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Lens space surgeries as A’Campo’s divide knots

YUICHI YAMADA

It is proved that every knot in the major subfamilies of J Berge’s lens space surgery (ie,
knots yielding a lens space by Dehn surgery) is presented by an L–shaped (real) plane
curve as a divide knot defined by A’Campo in the context of singularity theory of
complex curves. For each knot given by Berge’s parameters, the corresponding plane
curve is constructed. The surgery coefficients are also considered. Such presentations
support us to study each knot of lens space surgery itself and the relationship among
the knots in the set of lens space surgeries.

14H50, 57M25; 57M27

Dedicated to Professor Takao Matumoto on the occasion of his 60th birthday.

1 Introduction

If r=s Dehn surgery on a knot K in S3 yields the lens space L.p; q/, we call the pair
.K; r=s/ a lens space surgery, and we also say that K admits a lens space surgery and
that r=s is the coefficient of the lens space surgery. The task of classifying lens space
surgeries, especially knots that admit lens space surgeries, has been a focal point in
low-dimensional topology and has been invigorated of late by results from the Heegaard
Floer homology theories of Ozsváth–Szabó [35] (see also Hedden [26] and Tange [39]
and so on). Before the first hyperbolic examples found by Fintushel–Stern [17] in 1980,
only torus knots (by Moser [32]) and their 2–cables (by Bailey–Rolfsen [6]) were
known. After [17], some more examples were found (see Maruyama [30]). In 1990,
Berge [10] pointed out a “mechanism” of known lens space surgery, that is, doubly
primitive knots in the Heegaard surface of genus 2. Berge also gave a conjecturally
complete list of such knots, described them by Osborne–Stevens’ “R–R diagrams”
in [34] and classified such knots into three families and 12 types in detail:

(1) Knots in a solid torus (Types I, II, . . . ,VI)
Dehn surgery along a knot in a solid torus whose resulting manifold is also a
solid torus. This family was studied in [11].
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(2) Knots in genus-one fiber surface (Types VII and VIII)
Dehn surgery along a knot in the genus-one fiber surface (of the right/left-handed
trefoil (Type VII) or of the figure eight (Type VIII)); see Baker [7; 9] and
Yamada [42].

(3) Sporadic examples (a), (b), (c) and (d) (Types IX, X, XI and XII, respectively)

Their surgery coefficients are also decided. Thus we call them Berge knots of lens
space surgery, or Berge lens space surgeries. The numberings VII, . . . , XII are also
used in the recent works of Baker [8; 9]. Gordon [21; 22] conjectured that every knot
of lens space surgery is a doubly primitive knot. Berge has claimed that his list of
doubly primitive knots is complete (ie, any doubly primitive knot belongs to (1), (2) or
(3)), but a proof has not appeared.

In the present paper, we are concerned with the family (1). Its subfamily Type I consists
of torus knots. Type II consists of 2–cables of torus knots. Their presentations as
A’Campo’s divide knots are already studied by Goda, Hirasawa and the author [18]
and the author alone [44]. Thus our targets are Types III, IV, V and VI.

Notation Throughout the paper, we let the symbol X denote one of these types, ie,
X D III, IV, V or VI.

To describe the knots in each Type X , in [11], Berge defined five parameters ı; "2f˙1g

and A;B; b 2Z (satisfying certain conditions depending on X ). We introduce two new
parameters k , t such that B , b are uniquely calculated from k , t and vice-versa. By
KX .ı; ";A; k; t/, we mean the knot defined by the parameters in Type X . (Type VI is
slightly different from the others.) Taking opposite ı corresponds to the mirror image
of the knot. Note that, if a lens space surgery .K; r/ belongs to Type X , .K!;�r/ is
also a lens space surgery and belongs to the same Type X , where K! is the mirror
image of K . See Section 2 for details on the parameters.

The theory of A’Campo’s divide knots and links comes from singularity theory of
complex curves. The divide is (originally) a relative, generic immersion of a 1–manifold
in a unit disk in R2 . A’Campo [1; 2; 3; 4] formulated the way to associate to each
divide C a link L.C / in S3 . In the present paper, we regard a PL (piecewise linear)
plane curve as a divide by smoothing the corners. The class of divide links properly
contains the class of the links arising from isolated singularities of complex curves,
ie, positive torus knots and iterated torus knots satisfying certain inequalities in their
parameters.

Definition 1.1 Let X be the �=4–lattice defined by f.x;y/ j cos�xD cos�yg in the
xy –plane (R2 ). By an L–shaped region, we mean a union of two rectangles sharing a
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Figure 1: Pretzel knot .�2; 3; 7/ with coefficient 18

corner and overlapping along an edge of one, where the rectangles are assumed to have
all edges parallel to either the x–axis or y –axis, and all vertices at lattice points (2Z2 ).
We call a plane curve an L–shaped curve if the curve P is obtained as an intersection
X \L of X and an L–shaped region L. We define area.P / of an L–shaped curve
P DX \L as the area (2–dimensional volume) of the L–shaped region L defining P .

See Figure 1. It is the starting example of our results. The L–shaped curve P DX \L,
as a divide, presents the pretzel knot of type .�2; 3; 7/. Its 18 surgery is a lens space,
which is one of the examples of Fintushel and Stern [17]. Note that the area of P is
equal to 18, the coefficient of the lens space surgery. Our main result is:

Theorem 1.2 Up to mirror image, every Berge knot K of lens space surgery in Type X
(X D III, IV, V or VI) is one of A’Campo’s divide knots and can be presented by an
L–shaped curve. In fact, one of K or its mirror image is presented by a positive braid
(say w ) and the other by a negative one (the inverse w�1 ). The divide knot is exactly
equal to the positive one, but the choice of ı (1 or �1) depends on the parameters X
and .";A; k; t/.

Theorem 1.2 can be proved by combining of Lemma 2.1 and Lemma 3.8. The aim
of the present paper is to define the operation adding squares on L–shaped curves
and the construction of the L–shaped curves using the operation in Section 4. For
the given parameters X and .ı; ";A; k; t/, we will construct an L–shaped curve
PX .";A; k; t/DX \LX .";A; k; t/; see Demonstration 4.8.

Theorem 1.3 The Berge knot KX .ı; ";A; k; t/ in Type X (X D III, IV, V or VI) is
presented by our L–shaped curve PX .";A; k; t/ up to mirror image:

L.PX .";A; k; t/ /DKX .1; ";A; k; t/ or its mirror image KX .�1; ";A; k; t/:

The choice of ı (1 or �1) depends on X and .";A; k; t/.
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Next, we study the surgery coefficients. By the Cyclic Surgery Theorem of Culler–
Gordon–Luecke–Shalen [14], if a hyperbolic knot K admits a lens space surgery, then
the coefficient is integral. By coef.KX .ı; ";A; k; t//, we denote the surgery coefficient
of the lens space surgery of the knot as in Type X . Note that there exist some hyperbolic
knots that have two coefficients of lens space surgery (such coefficients are proved to
be consecutive in [14]) and belong to different types as the pairs with the coefficients.
This is the reason why we state “as in Type X ”.

Theorem 1.4 Under the correspondence in Theorem 1.3, the area of the L–shaped
curve P is equal to (the absolute value of) the coefficient of the lens space surgery of
L.P / as in Type X , or is greater by one:

area.P /� jcoef.L.P //j D 0 or 1:

This theorem will be proved as Lemma 5.3, in which we will decide the choice (0
or 1) by the parameters. We will prove coef.L.P // > 0 in Lemma 5.1. Thus we will
change jcoef.L.P //j to coef.L.P // in Lemma 5.3.

Our operation adding squares on L–shaped curves is related to blow-down and to
full-twists. The L–shaped plane curve PX .";A; k; t/ is constructed by adding squares
twice from PX .";A; 0; 0/. This is related to the fact that that KX .ı; ";A; k; t/ is
obtained by full-twists “twice” from KX .ı; ";A; 0; 0/ via KX .ı; ";A; k; 0/. We will
show that some Berge knots are obtained from other Berge knots in other types by
some twistings. By adding squares on L–shaped curve presentation of knots, we can
search such pairs and check such relations easily; see Section 6.

Here we briefly survey the divide presentation of the other Berge knots (in Type VII and
later). All knots are considered up to mirror image. Type VII consists of the knots for
which the author [42] first gave L–shaped curve presentations. Type VIII contains some
knots that are hard (in the author’s opinion) to decide whether they are divide knots,
and their divide presentation (if they are). The author has shown that every sporadic
knot (in Type IX and later) is a divide knot and has shown a method to construct the
divide. But he does not know whether it can be presented by an L–shaped curve or not.

Note that there exists a family of L–shaped divide knots whose area.P /–surgeries are
not lens spacees [43], but such L–shaped divide knots tend to have exceptional Dehn
surgeries, to the author’s knowledge [41; 44].

This paper is organized as follows: In the next section, we review Berge knots and their
parameters in detail. In Section 3, we review A’Campo’s divide knot theory and define
L–shaped curves. In Section 4, developing a method adding squares, we construct
L–shaped curves (regions) for Berge knots. In Section 5, we will prove Theorem 1.3
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and Lemma 5.3, the precise version of Theorem 1.4. Finally, in Section 6, we study
some applications of and advantages to presenting Berge knots as divide knots. We
place Tables 1 and 2 which give the parameters and L–shaped regions of Berge knots
after the reference list for the reader’s convenience.

2 Berge knots of Types III, IV, V and VI

We recall Berge’s parametrization of knots in Type X . We use his original parameters
ı; ";A;B; b and a constant a (WD 0 or 1) defined in [11], and introduce two new
parameters k and t .

We start with the following:
(1) � ı and " are signs (2 f˙1g). The opposite ı corresponds to the mirror image.

� A is a positive integer, whose range and parity (even or odd) depends on X .
� k runs in N�0 . B is decided by .";A; k/ and satisfies 0< 2A� B .
� b; t 2 Z. They can be negative.

(2) The parameters k , t are introduced instead of the conditions in [11] written by
sentences and by congruences, respectively. For example, instead of “.BC"/=A
is an odd integer” in [11, Table 3, page 15], we set B DA.3C 2k/� ". Instead
of “b ��2"ıA (mod B )” in [11, Table 3, page 15], we set b D�ı".2AC tB/.
These are the relations between .B; b/ and .k; t/ in Type III. They are similar
in other types, but slightly different; see Table 1(1).

(3) The independent parameters are .ı; ";A; k; t/ in Types III, IV and V, but are
.ı;A; t/ in Type VI. For convenience, we fix " WD �1, k WD 0 in Type VI and
formally regard .ı;A; t/ as .ı; ";A; k; t/D .ı;�1;A; 0; t/.

Notation By KX .ı; ";A; k; t/, we denote the knot parametrized as .ı; ";A; k; t/ in
Type X , by Berge in [11].

Now we go into the detail. See Table 1(1), (2) and (3). In Table 1(1), we define B

and b (depending on X ), using a temporary parameter l . For fixed A and ", the
possible values of l are in an arithmetic sequence, depending on X . We parametrize
the sequence by k 2 N�0 as in Table 1(2). In every case, the surgery coefficient is
bBC ıA, where B depends on ";A; k . In Table 1(3), we deform the coefficients into
the form including the terms CkA2C tB2 (or Ck.2A/2C tB2 in Type III). These
are related to our method adding squares in Section 4. Note that, if a knot K with
coefficient r belongs to Type X , its mirror image K! with �r (ie, opposite ı ) also
belongs to the same Type X .
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Using these parameters, in [11], Berge has already given the braid presentations of
these knots:

Lemma 2.1 (Berge [11]) Every knot KX .ı; ";A; k; t/ is presented as the closure
of the braid W .B/bW .AC 1� a/ı of index B , where W .n/D �n�1�n�2 � � � �1 ; see
Figure 3.

Definition 2.2 We define an antihomomorphic (ie, �.ˇ1ˇ2/D�.ˇ2/�.ˇ1/) involution
� –rotation � on the braid group of index n by extending �.�i/D �n�i ; see Figure 2.
By ˇ0

�
Dˇ , we mean ˇ0 D �.ˇ/ and equivalently �.ˇ0/D ˇ .

Using this opportunity, we set another notation, ˇ0 � ˇ , to mean that the closure of ˇ0

is the same knot or link as that of ˇ . Note that ˇ0
�
Dˇ up to conjugacy implies ˇ0 � ˇ .

ˇ ˇ

�

Figure 2: � –rotation �

Our L–shaped divide knots are always presented by positive braids (see Section 3),
while any divide knot is a closure of a strongly quasi-positive braid (Lemma 3.2(7)).
Thus, first, if b < 0, we take the mirror image (ie, change the sign ı , then b becomes
�b > 0) and next, we use the following lemma if it is necessary.

Lemma 2.3 Let a1 , a2 and c be positive integers with a1 < a2 . The closure of
the braid W .a2/

cW .a1/
�1 of index a2 is the same knot as the closure of the braid

W .a2/
c�1W .a2� a1C 1/.

Proof First, we have

W .a2/W .a1/
�1
D �a2�1�a2�2 � � � �a1

� � � �2�1.�a1�1 � � � �2�1/
�1

D �a2�1�a2�2 � � � �a1

�
DW .a2� a1C 1/:

Since � –rotation � is antihomomorphic, and the braid W .n/ of index n (D a2 ) is
fixed by � , we have

W .a2/
cW .a1/

�1
DW .a2/

c�1
�W .a2/W .a1/

�1

�
DW .a2� a1C 1/W .a2/

c�1;

which is conjugate to W .a2/
c�1W .a2� a1C 1/.
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,

D �

Figure 3: W .7/4W .3/ and W .7/4W .3/�1 �W .7/3W .5/

Figure 3 illustrates Lemma 2.3. The knot KIII.1;�1; 2; 0; 0/ is presented by the braid
W .7/4W .3/, and KIII.�1; 1; 2; 0; 0/ is presented by W .7/4W .3/�1 �W .7/3W .5/.

We end this section with a discussion of the fiberedness of Berge knots. It was one of
the motivations of this research, since every divide knot is fibered; see Lemma 3.2(4).

Corollary 2.4 (Teragaito [40], Ni [33]) Every Berge knot of lens space surgery in
Types III, IV, V and VI is fibered.

This corollary can be proved by Lemma 2.1, 2.3 and the fact that knots presented
by positive (or negative) braids are fibered [38]. In fact, Teragaito [40] (see Hill and
Murasugi [27, Section 5.7]), has shown that all Berge knots (including Types VII, . . . ,
XII; see Section 1) are fibered, by proving the braid positivity. See also Baker [7,
Appendix B] for Types VII and VIII. Using knot Floer homology, it is proved by Ni
[33] that every knot admitting a lens space surgery is fibered rather than just that Berge
knots are fibered; see also Hedden [25]. Their argument does not rely upon double
primitivity.

3 L–shaped curves and A’Campo’s divide knots

The theory of A’Campo’s divide knots and links [1; 2; 3; 4] comes from singularity
theory of complex curves. It is a method to associate to each divide (a plane curve)
C a link L.C / in the 3–dimensional sphere S3 . The original definition of divide
knots in [1] is differential-geometric. Hirasawa [28] visualized the construction. We
are concerned with the plane curves of special type, called “L–shaped curves”; see
Section 3.2. For such special curves, we can use another method introduced by Couture–
Perron [13]; see Section 3.3.

3.1 A’Campo’s divide knots

We start with the typical example of divide knots; see Figure 4:
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Lemma 3.1 (Goda–Hirasawa–Y [18]; see also Arnol 0d–Guseı̆n-Zade–Varchenko [5]
and Guseı̆n-Zade [23]) Let a, b be a pair of positive integers and R.a; b/ be an
a� b–rectangle region. A plane curve defined by X \R.a; b/ (a billiard curve of type
B.a; b/) presents the torus link T .a; b/ as a divide.

4

2

2 4

A’Campo’s
divide knot theory

D

)

Figure 4: A billiard curve presents a torus knot (eg T .6; 5/)

Some characterizations of (general) divide knots and links are known, and some
topological invariants of L.P / can be gotten from the divide P directly. Here, we list
some of them.

Lemma 3.2 ((1)–(6) by A’Campo [2], (7) by Hirasawa [28] and Rudolph [37])

(1) L.P / is a knot (ie, connected) if and if only P is an immersed arc.

(2) If L.P / is a knot, the unknotting number, genus and 4–genus of L.P / are all
equal to the number d.P / of the double points of P .

(3) If P D P1 [ P2 is the image of an immersion of two arcs, then the linking
number of the two component link L.P / D L.P1/ [ L.P2/ is equal to the
number of the intersection points between P1 and P2 .

(4) If P is connected, then L.P / is fibered.

(5) A divide P and its mirror image P! present the same knot or link: L.P!/ D

L.P /.

(6) If P1 and P2 are related by some �–moves, then the links L.P1/ and L.P2/

are isotopic: If P1 �� P2 then L.P1/DL.P2/; see Figure 5.

(7) Any divide knot is a closure of a strongly quasi-positive braid, ie, a product of
some �ij in Figure 5.
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,

�–move

�ij

i j

Figure 5: Basics on divide knots

For theory of divide knots, see also Chmutov [12] and Quach Hongler–Weber [36]
and “transverse C-links” defined by Rudolph [37]. In [25], Hedden studied some
relationship among 4–genus, fibered-ness, (strongly) (quasi-) positivity of braids, and
knot Floer homology.

3.2 Preliminary on L–shaped curves

First, we parametrize L–shaped regions by four positive integers a1 , a2 , b1 , b2 that
satisfy a1 < a2 and b1 < b2 ; see Figure 6:

Definition 3.3 (L–shaped region at the origin) In xy –plane, we define

LŒa1; a2I b1; b2� WD f.x;y/ j0�x�a1; 0�y�b2g[f.x;y/ j0�x�a2; 0�y�b1g:

By concave corner, we mean the point (of the region) at the coordinate .a1; b1/ in the

b2

b1

0
0 a1 a2

concavecorner

Figure 6: L–shaped region LŒ3; 5I 3; 4�

definition above. We will call not only L WDLŒa1; a2I b1; b2� but also its transformations
LD T .L/ an L–shaped region of type Œa1; a2I b1; b2�, where T is a transformation
in xy–plane generated by the reflection rX along the x–axis (Lemma 3.2(5)), the
rotation R by �=2 about a lattice point and the parallel translation CEn by a lattice
point En (2 Z2 ).

Let X be the �=4–lattice defined by f.x;y/ j cos�x D cos�yg in xy–plane. A
lattice point .m; n/ (2 Z2 ) is called even (or odd, resp.) if mCn is even (or odd). We
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are concerned only with the case that the intersection X \L is the image of a generic
immersed arc. Thus, we always control CEn and assume:

(�) The concave point of an L–shaped region L is placed at an odd point.

Assuming (�), the parameter Œa1; a2I b1; b2� defines a unique plane curve up to isotopy,
ie, it depends on neither rX ;R nor translations keeping even/odd points. We call the
corresponding plane curve P DX \L an L–shaped curve of type Œa1; a2I b1; b2�. Of
course, for an L–shaped curve P of type Œa1; a2I b1; b2�, we have

area.P /D a2b1C a1b2� a1b1:

On the other hand, the number d.P / of double points of P is

d.P /D fa2.b1� 1/C b2.a1� 1/� a1b1C 1g=2;

because double points are the even points of the interior of the L–shaped region.

The condition (�) is not sufficient for X \L to be the image of an immersed arc. In
fact, it possibly consists of multiple components or contains some circle components.

The following proposition follows from Lemma 3.2(2).

Proposition 3.4 If the L–shaped curve P D X \L of type Œa1; a2I b1; b2� with the
assumption (�) is an immersed arc, then the genus g.L.P // of the divide knot L.P /

is equal to the number d.P / of the double points of P (the unknotting number and the
4–genus are also):

g.L.P //D fa2.b1� 1/C b2.a1� 1/� a1b1C 1g=2:

Thus, it holds that area.P /� 2g.L.P //D a2C b2� 1.

3.3 L–shaped divide knots

In [13] Couture and Perron pointed out a method to get the braid presentation from the
divide (the plane curve) in the restricted cases, called “ordered Morse” divides. Our
L–shaped curves are all ordered Morse, thus we can apply their method. It is a special
case of Hirasawa’s method in [28].

Lemma 3.5 The divide link presented by the L–shaped curve of type Œa1; a2I b1; b2�

is the closure of the braid W .a2/
b1W .a1/

b2�b1 of index a2 , where W .n/ is the braid
�n�1�n�2 � � � �1 .
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Such a link should be regarded as a “rationally twisted” torus link in the following
sense: The link is obtained by a “.b2� b1/=a1 twist” of the parallel a1 strings in a2

strings of torus link T .a2; b1/ in the standard position W .a2/
b1 .

Example 3.6 The divide knot presented by the L–shaped curve Œ3; 5I 3; 4� is the
closure of the braid .�2�4�1�3/

3�2�1 (conjugate to .�4�3�2�1/
3�2�1 ) of index 5,

which is P .�2; 3; 7/.

Proof First, we define the words o.n/ and e.n/ in the braid group of index a2 :

e.n/ WD
Y

i even; i<n

�i ; o.n/ WD
Y

i odd; i<n

�i ;

where n is a positive integer less than or equal to the index. Note that �i and �j are
commutative if i and j have the same parity. If j � k < l and k is even, o.k/�1o.l/

is a product of �i ’s with i � k C 1, thus is commutative with both o.j / and e.j /.
Similarly, if j � k < l and k is odd, then e.k/�1e.l/ is commutative with both o.j /

and e.j /.

In the case of L–shaped curves, Couture–Perron’s method is summarized as the algo-
rithm in Figure 7. By direct application of the algorithm to the L–shaped curve of type,

Read the braid

, , )

)

, ,

Figure 7: Couture-Perron’s method in the case Œ3; 5I 3; 4� (�=2 rotated)

we have:

Claim 1 [13] The L–shaped curve of type Œa1; a2I b1; b2� presents the closure of the
braid

BŒa1; a2I b1; b2� WD

(�
e.a2/o.a2/

�b1
�
e.a1/o.a1/

�b2�b1 if a1 is odd,�
o.a2/e.a2/

�b1
�
o.a1/e.a1/

�b2�b1 if a1 is even.
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The key idea of the rest of the proof is in Figure 8.

8
7
6
5
4
3
2
1

Figure 8: Braid of L–shaped curve Œ5; 9I 3; 5�

Let G.n/ be as follows:

G.n/ WD

(
e.nC 1/o.n/e.n� 1/o.n� 2/e.n� 3/ � � � e.4/o.3/ if n is odd,

o.nC 1/e.n/o.n� 1/e.n� 2/o.n� 3/ � � � e.4/o.3/ if n is even.

It is a product of some �i ’s with i < n.

Claim 2 The following relationships hold:

G.n� 2/�1e.n/o.n/ G.n� 2/DW .n/ if n is odd,

G.n� 2/�1o.n/e.n/ G.n� 2/DW .n/ if n is even.

In fact, if n is odd, e.n� 1/�1e.n/D �n�1 and it commutes with o.n� 2/�1 . Next,
o.n� 2/�1o.n/D �n�2 and it commutes with e.n� 3/�1 . We repeat such reductions
until o.3/�1o.5/D �3 inductively, and end with e.4/o.3/D �2�1 . The other case is
proved similarly.

Next, we set H.a1; a2/ WD �.G.a2 � a1 � 1//, where � is � –rotation in Definition
2.2. Then, H.a1; a2/ is a product of some �i ’s with i > a1C 1. Thus we have:

Claim 3 H.a1; a2/ commutes with e.a1/; o.a1/ and G.a1� 2/.

Let �.a1; a2/ WDH.a1; a2/
�1G.a1� 2/.

Claim 4 By Claims 2 and 3, the following holds:

�.a1; a2/
�1e.a1/o.a1/�.a1; a2/DW .a1/ if a1 is odd,

�.a1; a2/
�1o.a1/e.a1/�.a1; a2/DW .a1/ if a1 is even.
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The following is the most troublesome step.

Claim 5 We have the following equalities:

�.a1; a2/
�1e.a2/o.a2/ �.a1; a2/DW .a1/W .a2/W .a1/

�1 if a1 is odd,

�.a1; a2/
�1o.a2/e.a2/ �.a1; a2/DW .a1/W .a2/W .a1/

�1 if a1 is even.

To prove Claim 5, we divide the braid of index a2 into two parts, lower and higher
parts along the a1 –th string. Here we denote a2�a1C1 by a1 . In the case a1 is odd,

e.a2/o.a2/D

(
e.a1/o.a1/ �.e.a1/o.a1// if a2 is odd,

e.a1/o.a1/ �.o.a1/e.a1// if a2 is even.

In the former case, by Claim 3, the conjugation of e.a2/o.a2/ by �.a1; a2/ is divided
as the product of that of e.a1/o.a1/ by G.a1 � 2/ and that of �.e.a1/o.a1// by
H.a1; a2/

�1 . Since H.a1; a2/ is defined as �.G.a1� 2//,

H.a1; a2/ �.e.a1/o.a1//H.a1; a2/
�1
D �.G.a1� 2/�1e.a1/o.a1/G.a1� 2//

D �.W .a1//

DW .a2/W .a1/
�1:

Here, we use Claim 2 with odd nD a1 . In the other cases, including when a2 is even,
the proofs are similar.

Finally, by Claims 1, 4 and 5,

�.a1; a2/
�1BŒa1; a2I b1; b2� �.a1; a2/D .W .a1/W .a2/W .a1/

�1/b1W .a1/
b2�b1

DW .a1/W .a2/
b1W .a1/

�1W .a1/
b2�b1 :

This is conjugate to W .a2/
b1W .a1/

b2�b1 . The proof of Lemma 3.5 is complete.

By the symmetry between the L–shaped curve of type Œa1; a2I b1; b2� and that of type
Œb1; b2I a1; a2�, we have an extension of the well-known symmetry T .b; a/D T .a; b/

of torus knots.

Corollary 3.7 The closures of the braids

W .b2/
a1W .b1/

a2�a1 of index b2 and W .a2/
b1W .a1/

b2�b1 of index a2

define the same link.

Lemma 3.8 Let a1; a2 and c be positive integers with a1 < a2 , and ı be a sign
(2 f˙1g). Then, the knot of the closure of the braid of type W .a2/

˙cW .a1/
ı of index

a2 is presented as a divide knot presented by an L–shaped curve, up to mirror image:
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(CC) The knot W .a2/
cW .a1/ is presented by the L–shaped curve Œa1; a2I c; cC 1�.

(C�) The knot W .a2/
cW .a1/

�1 is presented by the L–shaped curve Œa2 � a1C

1; a2I c � 1; c�.

(��) The knot W .a2/
�cW .a1/

�1 is the mirror image of the knot presented by the
L–shaped curve Œa1; a2I c; cC 1�.

(�C) The knot W .a2/
�cW .a1/ is the mirror image of the knot presented by the

L–shaped curve Œa2� a1C 1; a2I c � 1; c�.

Proof The case (CC) in the lemma follows from Lemma 3.5 directly, and (C�)
follows from Lemma 2.3 and Lemma 3.5. The cases (��) and (�C) follow from
(CC) and (C�) respectively, since, if a knot K is the closure of the braid w , then the
mirror image K! is that of the inverse w�1 , in general.

Proof of Theorem 1.2 By Lemma 2.1 and Lemma 3.8, Theorem 1.2 is already proved:
Up to mirror image, every Berge knot of lens space surgery in Types III, IV, V and VI
is one of A’Campo’s divide knots, and can be presented by an L–shaped curve.

4 Construction of L–shaped curves

We define the operation adding squares on L–shaped curves (via L–shaped regions), its
drawing notation, and explain how to construct the L–shaped curves PX .";A; k; t/D

X \LX .";A; k; t/ for Berge knots in Type X , given by the parameters .ı; ";A; k; t/.
From now on, we consider only L–shaped divide knots, ie, the case that the L–shaped
curve P (with the assumption (�) in Section 3.2) is the image of an immersed arc
(Lemma 3.2(1)).

4.1 Adding squares I

We start with the following:

Definition 4.1 For a positive integer n, we call the operation on L–shaped curves,
changing from that of type Œa1; a2I b1; b2� to Œa1; a2Cnb1I b1; b2� or Œa1Cnb2; a2C

nb2I b1; b2� adding n squares; see examples in Figure 9. As a drawing notation,
we specify the edge along which the squares are added, and write n near the edge.
By the symmetry in Corollary 3.7, we also call the changing from Œa1; a2I b1; b2� to
Œa1; a2I b1; b2C na2� or Œa1; a2I b1C na2; b2C na2� adding n squares.
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2

1

D

D

Figure 9: Adding squares I

Lemma 4.2 Adding n squares on an L–shaped curve P along an edge (of the region)
corresponds to positive (ie, right-handed) n full-twists on the divide knot L.P / along
the unknot defined by the edge.

This lemma is proved by using the braid presentation in Lemma 3.5. Note that a
full-twist is in the center of the braid group.

)
Blow
down

)
Perturb

up
(

)

down
�1

Figure 10: Adding a square corresponds to a full-twist

Adding a square can be regarded as “blow-down”, in the following sense. The coordinate
transformation .x;y/D .x;xt/ (or D .yt;y/) is called a blow-up in singularity theory,
and is used for resolution of singularity of complex curves; see Harer–Kas–Kirby [24,
page 16]. For example, for coprime positive integers .p; q/ with p < q , the complex
curve xq � yp D 0 becomes xp.xq�p � tp/ D 0 by the transformation. In this
example, the link of the singularity at the origin changes from the torus knot T .p; q/

to T .p; q�p/ and an unknot defined by the complex line t –axis (x D 0 in xt –plane)
appears. The unknot is the axis of the full-twist. It corresponds to the Kirby calculus
in the bottom figure in Figure 10, ie, .�1/–framed unknot appears and the other
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components change by a left-handed full-twist along the unknot. Framings also change
by a certain formula. See Kirby [29] and Gompf–Stipsicz [20] for Kirby calculus.

We call its inverse operation, ie, the transformation .x;y/D .x;y0=x/, a blow-down.
(For example, y2 D x C � becomes y02 D x2.x C �/, where both hand-sides are
multiplied by x2 .) Let C be a real plane curve in xy–plane that intersects with
y–axis transversely. By the transformation, the all intersection points C and y–axis
concentrate to the origin of xy0–plane, and the left half (x < 0) of C turns upside
down along x–axis; see the first arrow in Figure 10.

For adding a square on an L–shaped curve along an edge of length l , we first blow-
down the curve, where we take xy–coordinates such that the y–axis is parallel and
sufficiently close to the edge. After that, we perturb the curve near the multiple crossing
at the origin; see the second arrow in Figure 10. By using some �–moves in Lemma
3.2(6), we can move the curve into the required L–shaped curve of the square added
L–shaped region. The number of double points increases by l.l � 1/=2. For the Kirby
calculus, see the bottom figure in Figure 10 again. By the operation, the knot K changes
by a right-handed full-twist along the unknot defined by the edge. If K is framed (ie,
with a surgery coefficient), the framing increases by the square of the linking number
of K and u. The linking number is equal to the length l of the edge by Lemma 3.2(3).

4.2 Adding squares II

We can apply the operation adding squares twice successively by changing the edges,
as in Figure 11. In the same figure, we also define a drawing notation. It is important
which edge we apply the operation first.

Here, we state the effect of twice adding squares on the knots in S3 . This is proved by
Lemma 4.2.

Lemma 4.3 Suppose that P DX \L be an L–shaped curve and the first edge e1 and
the second one e2 of the region L are specified. By P 00 D X \L00 , we denote the
resulting L–shaped curve obtained by adding n1 squares along e1 first and adding n2

squares along e2 second, successively. Then, the divide knot L.P 00/ is equal to the
knot K00 obtained by two twistings from L.P / in S3 in the following sense:

First, we take the three component divide link L.P[c1[c2/DK[L1[L2 presented
by the plane curve P [ c1[ c2 , where L.P /DK and Li is the component presented
by slightly pushed off ci of ei (i D 1; 2) into L; see Figure 12. Note that L1[L2 is
a Hopf link. Next, we take n1 full-twists of K[L2 along L1 . We call the resulting
link K0 [L0

2
. Finally, we take n2 full-twists of K0 along L0

2
. We call the resulting

knot K00 .
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2

1 1

D

D

Figure 11: Adding squares II

c2

P
c1

L2

K

L1

Figure 12: The effect of adding squares twice

In Lemma 4.3, n1 , n2 are supposed to be positive, however, regarding the statement
as a construction of the knot K00 from L.P / by two twistings, it works also in the
case n1; n2 < 0. The knot K00 may be no longer a divide knot, by the obstruction of
braid (quasi-)positivity of divide knots in Lemma 3.2(7) (and Lemma 3.5). In the next
subsection, we consider the case K00 is the mirror image of an L–shaped divide knot.
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4.3 Adding squares III

We extend the operation adding n squares into the case n < 0 partially, in analogy
with Lemma 4.3. It corresponds to negative (ie, left-handed) jnj full-twists, and will
be called “adding negative squares”. We consider the case that the resulting knot of
negative full-twists of an L–shaped divide knot is the mirror image of another L–shaped
divide knot under some conditions.

Definition 4.4 (Adding negative squares in a certain case) Let L be an L–shaped
region of type Œa1; a2I b1; b2� with a specified edge e . We assume that the edge is the
(bottom) one of length a2 ,

b2 D b1C 1 and jnja2 > b1C 1:

Only under this condition, we define adding n squares with n< 0 along e as that the
resulting region is of type

Œa2� a1C 1; a2I jnja2� b1� 1; jnja2� b1�:

1

!

!

�

Figure 13: Adding negative squares

This operation should be regarded geometrically as follows; see Figure 13: We assume
that the initial L–shaped region is at the origin as in Definition 3.3 (once forgetting
the assumption (�)) to explain the operation by using xy –coordinate. Then adding n

squares with n< 0 is defined as

cl
�
f.x;y/ j 0� x � a2; 0� y � jnja2g nL

�
[f.x;y/ j a1� 1� x � a1; b1 � y � b1C 1g:

By the finally added unit square at the concave point, if the concave point of the initial
region is at an odd point, then that of the resulting region is also at an odd point, ie, we
can keep the condition (�).

Lemma 4.5 Under the condition of adding negative squares in Definition 4.4, adding
n squares with n < 0 on an L–shaped curve P along the edge corresponds to taking
the mirror image of n right-handed (ie, jnj left-handed) full-twists on the divide knot
L.P / along the unknot defined by the edge.
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Proof By the operation, the type of L–shaped curves is changed from Œa1; a2Ib1; b1C1�

to Œa2 � a1 C 1; a2I jnja2 � b1 � 1; jnja2 � b1�. By Lemma 3.5, the initial curve
presents the closure of the braid W .a2/

b1W .a1/ of index a2 . The edge presents the
braid axis in S3 , The positive full-twist is W .a2/

a2 in this situation, and is in the
center of the braid group. The resulting knot of the n full-twists is the closure of
W .a2/

b1Cna2W .a1/DW .a2/
�.jnja2�b1/W .a1/. Note that jnja2> b1C1 is assumed.

Lemma 4.5 follows from Lemma 3.8(�C).

Example 4.6 The example (from Œ3; 5I 3; 4� to Œ3; 5I 1; 2�) in Figure 13 shows that
the mirror image of T .2; 3/ is obtained by P .�2; 3; 7/ (in Example 3.6) by (�1)
full-twist along the unknot defined by the bottom edge, whose linking number with
P .�2; 3; 7/ is ˙5. Note that L–shaped curve of type Œ3; 5I 1; 2� is the same curve with
the billiard curve B.2; 3/ defined in Lemma 3.1.

Question 4.7 Extend the operation adding negative squares into (more) general cases.

4.4 How to construct the L–shaped curve

Preparation is complete. For each Berge knot K DKX .ı; ";A; k; t/ in Type X , we
take the L–shaped region L D L.";A; k; t/ in Table 2, where we used the drawing
notation of adding squares. Then, the plane curve P D X \L, as a divide, presents
the knot K or its mirror image. In fact, each L–shaped region in Table 2 is carefully
constructed such that Berge’s braid presentation of the knot in Lemma 2.1 agrees with
the braid presentation of the region in Lemma 3.8 under the suitable choice of ı . The
proof is in the next section.

In Table 2, we draw each L–shaped region in the case of the smallest A.

Demonstration 4.8 KIII.ı; ";A; k; t/ for .ı; ";A; k; t/D .1; 1; 2; 2; 1/.

By Table 1(1), BDA.3C2k/�"D 13; bD�ı".2AC tB/D�17. By Lemma 2.1, it
has a braid presentation W .13/�17W .3/1 . The surgery coefficient is bBCıAD�219.
According to Table 2, the L–shaped region L.";A; k; t/ with .";A; k; t/D .1; 2; 2; 1/
is the L–shaped region of type Œ11; 13I 16; 17� (the region at the bottom in Figure 11),
whose area is 219. By Lemma 3.5, its corresponding plane curve presents the closure of
W .13/16W .11/. By Lemma 2.3, the knot is equal to the closure of W .13/17W .3/�1 ,
which is the mirror image of the required knot.
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5 Proofs of Theorem 1.3 and Theorem 1.4

Theorem 1.3 is proved by verifying that Berge’s braid presentation of the knot (Lemma
2.1) and that of the L–shaped region in Table 2 (Lemma 3.8) agree, under the suitable
choice of the sign ı in each type. In the proof below, we will also decide the choice of
ı (depending on X and .";A; k; t/). We denote the result by ıX .";A; k; t/, or ıX for
short. It will be used in the proof of Lemma 5.1

Proof of Theorem 1.3 Here, we prove Theorem 1.3 only in the case of Type III. The
proofs in the other cases are similar.

In Type III, in Table 1(1) and (2), we find

aD 0; B DAl � "; l D 3C 2k; b D�ı".2AC tB/:

Thus, Berge’s braid presentation W .B/bW .AC 1� a/ı of the knot KIII.ı; ";A; k; t/

in Lemma 2.1 by [11] is

W ..3C 2k/A� "/�ı".2ACtB/W .AC 1/ı:(5-1)

First, we consider the case k D t D 0.

Case 1C (Type III, "D 1, k D t D 0) In Table 2, we find that the L–shaped region
is of type Œ2A� 1; 3A� 1I 2A� 1; 2A�. On the other hand, Berge’s presentation (5-1)
is now W .3A�1/�2ıAW .AC1/ı . Here we choose ıD�1. We use Lemma 3.8(C�)
on the knot of W .3A� 1/2AW .AC 1/�1 .

Case 1� (Type III, "D�1, k D t D 0) In Table 2, we find that the L–shaped region
is of type ŒAC 1; 3AC 1I 2A; 2AC 1�. On the other hand, Berge’s presentation (5-1)
is now W .3AC 1/2ıAW .AC 1/ı . We choose ı D 1. We use Lemma 3.8(CC).

Next, we consider the case k > 0 (t D 0). In this case, we use the symmetry of
Corollary 3.7 to verify that the parameter k contributes as the k full-twists on the
knots.

Case 2C (Type III, " D 1, k > 0; t D 0) The L–shaped region in Table 2 is
of type Œ2A � 1C 2kA; 3A � 1C 2kAI 2A � 1; 2A�, which presents the closure of
W .3A�1C2kA/2A�1W .2A�1C2kA/ by Lemma 3.5. By the symmetry of Corollary
3.7, it presents the same knot of

W .2A/2A�1C2kAW .2A� 1/A D .W .2A/2A/k W .2A/2A�1W .2A� 1/A:

Its first part .W .2A/2A/k means k full-twists. On the other hand, Berge’s presentation
(5-1) is now W .3A� 1C 2kA/�2ıAW .AC 1/ı We choose ı D�1. We use Lemma
3.8(C�).
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Case 2� (Type III, " D �1, k > 0, t D 0) The L–shaped region in Table 2 is of
type ŒAC 1; 3AC 1C 2kAI 2A; 2AC 1�, which, by Lemma 3.5, presents the closure
of W .3AC 1C 2kA/2AW .AC 1/. By Corollary 3.7, it presents the same knot of

W .2AC 1/AC1W .2A/AC2kA
DW .2AC 1/AC1W .2A/A .W .2A/2A/k :

Its final part .W .2A/2A/k means k full-twists of 2A strings of the braid of index 2AC1.
On the other hand, Berge’s presentation (5-1) is now W .3AC1C2kA/2ıAW .AC1/ı

by (5-1). We choose ı D 1. We use Lemma 3.8(CC).

Before we go into the case t 6D 0, we note the following.

(1) The parameter t can be negative.

(2) The parameters A; k and B are independent from t .

(3) The parameter B is equal to the length of the edge that is added t squares.

(4) In every case in Table 2, we can apply the operation adding t squares along the
edge, ie, the condition “b2 D b1C 1 and jt ja2 > b1C 1” for adding negative
squares are satisfied, even if t D�1.

From now on, we use Berge’s [11] braid presentation of KIII.ı; ";A; k; t/ in Lemma
2.1 in the form

W .B/�ı".2ACtB/W .AC 1/ı:(5-2)

Case 3C (Type III, " D 1, t > 0) The L–shaped region in Table 2 is of type
ŒB�A;BI 2A�1C tB; 2AC tB� with BD 3A�1C2kA. On the other hand, Berge’s
presentation (5-2) is now W .B/�ı.2ACtB/W .AC 1/ı We choose ı D �1. We use
Lemma 3.8(C�).

Case 3� (Type III, " D �1, t > 0) The L–shaped region in Table 2 is of type
ŒAC 1;BI 2AC tB; 2AC 1C tB� with B D 3AC 1C 2kA. On the other hand,
Berge’s presentation (5-2) is now W .B/ı.2ACtB/W .AC 1/ı . We choose ı D 1. We
use Lemma 3.8(CC).

Before we consider the case t < 0, we remark the condition 2A�B in Section 2. In
fact, 2AD B never occurs.

Case 4C (Type III, "D 1, t < 0) We use adding negative squares.

The type of L–shaped region in Table 2 is ŒA C 1;BI jt jB � 2A; jt jB � 2A C 1�

with B D 3A � 1 C 2kA. On the other hand, Berge’s presentation (5-2) is now
W .B/�ı.2ACtB/W .AC1/ı . We choose ıD 1. We use Lemma 3.8(CC) on the braid
W .B/jt jB�2AW .AC 1/.
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Case 4� (Type III, "D�1, t < 0) We use adding negative squares.

The type of L–shaped region in Table 2 is ŒB �A;BI jt jB � 2A� 1; jt jB � 2A� with
B D 3AC1C2kA, which presents the closure of W .B/jt jB�2A�1W .B�A/. On the
other hand, Berge’s presentation (5-2) is now W .B/ı.2ACtB/W .AC 1/ı . We choose
ı D�1. We use Lemma 3.8(C�) on the knot of W .B/jt jB�2AW .AC 1/�1 .

After all, for given parameters .";A; k; t/, we have shown that the L–shaped curve P D

X \L of the L–shaped region LDLIII.";A; k; t/ in Table 2 presents KIII.ı; ";A; k; t/

for suitable choice of ı .

The proof of Theorem 1.3 in the case of Type III is complete. The cases of the other
types are proved by the same argument.

In the proof of Theorem 1.3, ıIII.";A; k; t/, the suitable choice of ı in Type III is
determined. Considering the other types, it extends as

ıX .";A; k; t/D

(
�1 if " � sgn.t/DC1;

1 if " � sgn.t/D�1;

where sgn.t/D 1 if t > 0 or t D 0, sgn.t/D�1 otherwise. This means simply

� ıX � " � sgn.t/DC1:(5-3)

Using ıX , Theorem 1.3 means simply

L.PX .";A; k; t/ /DKX .ıX ; ";A; k; t/:

Now, we consider the coefficients of the lens space surgeries. Before we start the proof
of Theorem 1.4, we show:

Lemma 5.1 The lens space surgery coefficient of L.PX .";A; k; t/ / is positive.

Proof As in the proof of Theorem 1.3, here we prove the lemma only in the case
of Type III. In Table 1(3), we find that the coefficient of L.PIII.";A; k; t/ / D

KIII.ıX ; ";A; k; t/ (as in Type III) is

�ıX � " � .6A2
� 3"AC k.2A/2C tB2/:

Since jBjD .3C2k/A�" (the length of the longest edge), it holds that sgn.6A2�3"AC

k.2A/2CtB2/D sgn.t/. Thus the sign of the coefficient is equal to �ıX �"�sgn.t/DC1

by (5-3). The proof of the other types are similar.
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Question 5.2 More generally, if a knot K is a closure of a positive braid and admits
a lens space surgery, is the coefficient positive?

Now, we prove a precise version of Theorem 1.4 on the difference between the area
area.P / of the L–shaped curve and the surgery coefficient coef.L.P // (> 0) of the
lens space surgery as in Type X .

Lemma 5.3 Under the correspondence in Theorem 1.3,

area.P /� coef.L.P //D

(
0 if .�1/a � " � sgn.t/DC1

1 if .�1/a � " � sgn.t/D�1:

where sgn.t/ D 1 if t > 0 or t D 0, sgn.t/ D �1 otherwise. See Table 1(1) for the
definition of a (D 0 or 1).

Proof First, in the case k D t D 0, it is easy to verify the equation in Table 2. The
parameters k and t with t > 0 contribute as adding positive squares. In the operation
adding a positive square along an edge of length x , the area increases by x2 . It is
compatible with the terms CkA2CtB2 (or Ck.2A/2CtB2 ) in the surgery coefficients
in Table 1(3). In the case t < 0, we do the operation adding negative squares. Suppose
that we get the curve Pnew from Pold by adding t squares with t < 0 along an edge of
length x . Then

coef.L.Pnew//D�. coef.L.Pold//� jt jx
2 /;

since the new divide knot L.Pnew/ is the mirror image of the knot obtained by left-
handed jt j twists from L.Pold/. On the other hand,

area.Pnew/D jt jx
2
� area.Pold/C 1;

where the last C1 corresponds to the finally added unit square. Thus

area.Pnew/� coef.L.Pnew//D 1� . area.Pold/� coef.L.Pold// /:

We have the lemma.

Note that Berge’s constant a in [11, Table 3, page 15] was defined geometrically in the
context of doubly primitive knots. It might be curious that a is related to the difference
between the area and the coefficient as above.

Goda and Teragaito [19] conjectured an inequality

2g.K/C 8� jr j � 4g.K/� 1;
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on the surgery coefficient r and the genus g.K/ of the hyperbolic lens space surgery
.K; r/. It is called the “Goda–Teragaito conjecture”. By Proposition 3.4 and Lemma
5.3, we have:

Corollary 5.4 Let Œa1; a2I b1; b2� be the type of the L–shaped curve of our presen-
tation (in Table 2) of a Berge knot in Types III, IV, V and VI as a divide knot L.P /.
Then, the following holds:

coef.L.P //� 2g.L.P //D a2C b2� 1; or a2C b2� 2;

4g.L.P //� coef.L.P //D

(
area.P /� 2.a2C b2/C 2;

area.P /� 2.a2C b2/C 3:

6 Further observation

Divide presentation of L–shaped divide knots helps us to study the constructions of the
knots, and the relationship among the lens space surgeries.

6.1 Twisted torus knots

Following Dean [15], by a twisted torus knot T .p; qI r; s/, if r < p , we mean
the knot obtained from the torus knot T .p; q/ by s full-twists of r strings in the
p parallel strings of T .p; q/ in the standard position. On the other hand, if r > p ,
we mean the knot obtained from the torus knot T .p; q/ as a closure of the braid
w.p; q/�p�pC1 � � � �r�1 by s full-twists of all r strings, where w.p; q/�p�pC1 � � � �r�1

is a positive Markov stabilization of the standard braid w.p; q/ of T .p; q/ of index p

to a braid of index r . The following lemma follows from the braid presentation in
Lemma 3.5 (and Lemma 4.2).

Lemma 6.1 Let .p; q/ be a coprime pair of positive integers, and r , s integers
satisfying 0 < r 6D p and s > 0. The twisted torus knot T .p; qI r; s/ is one of
A’Campo’s divide knots, and can be presented by an L–shaped curve of type(

Œq; qC rsI r;p� if r < p,

ŒrsC 1; qC rsIp; r � if r > p,

as A’Campo’s divide knots; see Figure 14.

Note that, a twisted torus knot T .p; qI r; s/ can be accidentally nonhyperbolic, a torus
knot T .p0; q0/, or a cable knot C.T .p0; q0/Im0; n0/ of a torus knot; see Yamada [44]
and Morimoto–Yamada [31] for such phenomena.
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Figure 14: Twisted torus knots T .p; qI r; s/ (eg T .4; 3I 3; 3/ and T .4; 3I 5; 1/)

Lemma 6.2 Each knot in the following list is a twisted torus knot:

� (Knots with t D 0)

KIII.1;�1;A; k; 0/D T .2AC 1;AC 1I 2A; kC 1/;

KIV.�1; 1;A; k; 0/D T .A; kAC .3AC 1/=2IA� 1; 1/;

KV.�1; 1;A; k; 0/D T .A; .kC 1/AC 2IA� 1; 1/;

KVI.1;�1;A; 0; 0/D T .A� 1;AC 1IA; 1/;

� (Knots with t D�1)

KIII.1; 1;A; k;�1/D T .A;AC 1IA� 1; kC 2/;

KIV.�1;�1;A; k;�1/D T ..3A� 1/=2;AI .3AC 1/=2; kC 1/;

KV.�1;�1;A; k;�1/D T .2A� 2;AI 2A� 1; kC 1/:

Proof The only thing we have to do is to verify them by comparing types of the
L–shaped regions, thus we omit the proof in detail. See Figure 15 for the case of
KV.�1;�1;A; k;�1/, which needs adding t square with t D�1.

2A� 2

A� 1

2A

2A� 1

k

D
2A� 2

A
kC 1

Figure 15: KV.�1;�1;A; k;�1/D T .2A� 2;AI 2A� 1; kC 1/

Now, we count s full-twists along a fixed unknot as one twisting. If after s1 full-twists
along an unknot we take another s2 full-twists along a different unknot, then we count
the operation as two twistings.
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Corollary 6.3 [16] Every knot in Berge’s Types III, IV, V, and VI is obtained from a
twisted torus knot Tw WD T .p; qI r; s/ by at most one twisting of s0 full-twists, thus is
obtained from a torus knot at most two successive twistings, such that every knot in the
twisting process (T .p; qI r; i/ with 0� i � s and j full-twists of Tw with 0� j � s0 )
admits lens space surgery. Furthermore, as a twisted torus knot above, we can take
T .p; qI r; s/ that satisfies jr �pj D 1.

In the process of preparation of this paper, the author was informed by Motegi (see
Deruelle–Miyazaki–Motegi [16]) that every knot in Berge’s list (including Types VII,
. . . , XII, see Section 1) is obtained by at most two twistings from a torus knot, which
includes the above Corollary.

6.2 Relations between different types

See the L–shaped region in the left top figure in Figure 16. It is of type Œ3; 5I 3; 4�,
and presents KIII.�1; 1; 2; 0; 0/ (D P .�2; 3; 7/). The L–shaped regions obtained
by adding k squares along the right edge (denoted by R), we have a subsequence
KIII.�1; 1; 2; k; 0/ in Type III; see Type III (" D 1) in Table 2. On the other hand,

kC 1

V
edge L edge R

III

k

Figure 16: Type III and Type V

those obtained by adding kC 1 squares with k � 0 along the left edge (denoted by
L), we have another subsequence KV.1; 1; 3; k; 0/ in Type V (a different Type); see
Type V ("D�1) in Table 2. By

KIII.�1; 1; 2; 0; 0/ 7!KV.1; 1; 3; k; 0/;

we denote such a relation, regarding it as KIII.�1; 1; 2; 0; 0/D “KV.1; 1; 3;�1; 0/”.
Using L–shaped curve presentation in Table 2, we can see more such relations:
� For each A with A� 3, KIII.�1; 1;A; 0; 0/ 7!KIV.1;�1; 2A� 1; k; 0/.
� For each A, KIII.1;�1;A; 0; 0/ 7!KIV.�1; 1; 2AC 1; k; 0/.
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Question 6.4 Find more such relations, especially in the case t 6D 0.

6.3 Parameters translation

Parameters of Berge knots are different among some papers. In Table 1(4), we give the
translation formula between

.A; k/ in [11] and this paper and .n;p/ in [10; 7; 9; 16].

The signs ı; " are commonly used among these papers.

For example, KIV.ı;�1; 5; 1; t/ (ie, .";A; k/D .�1; 5; 1/) in this paper is, up to mirror
image, obtained from the knot of ."; n;p/D .�1; 2; 4/ in Type IV in [10; 7; 9; 16] by
˙t full-twists.

The parameter p is defined as a positive integer, and our k is just a parallel shift of p

such that “kD0 at the minimal possible value as p”: the statement “"p 6D�2;�1; 0; 1”
(see Table 1(4)) is referred as

“p � 2 if "DC1 and p � 3 if "D�1” in [10; 7; 9; 16].

On the other hand, we say

“k WD p� 2 if "DC1 and k WD p� 3 if "D�1” in the present paper.
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a A l ı; " 2 f˙1g, t 2 Z
III 0 2; 3; 4; : : : 3; 5; 7; : : : (odd) B DAl � ", b D�ı".2AC tB/

IV 1 5; 7; 9; : : : (odd) 5; 7; 9; : : : (odd) B D .Al � "/=2, b D�ı".AC tB/

V 1 3; 5; 7; : : : (odd) 2; 3; 4; : : : B DAl C "�, b D�ı".AC tB/

VI 0 4; 6; 8; : : : (even) B D 2AC 1, b D ı.A� 1C tB/

Here "� 6D �1 if l D 2 (since 0< 2A� B ).

(1) The parities and ranges of A; l and the settings of a;B; b (see [11])

III: l D 3C 2k, V: l D 2C k (if "DC1), VI: k � 0 ("��1).
IV: l D 5C 2k, l D 3C k (if "D�1),

(2) Parameter k

III: �ı"
�
6A2� 3"AC k.2A/2C tB2

�
,

IV: �ı"
�

5

2
A2�

3

2
"AC kA2C tB2

�
,

V: �ı
�
2A2C kA2C tB2

�
if "DC1,

ı
�
3A2C kA2C tB2

�
if "D�1,

VI: ı
�
.2A2� 1/C tB2

�
.

(3) Surgery coefficient: bBC ıA

A k (if "DC1) k (if "D�1) "p 6D

III nC 1 p� 1 p� 2 �1; 0

IV 2nC 1 p� 2 p� 3 �2;�1; 0; 1

V 2nC 3 p� 2 p� 3 �2;�1; 0; 1

VI 2nC 2 - (0) -

(4) Parameter translation (to [10; 7; 9; 16]); see Section 6.3.

Table 1: Parameters of Berge knots
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Type III "D 1, AD 2; 3; 4; : : : "D�1, AD 2; 3; 4; : : :

coefD 6A2� 3A, coefD 6A2C 3A

area.L/D 6A2� 3A, area.L/D 6A2C 3AC 1

A

2A� 1

2A

k

t

AC 1

2A

2A

k

t

Type IV "D 1, AD 5; 7; 9; : : : "D�1, AD 5; 7; 9; : : :

coefD 5
2
A2�

3
2
A, coefD 5

2
A2C

3
2
A

area.L/D 5
2
A2�

3
2
AC 1, area.L/D 5

2
A2C

3
2
A

A� 1

.3AC 1/=2

A

k

t

A
.3AC 1/=2

A

k

t

Type V "D 1, AD 3; 5; 7; : : : "D�1, AD 3; 5; 7; : : :

coefD 2A2, coefD 3A2

area.L/D 2A2C 1, area.L/D 3A2

A� 1

AC 2

A
k

t

A
2A� 1

A
k

t

Type VI AD 4; 6; 8; : : :

coefD 2A2� 1

area.L/D 2A2

A

AC 1

A

t

Table 2: Berge knots presented by L–shaped regions
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