrier graph and shows that
if the distance between the two singular fibers is large enough then one of the subgraphs
given by Proposition 4.2 fills out the fundamental group of one of the singular fibers
of M . This forces the fundamental group of the subgraph to have rank at least g + 1,
implying that the carrier graph has rank at least g + 2. The finiteness statement follows
because an upper bound for the distance between the two singular fibers provides a
upper bound on the diameter, at worst by imitating the argument in Proposition 5.1.

Appendix Chains of bounded length

We prove here the generalization of Proposition 4.2 promised in Section 4. The idea of
the proof given below was originally sketched by Souto in [17]; the purpose of this
Appendix is to fill in some missing details.
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Assume that M = H3/T is a closed hyperbolic 3-manifold and f: X — M is a
minimal length carrier graph. Choose an edge e C X and a subgraph ¥ C X '. Our first
goal will be to provide a useful definition of the length of e relative to the subgraph Y .
This should vanish when e C Y and should agree with the hyperbolic length of f'(e)
when neither of the vertices of e lies inside Y. If X is embedded as a subset of M
with f* the inclusion map, then relative length is similar to the length e has outside of
the hyperbolic convex hulls of the components of Y that e touches, but we need to
do our measurements in the universal cover and throw out sections of e that lie inside
some of the thin parts of M .

To clarify this, fix a universal covering mx: X — X and a lift f - X - H3 of .
Assume that a vertex v of e lies in a connected component Z;, C Y and choose lifts

Zv C X of e and Z that touch above v. Let I’ f(Z ) be the subgroup of I' that
leaves f (Zv) invariant.

Deﬁnltlon A.1 (Thick convex hulls) The thick convex hull of f~ (Z,) denoted by
TCH( f (Zv)) is the radius—1 neighborhood of the smallest convex set K containing
f(Zv) such that for every y € Ff(Z ) and x € H3\ K, we have d(y(x),x) > 1.

Definition A.2 (Edge length relative to a subgraph) Define the length of e relative
to Y, denoted lengthy (e), to be the length of the part of f(e) that lies outside of
TCH( f(Z,)) for each vertex v of e contained in Y .

It is easy to see that the relative length of e is well-defined, independent of the lifts
chosen above. The definition is a bit less complicated if we assume that X is embedded
as a subset of M . For then we can lift e directly to H? along with any connected
components of Y that e touches, and then measure the length of e’s lift outside of the
thick convex hulls of the lifted subgraphs. In the proofs below, we will assume X to
be embedded in order to remove a level of notational hinderance. The arguments will
be exactly the same in the general case.

Although an edge can have very long absolute length while having short length relative
to a subgraph Y, we can bound this difference if we have some control over the geometry
of the covers of M corresponding to the fundamental groups of the components of Y.

Lemma A.1 Assume that M is a closed hyperbolic 3—manifold, f: X — M is a
minimal length carrier graph, Y is a subgraph of X and e is an edge of X \ Y. Then
length(e) is bounded above by a constant depending only on lengthy (e), length(Y),
inj(M), rank(w;(M)) and the diameters of the convex cores of the covers of M
corresponding to the components of Y that e touches.
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Proof As mentioned above, we forget about f and assume that X is embedded as
a subset of M . Suppose that e shares a vertex with a connected component Z C Y,
and let e, 7 C H3 be lifts that touch above that vertex. Since X is minimal length,
en TCH(Z ) must minimize the distance from N d TCH(Z ) to Z . For otherwise, one
could replace it by a minimizing segment; extending equivariantly gives a new carrier
graph homotopic to X and of smaller length, violating the minimality assumption.
Thus a bound on the Hausdorff distance between Z and TCH(Z ) limits the length
that ¢ can have inside of TCH(z ), and we will show that this is bounded in terms of
the quantities mentioned in the statement of the Lemma.

We first claim that the hyperbolic distance from Z to CH(A(T'3)) is bounded above by
a constant depending only on inj(M) and rank(sr; (M )). Choose an infinite piecewise
geodesic path y C Z that projects to a simple closed curve in ¥ and let g € I'; be
the corresponding deck transformation. Taking a maximal sequence of consecutive
edges of y that project to distinct edges in M yields a subpath 3’ whose g-translates
cover Y. Note that the orthogonal projection of ¥’ to axis(g) has length equal to
the translation distance of g, which is at least inj(M). By Proposition 4.1, X has
3(rank(my(M)) — 1) edges; the number of edges in 3’ can certainly be no greater
than this. Thus there is an edge of ¥ whose orthogonal projection to axis(g) has
length at least inj(M)/(3(rank(;r(M)) —1)). It follows from elementary hyperbolic
geometry that there is a point on this edge whose distance from axis(g) is bounded
above by a constant depending on that length. For instance, if one draws two lines
Iy, I, orthogonal to axis(g) that are inj(M)/(3(rank(sr;(M)) — 1)) apart, then the
distance from the edge to axis(g) is at most the distance to axis(g) from either of the
two geodesic lines that share one endpoint on S! with /{, the other with /5, and lie
on one side of axis(g). This proves the claim.

Now Z and CH(A(T'3)) are both invariant under the action of I'; with quotients
of bounded diameter, so our limit on the hyperbolic distance between them translates
into a bound on their Hausdorff distance. But if Z is Hausdorff-close to a convex set
then it must also be Hausdorff-close to its convex hull, CH(Z ). Since the Hausdorff
distance from CH(Z) to TCH(Z) is controlled by inj(M ), we have a bound on the
Hausdorff distance between Z and TCH(? ). |

For a subgraph Z C X, we define the length of Z relative to Y to be

lengthy (Z) = Z lengthy (e).
edges e C Z

Using our definition of relative length, we can streamline the formulation of Proposition
4.2. The statement given earlier follows from this one after applying Lemma A.1.
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Proposition A.2 (Chains of bounded length) There is a universal constant L with
the property that if M is a closed hyperbolic 3—manifold and f: X — M is a minimal
length carrier graph then we have a sequence of (possibly disconnected) subgraphs

g=YyCY)C...CYr =X

such that lengthy. (Y1) < L forall i.

Proof It is a standard fact in hyperbolic geometry that there exist a universal constant
C > 0 with the following property:

(1) any path in H? made of geodesic segments of length at least C connected with
angles at least % is a quasi-geodesic.

There is also a constant D > C such that

(2) if N C H? contains the axis of a hyperbolic isometry y and d(x, y(x)) > 1 for
all x e H3\ N, then d(x, y(x)) > C forall x € H>\ Np(N)

(3) any geodesic ray emanating from a convex subset K C H? that leaves Np (K)
meets dNp(K) in an angle of at least %,

and finally a constant B > 0 for which

(4) any geodesic exiting the radius—1 neighborhood of a convex subset K C H?3
will exit Np(K) after an additional length less than B.

We will show that if Y is any subgraph of X then there is an edge in X \ ¥ of length
at most L = C + 2B relative to Y ; applying this iteratively will give the chain of
subgraphs in the statement of the Proposition.

So, suppose that Y is a subgraph of X". Observe that since the fundamental group of a
closed hyperbolic manifold cannot be free, there is an essential closed loop y C X that
is nullhomotopic in M . Furthermore, since 71 (M) does not split as a free product
[11, Theorem 7.1] we can pick y so that it has no subpath contained entirely in Y that
is also a closed loop nullhomotopic in M . Lifting y to H3 then gives a closed loop
¥ C H? such that each time ¥ touches a component of JTA_/II (Y) it enters and leaves
that component using different edges of n]‘_ll (X\7Y).

The first crucial observation is that one of the edges of y must have length less that L.
For otherwise, 7 is a closed path in H? made up of geodesic segments of length at
least L connected at F—angles, which is impossible by definition of L. If this short
edge lies outside Y, then we are done. However, it very well might not, so in the
remainder of the proof we will develop a version of this argument that runs relative
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to Y. This will produce a short edge outside Y, but we will be forced to measure its
length relatively rather than absolutely.

So, consider a maximal segment of ¥ that is contained in a component Z of n]\_ll (Y)
and let ¢ and f be the edges that J traverses before and after the segment in Z.
If e or f has length less than L relative to Y, then we are done. Otherwise, the
two edges have a length of at least L left after exiting TCH(Z ), so by (4) both of
these edges must exit Np (TCH(Z )); let eg and fy be the points where they meet
oND (TCH(Z )). Assume for the moment that the distance between ey and fy is
less than C. Then by (2), e and f project to different edges in X. Substituting
aym(eNNp (TCH(Z ))) C X with the projection of the geodesic between ¢q and fy
therefore yields a new carrier graph for M , and since the new edge has length less
than C while the old has length at least D our new carrier graph has shorter length
than X . This contradicts the minimality of X, so d(eq, fo) = C.

We can now create a new closed path in H? from 7 as follows: each time ¥ traverses
a component Z of 71;,11 (Y), replace the part of ¥ that lies inside Np (TCH(Z )) by
the geodesic with the same endpoints. Then the new path is composed of geodesic
segments of length at least C, and by (3), the segments intersect with angles at least
% - Therefore it is a quasi-geodesic. Since it is also closed, this is impossible. O
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