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An intrinsic nontriviality of graphs

RYO NIKKUNI

We say that a graph is intrinsically nontrivial if every spatial embedding of the
graph contains a nontrivial spatial subgraph. We prove that an intrinsically nontrivial
graph is intrinsically linked, namely every spatial embedding of the graph contains
a nonsplittable 2–component link. We also show that there exists a graph such that
every spatial embedding of the graph contains either a nonsplittable 3–component
link or an irreducible spatial handcuff graph whose constituent 2–component link is
split.
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Dedicated to Professor Akio Kawauchi on his 60th birthday

1 Introduction

Throughout this paper we work in the piecewise linear category. Let f be an embedding
of a finite graph G into the 3–sphere S3 . Then f (or f .G/) is called a spatial
embedding of G or simply a spatial graph. We call a subgraph  of G which is
homeomorphic to the circle a cycle. If G is homeomorphic to the disjoint union of
cycles, then f is an n–component link (or knot if nD 1). Two spatial embeddings f
and g of G are said to be ambient isotopic if there exists an orientation-preserving
self homeomorphism ˆ on S3 such that ˆ ıf D g . A graph G is said to be planar
if there exists an embedding of G into the 2–sphere, and a spatial embedding f of
a planar graph G is said to be trivial if it is ambient isotopic to an embedding of G

into a 2–sphere in S3 . A spatial embedding f of G is said to be split if there exists a
2–sphere S in S3 such that S \f .G/D∅ and each connected component of S3 nS

has intersection with f .G/, and otherwise f is said to be nonsplittable.

A graph G is said to be intrinsically linked if every spatial embedding f of G contains
a nonsplittable 2–component link. Conway and Gordon [2] and Sachs [15] showed
that K6 is intrinsically linked, where Kn denotes the complete graph on n vertices.
Conway and Gordon also showed that K7 is intrinsically knotted, namely every spatial
embedding f of G contains a nontrivial knot. For a positive integer n, Flapan, Foisy,
Naimi and Pommersheim [4] showed that there exists an intrinsically n–linked graph G ,
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namely every spatial embedding f of G contains a nonsplittable n–component link
(see also Flapan–Naimi–Pommersheim [3] and Bowlin–Foisy [1] for the case of nD 3).
Note that these results paid attention to only constituent knots and links of spatial graphs.
Our purpose in this paper is to generalize the notion of intrinsically n–linkedness by
paying attention to not only constituent knots and links but also spatial subgraphs which
do not need to be knots and links, and to give graphs which have such a generalized
property.

We say that a graph G is intrinsically nontrivial if for every spatial embedding f
of G there exists a planar subgraph F of G such that f jF is not trivial. It is clear
that intrinsically n–linked graphs are intrinsically nontrivial. Note that F depends
on f and does not need to have the same topological type uniformly. In this situation,
pioneering work has been done by Foisy [5]. Let P and P 0 be graphs in the Petersen
family, which is a family of seven graphs obtained from K6 by r � Y or Y � r

exchanges (see Sachs [15]); all intrinsically linked graphs have a minor in this family
by Robertson–Seymour–Thomas [14]. Let P�4P 0 be the graph which consists of P

and P 0 connected by four disjoint edges e1 , e2 , e3 and e4 as illustrated in Figure 1,
which shows the case of P D P 0 DK6 . Then he showed that P�4P 0 is intrinsically
knotted or 3–linked, namely every spatial embedding of P�4P 0 contains either a
nontrivial knot or a nonsplittable 3–component link. He also showed that K6�4K6 is
neither intrinsically knotted nor intrinsically 3–linked.

e1

e2

e3

e4

Figure 1: K6�4K6

It was already known that intrinsically knotted graphs and intrinsically n–linked graphs
(n � 3) are intrinsically linked by Robertson–Seymour–Thomas’ characterization
of intrinsically linked graphs [14]. First, we show that if a graph G is intrinsically
nontrivial then every spatial embedding of G must contain a nonsplittable 2–component
link as follows.

Theorem 1.1 Intrinsically nontrivial graphs are intrinsically linked.

Then, for an intrinsically nontrivial graph G , we are interested in the collection of
nontrivial spatial graph types (except for 2–component link types) where every spatial

Algebraic & Geometric Topology, Volume 9 (2009)



An intrinsic nontriviality of graphs 353

embedding of G contains at least one spatial graph type in the collection. Foisy’s above
result also only paid attention to constituent knots and links of spatial graphs. We shall
consider a smaller graph than P�4P 0 from the viewpoint of intrinsic nontriviality. Let
P�3P 0 be the graph which is obtained from P�4P 0 by deleting e4 . Then we have
the following.

Theorem 1.2 Let P and P 0 be graphs in the Petersen family. Then every spatial em-
bedding of P�3P 0 contains either a nonsplittable 3–component link or an irreducible
spatial handcuff graph whose constituent 2–component link is split.

Here a spatial handcuff graph is a spatial embedding f of the graph H which is
illustrated in Figure 2. Note that an orientation is given to each loop, namely we regard
f .1[ 2/ as an ordered and oriented 2–component link. A spatial handcuff graph f
is said to be irreducible if there does not exist a 2–sphere in S3 which intersects
f .H / transversely at one point. Note that an irreducible spatial handcuff graph is not
trivial. We also show that K6�3K6 has a spatial embedding which does not contain a
nonsplittable 3–component link, and another spatial embedding which does not contain
an irreducible spatial handcuff graph whose constituent 2–component link is split
(Example 4.4). In particular, the former spatial embedding does not contain a nontrivial
knot or a nonsplittable n–component link for n� 3. Namely Theorem 1.2 gives a new
type of intrinsic nontriviality of graphs which cannot be detected by observing only
constituent knots and links of its spatial embeddings.

1
e 2

Figure 2

In the next section, we prove Theorem 1.1. In Section 3, we recall an ambient isotopy
invariant of spatial handcuff graphs which was introduced by the author in [11]. In
Section 4, we prove Theorem 1.2.

2 Proof of Theorem 1.1

A spatial embedding f of a graph G is said to be free if the fundamental group of the
spatial graph complement �1.S

3 nf .G// is a free group.
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We say that G is intrinsically nonfree if for every spatial embedding of G there exists
a subgraph F of G such that f jF is not free. To prove Theorem 1.1, we show the
following.

Theorem 2.1 The following are equivalent.

(1) G is intrinsically nonfree.

(2) G is intrinsically nontrivial.

(3) G is intrinsically linked.

Proof It is clear that (3) implies (2). Next we show that (2) implies (1). If G

is intrinsically nontrivial, we have that for every spatial embedding f of G there
exists a planar subgraph F of G such that f jF is nontrivial. Then by Scharlemann–
Thompson’s famous criterion [16], there exists a subgraph F 0 of F such that f jF 0 is
not free. Since F 0 is also a subgraph of G , we have that G is intrinsically nonfree.
Finally we show that (1) implies (3). Assume that G is not intrinsically linked. Then
it follows from Robertson–Seymour–Thomas [14, (1.2)] that there exists a spatial
embedding f of G such that for any cycle  of G there exists a 2–disk D in S3

such that f .G/\D D f .G/\ @D D f . /. At this time, it is also known that f jF
is free for any subgraph F of G [14, (3.3)] (the case that G is planar was first shown
by Wu [20]). Thus we have that G is not intrinsically nonfree.

3 An invariant of spatial handcuff graphs

In this section we give the definition of an invariant of spatial handcuff graphs which can
detect an irreducible one whose constituent 2–component link is split. Let LD J1[J2

be an ordered and oriented 2–component link. Let D be an oriented 2–disk and x1 ,
x2 disjoint arcs in @D , where @D has the orientation induced by the one of D , and
each arc has an orientation induced by the one of @D . We assume that D is embedded
in S3 so that D \L D x1 [ x2 and xi � Ji with opposite orientations for each i .
Then we call a knot KD D .L[ @D/ n .int x1[ int x2/ a D–sum of L. For a spatial
handcuff graph f , we denote f .1 [ 2/ by Lf and consider a D–sum of Lf so
that f .e/ � D , f .e/\ @D D f .e/\Lf D fp1;p2g and pi 2 int xi .i D 1; 2/. We
call such a D–sum of Lf a D–sum of Lf with respect to f and denote it by KD.f /.
Though KD.f / is not uniquely determined up to ambient isotopy, the author showed
in [11, Remark 3.4 (1)] that the modulo lk.Lf / reduction of a2.KD.f // is an ambient
isotopy invariant of f , where lk denotes the linking number in S3 and a2 denotes the
second coefficient of the Conway polynomial. Then we define

n.f;D/ID a2.KD.f //� a2.f .1//� a2.f .2//
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and denote the modulo lk.Lf / reduction of n.f;D/ by xn.f /. It is clear that xn.f / is
also an ambient isotopy invariant of f . In particular, xn.f / is a uniquely determined
integer if lk.Lf /D 0. In this case we denote xn.f / by n.f / simply. Then we have
the following.

Lemma 3.1 Let f be a spatial handcuff graph. If f is not irreducible, then for
every choice of D , n.f;D/D 0. In particular, if lk.Lf /D 0, then f is irreducible if
n.f /¤ 0.

Proof If f is not irreducible, then Lf is split and any D–sum of Lf with respect
to f is the connected sum of f .1/ and f .2/. Recall that a2 is additive under the
connected sum of knots [7]. Thus we have that

n.f;D/D a2.KD.f //� a2.f .1//� a2.f .2//

D a2.f .1/]f .2//� a2.f .1//� a2.f .2//

D a2.f .1//C a2.f .2//� a2.f .1//� a2.f .2//

D 0:

Therefore we have the result.

For integers r and s , let fr;s be the spatial handcuff graph as illustrated in Figure 3,
where the rectangles represented by r and s stand for jr j full twists and jsj full twists

fr;s.1/

r

s

fr;s.2/

Figure 3

as illustrated in Figure 4, respectively. Note that the constituent 2–component link
Lfr;s

is trivial. Then we have the following.

Lemma 3.2 n.fr;s/D 2rs .

Proof Let KC; K� and K0 be two oriented knots and an oriented 2–component
link which are identical except inside the depicted regions as illustrated in Figure 5.
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{ {r D

.r � 0/

.r < 0/

s D

.s � 0/

.s < 0/

Figure 4

KC K� K0

Figure 5

Then it is well known that a2.KC/� a2.K�/D lk.K0/ [6]. We consider the D–sum
of Lf with respect to fr;s and the skein tree started from KD.fr;s/ as illustrated in
Figure 6, where "D˙1 is the usual sign of marked crossing. Note that "D 1 if r > 0

and �1 if r < 0. Then

a2.KD.fr;s//� a2.J /D "lk.M1/D ".r � "C s/;(3-1)

a2.KD.fr�";s//� a2.J /D "lk.M2/D ".r � "� s/:(3-2)

Thus by (3-1) and (3-2),

a2.KD.fr;s//� a2.KD.fr�";s//D 2"s:

Hence we have that

a2.KD.fr;s//D a2.KD.fr�";s//C 2"s

D a2.KD.fr�2";s//C 2"sC 2"s

:::

D a2.KD.fr�jr j";s//C 2"jr js

D a2.KD.f0;s//C 2rs:(3-3)
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KD.fr;s/ " J �"

KD.fr�";s/

M1 M2

Figure 6

It is easy to see that f0;s is trivial, namely a2.KD.f0;s//D 0. Therefore by (3-3),

n.fr;s/D a2.KD.fr;s//� a2.fr;s.1//� a2.fr;s.2//D 2rs:

This completes the proof.

By Lemma 3.1 and Lemma 3.2, we have that if r; s ¤ 0 then fr;s is irreducible. Since
Lfr;s

is trivial,
˚
fr;s

	
r;s¤0

is a family of minimally knotted spatial handcuff graphs,
namely each fr;s is nontrivial and any of whose spatial proper subgraphs is trivial.

4 Proof of Theorem 1.2

Let P4 be the oriented graph consists of four edges e1 , e2 e3 , e4 and two loops e5 , e6

as illustrated in Figure 7. We denote the cycles e5 , e1[ e2 , e3[ e4 and e6 of P4 by
c1 , c2 , c3 and c4 , respectively, and the subgraph c1[ei [ej [ c4 .i D 1; 2; j D 3; 4/

by Hij . Note that Hij is homeomorphic to the graph H illustrated in Figure 2. Let f
be a spatial embedding of P4 with lk.f .c1[ c4//D 0. Then we define �.f / 2 Z by

�.f /D
X
i;j

.�1/iCj n.f jHij
/

D n.f jH13
/� n.f jH14

/� n.f jH23
/C n.f jH24

/:

Proposition 4.1 �.f / is a Delta equivalence invariant of f .
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e5 e1 e3 e6

e2 e4

Figure 7

Here, a Delta equivalence is an equivalence relation on spatial graphs which is generated
by Delta moves and ambient isotopies, where a Delta move is a local move on a spatial
graph as illustrated in Figure 8 [8; 10]. It is shown in [9] that a Delta equivalence

Figure 8

coincides with a (spatial graph-)homology, which is an equivalence relation on spatial
graphs introduced in [18]. Note that a Delta move preserves the linking number of
each of the constituent 2–component links. We show the following lemma needed to
prove Proposition 4.1.

Lemma 4.2 Let g be a spatial handcuff graph with lk.Lg/ D 0 and h a spatial
handcuff graph obtained from g by a single Delta move. Then we have the following.

(1) If either g.1/ or g.2/ does not appear in the Delta move as the strings, then
n.g/D n.h/.

(2) If both g.1/ and g.2/ appear and g.e/ does not appear in the Delta move as
the strings, then n.g/� n.h/D˙1.

(3) If all of g.1/, g.2/ and g.e/ appear in the Delta move as the strings, then
n.g/� n.h/D˙2 or 0.

Proof (1) If all of the three strings in such an intended Delta move belong to the
same spatial edge (such a move is called a self Delta move), we have the result because
it is known that n.g/ is invariant under a self Delta move [11, Theorem 2.1]. Next
we consider the case that at least one of the three strings in the Delta move belong to
g.e/. If g.j / does not appear in the Delta move as the strings (j D 1 or 2), then by
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applying the deformation on g.H / as illustrated in Figure 9 repeatedly, we can see that
such a Delta move may be realized by self Delta moves on g.i/ (i ¤ j ). Therefore
we have that n.g/D n.h/.

~~ ~~

g.e/ h.e/

Deltamove

ambient
isotopic

ambient
isotopic

g.e/ h.e/

g.i/ h.i/

Deltamoves

Figure 9

(2) If h is obtained from g by such an intended single Delta move, then we may
consider KD.g/ and KD.h/ by the same 2–disk D so that KD.h/ is obtained from
KD.g/ by a single Delta move. Then by the result of Okada [13] that if a knot K1

is obtained from a knot K2 by a single delta move then a2.K1/ � a2.K2/ D ˙1,
we have that a2.KD.g// � a2.KD.h// D ˙1. On the other hand, since a Delta
move is a 3–component Brunnian local move [19, Section 2, Examples (2)], we
have that g.i/ and h.i/ are ambient isotopic (i D 1; 2). Hence we have that
n.g/� n.h/D a2.KD.g//� a2.KD.h//D˙1.

(3) If h is obtained from g by such an intended single Delta move, then we may
consider KD.g/ and KD0.h/ so that KD0.h/ is obtained from KD.g/ by twice Delta
moves as illustrated in Figure 10. Thus by Okada’s result as we said in the proof of (2),
we have that a2.KD.g//� a2.KD0.h// D ˙2 or 0. Note that g.i/ and h.i/ are
ambient isotopic (i D 1; 2) by Brunnian property of the Delta move. Hence we have
that n.g/� n.h/D a2.KD.g//� a2.KD0.h//D˙2 or 0.

Proof of Proposition 4.1 Let f 0 be a spatial handcuff graph which is obtained from f

by a single Delta move. It is sufficient to show that �.f / D �.f 0/. If either f .e5/

or f .e6/ does not appear in the Delta move as the strings, then by Lemma 4.2 (1)
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Figure 10

and Brunnian property of the Delta move, we have that n.f jHij
/ D n.f 0jHij

/ for
any i D 1; 2 and j D 3; 4. Hence �.f /D �.f 0/. If none of f .e1/, f .e2/, f .e3/ or
f .e4/ appears in the Delta move as the strings, then by Lemma 4.2 (2) we have that
n.f jHij

/�n.f 0jHij
/D˙1 .i D 1; 2; j D 3; 4/. Note that if two oriented knots differ

by a single Delta move then the variation of a2 of them is determined only by the order
of strings in the Delta move and their orientations arising from following the knot along
the orientation (cf [12; 21, Theorem 6]). Hence we have that n.f jHij

/�n.f 0jHij
/D 1

.i D 1; 2; j D 3; 4/ or n.f jHij
/� n.f 0jHij

/D�1 .i D 1; 2; j D 3; 4/. Then

�.f /� �.f 0/D
X
i;j

.�1/iCj
�
n.f jHij

/� n.f 0jHij
/
�
D .˙1/

X
i;j

.�1/iCj
D 0:

Finally we consider the case that all of f .e5/, f .e6/ and f .ek/ appear in the Delta
move as the strings (k D 1; 2; 3; 4). It is sufficient to check the case of k D 1. Then by
Lemma 4.2 (3) and noting as before the variation of a2 of two oriented knots differing
by a single Delta move, it holds that any one of n.f jH1j

/�n.f 0jH1j
/D 2 .j D 3; 4/,

n.f jH1j
/�n.f 0jH1j

/D�2 .j D 3; 4/ or n.f jH1j
/�n.f 0jH1j

/D 0 .j D 3; 4/. Note
that f jH2j

and f 0jH2j
are ambient isotopic for any j D 3; 4 by Brunnian property of

the Delta move. Then

�.f /� �.f 0/D n.f jH13
/� n.f 0jH13

/�
�
n.f jH14

/� n.f 0jH14
/
�
D 0:

Therefore we have the desired conclusion.

Lemma 4.3 Let f be a spatial embedding of P4 with lk.f .c1[ c4//D 0. Then we
have that lk.f .c1[ c3//lk.f .c2[ c4//¤ 0 if and only if �.f /¤ 0.

Proof It is known that two spatial embeddings of a planar graph are Delta equivalent
if and only if their corresponding constituent 2–component links have the same linking
number [17]. Therefore we have that if lk.f .c1[c3//D s and lk.f .c2[c4//D r , then
f is Delta equivalent to the spatial embedding hr;s of P4 as illustrated in Figure 11,
where the rectangles represented by r and s stand for jr j full twists and jsj full twists
as illustrated in Figure 4, respectively. Note that hr;sjH13

, hr;sjH14
and hr;sjH23

are
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hr;s.c1/ r hr;s.e3/ hr;s.e4/

hr;s.e1/ s

hr;s.e2/ hr;s.c4/

Figure 11

trivial spatial handcuff graphs. Then by combining Proposition 4.1 and Lemma 3.2,

�.f /D �.hr;s/D n.hr;sjH24
/D 2rs:

This implies the result.

Note that if �.f /¤ 0 then there must exist a subgraph Hij such that n.f jHij
/¤ 0.

Then by Lemma 3.1 we have that f jHij
is irreducible.

Proof of Theorem 1.2 Let f be a spatial embedding of P�3P 0 . Note that every
spatial embedding of a graph in the Petersen family contains a 2–component link
with odd linking number [2; 19]. Hence there exists a pair of two disjoint cycles
1; 2 of P such that lk.f .1 [ 2// ¤ 0, and there exists a pair of two disjoint
cycles  0

1
;  0

2
of P 0 such that lk.f . 0

1
[  0

2
//¤ 0. If there exist two edges ei and ej

(1 � i < j � 3) each of which connects l with  0
k

for some l and k , by Bowlin–
Foisy’s argument [1, Lemma 3], we have that f .1[ 2[ 

0
1
[  0

2
[ ei [ ej / contains

a nonsplittable 3–component link. If for any l and k there do not exist two edges
ei and ej (1� i < j � 3) each of which connects l with  0

k
, then we may assume

that e1 connects 1 with  0
1

, e2 connects 1 with  0
2

and e3 connects 2 with
 0

2
without loss of generality. If f .2 [ 

0
1
/ is nonsplittable, then f .1 [ 2 [ 

0
1
/

is a nonsplittable 3–component link. If f .2 [ 
0
1
/ is split, then let us consider

the subgraph F D 1[ 2[ 
0
1
[  0

2
[ e1[ e2[ e3 of P�3P 0 . We denote the graph

obtained from F by contracting e1; e2 and e3 by F=e1=e2=e3 . Note that F=e1=e2=e3

is homeomorphic to P4 which is illustrated in Figure 7. Let xf is a spatial embedding of
F=e1=e2=e3 naturally induced from f jF . Then by applying Lemma 4.3 and Lemma
3.1 to xf , we have that xf .F=e1=e2=e3/ contains an irreducible spatial handcuff graph
whose constituent 2–component link is split. Then it is clear that f .F / also contains
a spatial handcuff graph with the same spatial graph type as above. This implies that
f contains an irreducible spatial handcuff graph whose constituent 2–component link
is split. This completes the proof.

Algebraic & Geometric Topology, Volume 9 (2009)



362 Ryo Nikkuni

Example 4.4 Let f be the spatial embedding of K6�3K6 as illustrated in Figure 12.
Then we can see that each of the spatial handcuff graphs contained in f is trivial or
ambient isotopic to the spatial handcuff graph as illustrated in Figure 13. Namely f
does not contain an irreducible spatial handcuff graph whose constituent 2–component
link is split. But f contains exactly one nonsplittable 3–component link. Next, let
g be the spatial embedding of K6�3K6 as illustrated in Figure 12 which is obtained
from f by a single crossing change. Then we can see that each of the constituent
knots of g is trivial and each of the constituent n–component links of g is split for
n� 3. But g contains exactly one irreducible spatial handcuff graph whose constituent
2–component link is split.

f

g

Figure 12

Figure 13
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