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Graphs of subgroups of free groups

LARSEN LOUDER

D B MCREYNOLDS

We construct an efficient model for graphs of finitely generated subgroups of free
groups. Using this we give a very short proof of Dicks’s reformulation of the
strengthened Hanna Neumann Conjecture as the Amalgamated Graph Conjecture. In
addition, we answer a question of Culler and Shalen on ranks of intersections in free
groups. The latter has also been done independently by R P Kent IV.
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1 Introduction

One purpose of this article is to investigate the interplay between the join and intersection
of a pair of finitely generated subgroups of a free group. Our main result, Theorem 2.4,
is a minor generalization of the construction of the first author from [4] and produces a
simple model for analyzing intersections and joins. We use this technique to give a
quick proof of a theorem of Dicks [2]. Another application of Theorem 2.4 is an answer
to an unpublished question of Culler and Shalen [1]. This has been done independently
by Kent [3]. Explicitly, the result is the following theorem.

Theorem 1.1 Let G DH1 �M H2 be a graph of free groups such that each Hi has
rank 2. If G � F3 then M is cyclic or trivial.

One can derive upper bounds on the rank of the intersection given lower bounds on
the rank of the join. This has also been observed in the nice article of Kent [3], where
some upper bounds are explicitly computed. The proof of Theorem 1.1 presented here
differs only slightly from his. In the broadest terms, the two articles share with most
papers in the subject an analysis of immersions of graphs, a method that dates back
to Stallings [5]. Specifically, Kent uses directly the topological pushout of a pair of
graphs along the core of their pullback, a graph which appears here as the underlying
graph of a reduced graph of graphs.
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2 Graphs of graphs

A graph of graphs is a finite graph of spaces such that all vertex spaces are combinatorial
graphs and all edge maps are embeddings. Below are some simple operations on graphs
of graphs. All vertices and edges are indicated by lower case letters, and their associated
spaces will be denoted by the corresponding letter in upper case. We will not keep
track of orientation here despite its occasional importance—we trust the reader to sort
out this simple matter when it arises. Let X be a graph of graphs with vertices vi and
edges ej .
(M1) Making vertex and edge spaces connected: Let Vi;1; : : : ;Vi;ni

be the connected
components of the vertex space Vi associated to the vertex vi of the underly-
ing graph G and Ej ;1; : : : ;Ej ;mi

be the connected components of the edge
space Ej . We construct a new graph of graphs as follows. First, we build the
underlying graph. For each i and j , we take a collection of vertices vi;k and
edges ej ;l , one for each connected component of each vertex space and edge
space, respectively. We label vi;k with Vi;k and ej ;l with Ej ;l , and attach ej ;l

to vi;k if the image of Ej ;l in Vi is contained in Vi;k . The attaching maps for
this graph of graphs are the obvious ones. If ej ;l is adjacent to vi;k , then we
attach an end of Ej ;l � I to Vi;k by the inclusion map.

(M2) Removing unnecessary vertices: If V is a vertex space with exactly two incident
edges such that both inclusions are isomorphisms, we remove v and regard
the pair of incident edges as a single edge. If V has one incident edge and the
inclusion is an isomorphism, we remove V and the incident edge.

(M3) Removing isolated edges: If a vertex space V has an edge e that is not the
image of an edge from an incident edge space, we remove e from V .

(M4) Collapsing free edges or vertices: We call an edge e of a vertex space V free if
it is the image of only one edge from the collection of incident edge spaces, say
e0 �E . In this case, we remove e and e0 from V and E . If a vertex space V

is a point and has only one incident edge space, we remove v and the incident
edge.
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A graph of graphs is reduced if any application of these operations leaves the space
unchanged. Notice that any graph of graphs can be converted to a reduced graph of
graphs by greedily applying (M1) through (M4). The remaining requisite operations
on graphs of graphs are blow ups and blow downs at a vertex.

(M5) For a vertex space V, divide the incident edge spaces into two classes E1; : : : ;En

and EnC1; : : : ;Em , and let V1 (V2 , resp.) be the union of the images of Ei ,
i � n (i > n, resp.). When V1\V2 is nontrivial, we replace V by V1tV2 and
introduce a new edge v1\ v2 with the edge graph V1\V2 . Next, we attach
Ei to V1 for i � n, Ei to V2 for i > n and the newly introduced edge space
V1\V2 to V1 and V2 via the inclusion maps.

(M6) Blow up: We blow up a vertex by applying (M5). We pass to connected
components of the newly created vertex and edge spaces via (M1). Finally, we
pass to the associated reduced graph of graphs using (M2).

(M7) Blow down: Let E be an edge space of a graph of graphs. If the two embeddings
of E have disjoint images, that is, �.E/\ �.E/D∅, then we remove the edge
e of the underlying graph and identify the two endpoints of e . Finally, the
graph carried by the new vertex is the one obtained by identifying the vertex
space(s) at the ends of e by setting �.f /D �.f /, where f is either a vertex or
an edge of E .

Remark Notice that if X has no free or isolated edges, then the space obtained by
blowing up a vertex with an application of (M6) also has no free or isolated edges. Also,
when V is connected, it follows that V1\V2 is nontrivial and thus (M5) is applicable.

The horizontal subgraph of a graph of graphs is the graph obtained by restricting vertex
and edge spaces to vertices. The mid-graph of a graph of graphs is the graph obtained
by restricting vertex and edge spaces to midpoints of edges. These two subgraphs are
denoted �H and �M , respectively. Note that neither of these graphs is necessarily
connected. If X is reduced, then �M and �H do not have any valence one vertices.
Conversely, if either one of them has a valence one vertex, then there must be a free
edge or vertex in X . If there are isolated edges, then a component of �M is a point. In
particular, if X is reduced, then every component of �M has nontrivial fundamental
group.

Lemma 2.1 Blowing up and blowing down are homotopy equivalences.

This follows easily upon observing that if two of the edges introduced during a blowup
are both adjacent to a vertex introduced during the blowup, then the images of the edge
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spaces they carry are disjoint. That the remaining moves, other than (M3), preserve the
homotopy types of X , �H and �M , is clear. Note that (M3) only serves to remove
trivial components of �M .

It is important to know when to blow up X . The following lemma achieves this.

Lemma 2.2 Let � be a connected graph with a collection C D f�ig
m
iD1

of (not
necessarily distinct) connected subgraphs. If every edge of � is contained in at least
two �i and m> 3, then after relabeling the �j , there is a partition C1Df�1; : : : ; �ng

and C2 D f�nC1; : : : ; �mg of C such that at least two �i in C1 intersect nontrivially
and at least two �i in C2 intersect nontrivially.

Proof It suffices to find distinct A;B;C;D 2 C such that A\B¤∅ and C \D¤∅.
If all triple intersections are empty then C has at most two elements by connectivity
of �. Let A;B;C 2 C such that A\B \ C ¤ ∅. Since � is connected, there is
some D meeting, again without loss, C .

Remark Notice that if V is a vertex space of a reduced graph of graphs X with at
least four incident edge spaces, then we can use Lemma 2.2 to ensure that (M5) is
applicable.

Let X be a reduced graph of graphs such that all vertex and edge spaces are con-
nected. The space X has an underlying graph that we shall denote by �U .X /. Let
m.X / be the highest valence of vertex of �U .X /, n.x/ the number of vertices with
valence m.X / and �.�U .X // the Euler characteristic of �U .X /. The complexity
of X is the lexicographically ordered 3–tuple

c.X / WD .�.�U .X //;m.X /; n.X //:

We call a blowup of a vertex v using two sets of edge spaces satisfying Lemma 2.2
nontrivial. Our next lemma justifies this terminology.

Lemma 2.3 Let X be reduced and m.X / > 3. If X 0 is obtained from X via a
nontrivial application of (M6) to a vertex v with valence m.X /, then c.X 0/ < c.X /.

Proof Let fvig be the vertices of X 0 introduced during a blow up of X at the vertex v .
These vertices must have valence at least two, as otherwise X has a free edge and
is not reduced. We assume contrary to the claim that c.X / D c.X 0/. If the Euler
characteristics of the underlying graphs of X and X 0 are equal, then the subgraph B

spanned by the edges associated to the connected components of V1\V2 must be a
tree. First observe that it is connected as otherwise V could not have been connected.

Algebraic & Geometric Topology, Volume 9 (2009)



Graphs of subgroups of free groups 331

Second, if B is not a tree, then the Euler characteristic of the underlying graph must
decrease. As B is a tree we have

(1) 1�
1

2
valence.v/D

X
i

�
1�

1

2
valence.vi/

�
:

If both m.X 0/D m.X / and n.X 0/D n.X /, then all but one of the vertices vi0
has

valence two since there are no valence one vertices making a positive contribution to the
sum on the right hand side of (1). Therefore, every component of V1 (the alternative is
handled identically) is the image of exactly one incident edge space from one element
of the partition of edges incident to v . However, this is impossible since the blowup X 0

was assumed to be nontrivial.

We are now ready to state our main result.

Theorem 2.4 Every graph of graphs X such that no connected component of �M is
a tree can be converted to a reduced graph of graphs X 0 all of whose vertex groups
have valence three. There is a homotopy equivalence .X 0; � 0

H
; � 0

M
/! .X; �H ; �M /.

The corank of a group G is the maximal rank of a free group that it maps onto and will
be denoted by cr.G/. Before proving Theorem 2.4, a few remarks are in order. First,
observe that if X is reduced, then the natural map �1.X /! �1.�U .X // is surjective.
Second, the complexity of all graphs of graphs homotopy equivalent to X is bounded
below by .1� cr.�1.X //; 3; 0/. That said, we now give a proof of Theorem 2.4.

Proof of Theorem 2.4 First we apply (M4) until there are no free edges. This does not
change the homotopy type of the triple .X; �H ; �M /. There are no isolated edges since
each component of �M is assumed to have nontrivial fundamental group. Next, we
pass to connected components of edge and vertex spaces and then pass to the associated
reduced graph of graphs by removing valence two vertex spaces. Let X be a reduced
graph of graphs, and consider a sequence fXig starting with X such that Xi is obtained
from Xi�1 by nontrivially blowing up a maximal valence vertex. Since all the Xi

are homotopy equivalent and the maps �1.Xi/! �1.�U .Xi//, i > 0, are surjective,
c.Xi/� .1� cr.�1.X //; 3; 0/. According to Lemma 2.3, c.Xi/ > c.XiC1/. Since the
complexity is bounded below, for some n, Xn has only valence three vertices.

A graph of graphs represents a graph of free groups when the �–neighborhood of �M

is a product I ��M . In this case there are two natural immersions �M ! �H in the
sense of Stallings [5]. Moreover, there is an immersion �H !�U . We say such a graph
of graphs is representing. Conversely, suppose that G D�.H1; : : : ;Hk ;M1; � � � ;Ml/
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is a graph of free groups with vertex groups Hi , edge groups Mj and that there is
a map  W G! F which embeds each Hi . Let �j and �j be the two inclusion maps
Mj ,!H�.j/ and Mj ,!H�.j/ . Represent F as the fundamental group of a marked
labeled graph R with one vertex, and find immersions of marked labeled graphs
�i W �Hi

! R representing  jHi
and �j W �Mj

! R representing  jMj
. We choose

the notation �Hi
in anticipation of the fact that they are the connected components of

the horizontal subgraph of the graph of graphs under construction.

The immersion �j factors through ��.j/ and ��.j/ via immersions �j W �Mj
! �H�.j /

and �j W �Mj
!�H�.j/

. We construct a space X by taking the �Mj
�I as edge spaces,

taking the �Hi
as vertex spaces and using as attaching maps �j W �Mj

� f0g ! �H�.j /

and �j W �Mj
� f1g ! �H�.j/

. Let j̨ W �Mj
� I ! �Mj

be the projection to the first
factor. Since ��.j/ ı �j D�j and ��.j/ ı �j D�j there is a well defined map � W X !R

which restricts to �i and agrees with �j ı j̨ .

We now endow X with the structure of a graph of graphs. Let b be the base point of R.
Let V D ��1.b/ and El D �

�1.ml/, where ml is the midpoint of an edge el of R.
Each edge el of R induces two maps of El to V , each of which is an embedding.
That these are embeddings can be seen as follows. If one fails to be injective on vertices
of El , then some �Hi

!R is not an immersion. If it is injective on vertices but not on
edges, then some �Mj

!R is not immersed. Thus, we may use this data to endow X

with the structure of a graph of graphs. By Theorem 2.4, we can repeatedly blow up X

until we produce a graph of graphs X 0 all of whose vertices have valence three. If
(M3) is ever applied in the process, then it must be that some Mi was trivial.

Remark Let w be a vertex of a vertex space V of a graph of graphs X . It follows
that w is a vertex of �H and the valence of w in �H is exactly the number of edge
graphs incident to V whose images contain w . If X is reduced and V has valence
three, then there must be a vertex of V which is contained in the image of all three
incident edge graphs. Moreover, if �M has a valence three vertex w , then the images
of w in �H must each have valence three in �H .

Proof of Theorem 1.1 We begin by representing G � F3 by a map from a graph
of graphs X to a bouquet of three circles R. Note that since G � F3 , at least
one of the maps Hi ! F3 is injective. If the other fails to be injective, the result is
immediate. Consequently, we are reduced to the case when both are injective and
thus the construction above can be implemented. By blowing X up, we may assume
that X has only valence three vertices. The map G � F3 factors through the map
G Š �1.X /� �1.�U /, and the rank of �U must be either 3 or 4. If the latter holds,
then M is trivial and the theorem holds. If �U has rank 3, since all vertices of �U are
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valence three, there must be exactly four. By the remark above, if �M has a valence
three vertex, then the map from the set of valence three vertices of �H to the set of
valence three vertices of �U cannot be injective. Since the two components of �H

each have fundamental group F2 , they have 2 valence three vertices apiece. However,
this implies the contradiction that �U has at most 3 valence three vertices. Thus, �M

has vertices of valence at most two and so has rank at most one, as claimed.

Remark By [4], M is contained in the subgroup generated by a basis element in at
least one of H1 or H2 .

Other inequalities of this type are easily obtained through an analysis of a reduced
valence three graph of graphs representing the intersection. In particular, special cases
of the Hanna Neumann conjecture can be verified with this analysis. For explicit
inequalities, we refer the reader to Kent [3] who has also derived them.

3 Intersections of subgroups of free groups

Let H1 and H2 be subgroups of a fixed free group F . If GD�.H1;H2IMj /, a graph
of free groups with two vertex groups fHig, edge groups fMj g, with no monogons
and a map � W G � F embedding each of the factors Hi , then the vertex spaces of a
graph of graphs X representing � are bipartite.

A graph of graphs is simple-edged if no vertex space has a bigon. To relate reduced
graphs of graphs to intersections of free groups we need to understand what happens
when a graph of graphs X as above is not simple-edged. Let p and q be the midpoints
of a pair of offending edges, � D �U .X / the underlying graph of X , and give
the edges of � distinct oriented labels. The labeling of � induces labelings of �M

and �Hi
. Let � 0

M
be the labeled graph obtained by identifying p and q . By folding the

labeled graph � 0
M

(see for instance Stallings [5]), we obtain a labeled graph �K with
fundamental group K D �1.�K ;p/. Folding endows �K with a pair of immersions
�i W �K ! �Hi

. In addition, there is an immersion �j W �Mj
! �K and the edge map

�Mj
! �Hi

is just �i ı �j .

We must consider two cases with regard to p and q after folding. Namely, the midpoints
p and q are either in the same component of �M or in distinct components of �M . We
address the latter first and assume, without loss of generality, that �M1

and �M2
are

the components of �M containing p and q . Compute the fundamental groups of �H1

and �H2
with respect to the images of p (which coincide with the images of q ). From

this we see that �.H1/\ �.H2/ contains �.M1/ and �.M2/. If �.M1/ 6< �.M2/

and �.M2/ 6< �.M1/, then each inclusion �.Mi/ ,! �.H1/\�.H2/ is proper and
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the image of the fundamental group of �K , computed with respect to the image of p ,
is precisely hM1;M2i. If neither �1 nor �2 is an isomorphism of labeled graphs,
then K properly contains M1 and M2 . In the event we are in the first case, without
loss of generality, we shall assume that p , q are contained in �M1

. We identify the
vertices p and q of �M and then fold to obtain a labeled graph �K . As before, the
immersion �M1

!�Hi
factors through the induced immersion �K!�Hi

. In this case
�M ! �K cannot be an isomorphism of graphs and H1\H2 properly contains M1 .

Let X be a reduced simple-edged graph of graphs with underlying graph � D �U .X /.
Let X .�/ be the collection of reduced simple-edged graphs of graphs with underlying
graph � . If X;X 0 2X .�/, then X �X 0 if there is a map of graphs of spaces X !X 0

such that all restrictions to vertex and edge spaces are embeddings. We can restrict to
the subcollection XX .�/ such that for each X 0 2 XX .�/ there is a map X !X 0 and
the map �H .X /! �H .X

0/ is a graph isomorphism. Clearly XX .�/ has a maximal
element Y . To link reduced simple-edged graphs of graphs to the strengthened Hanna
Neumann conjecture, we only need to observe that since X is simple-edged, each
component of �M .X / is an embedded subgraph of �M .Y / (ie the fundamental groups
of components of �M .X / are free factors of the respective components of �M .Y /).

The strengthened Hanna Neumann conjecture then implies that if G is as above and
the associated graph of graphs is simple-edged, then

�.�H1
/�.�H2

/C�.�M /� 0:

The equivalence of the amalgamated graph conjecture and the strengthened Hanna
Neumann conjecture of [2] follows immediately from the observation that the ver-
tex and edge spaces of a representing simple-edged graph of graphs can be written
as in the statement of Dicks’ theorem. We leave the details of the construction of
this correspondence to the reader, though we state a version of the equivalence for
completeness.

Let X be a simple-edged reduced graph of graphs all of whose vertices are valence
three that represents a homomorphism �.H1;H2;Mj /! F . Let vi be the vertices
of �U .X /, and for each i , let �i be the intersection of the images of the three edge
spaces incident to vi . Finally, let � be the disjoint union of the �i , †1 D�\�H1

and †2 D�\�H2
and � be the number of edges in �.

Theorem 3.1

�.H1/�.H2/C
X

i

�.Mi/D
1

4
j†1jj†2j �

1

2
�
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The proof is straightforward. The number of valence three vertices of �Hi
is j†i j,

�Hi
has only valence two or valence three vertices, and the Euler characteristic of Hi

is therefore �1
2
j†i j. The Euler characteristic of each �Mj

is computed in the same
manner. � is the number of valence three vertices of �M . In this formulation, the
amalgamated graph conjecture simply states that if one is given a reduced simple-edged
representing graph of graphs whose horizontal graph has two components, then the
right hand side of the above equality is nonnegative.
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