
Algebraic & Geometric Topology 9 (2009) 455–471 455

The Lawson homology
for Fulton–MacPherson configuration spaces

WENCHUAN HU

LI LI

In this paper, we compute the Lawson homology groups and Deligne–Beilinson
cohomology groups for the Fulton–MacPherson configuration spaces.

14F43, 55R80

1 Introduction

The purpose of this paper is to give formulas for the Lawson homology groups and
Deligne–Beilinson cohomology groups of the Fulton–MacPherson configuration spaces
X Œn� for n 2N . The Lawson homology groups of X Œn� can be decomposed as a direct
sum of Lawson homology groups of certain Cartesian products of X with shifts of
bidegrees. A similar decomposition holds for Deligne–Beilinson cohomology groups.

All varieties in the paper are defined over C . Let X be a d –dimensional projective
variety and let Zp.X / be the space of algebraic p–cycles on X . The Chow group
Chp.X / of p–cycles is defined to be Zp.X / modulo the rational equivalence (see
Fulton [8, Section 1.3]). The Lawson homology LpHk.X / of p–cycles is defined as

LpHk.X / WD �k�2p.Zp.X // for k � 2p � 0;

where Zp.X / is provided with a natural compactly generated topology (see Friedlan-
der [6] and Lawson [13]). Set LpHk.X /DL0Hk.X / for p < 0. (See Lawson [14]
for the general background on Lawson homology.)

Let F.X; n/�X n be the complement of the diagonals, ie,

F.X; n/ WD f.x1; : : : ;xn/ 2X n
W xi ¤ xj ;8i ¤ j g:

For each subset I � Œn� WD f1; : : : ; ng with at least two elements, denote by Bl�.X I /

the blow-up of the Cartesian product X I along its small diagonal (for example when
I D f1; 4; 5g, X I D f.x1;x4;x5/g ŠX 3 and its small diagonal � consists of points
satisfying x1 D x4 D x5 ). The Fulton–MacPherson configuration space is defined as
follows.
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Definition–Theorem 1.1 (Fulton–MacPherson [9, Theorems 1 and 3]) Let X be a
smooth projective variety over C . The closure of the natural locally closed embedding

F.X; n/ ,!X n
�

Y
jI j�2

Bl�.X I /

is nonsingular, and the boundary is a simple normal crossing divisor. The closure is
called the Fulton–MacPherson configuration space and is denoted by X Œn�.

Let us introduce some combinatorial definitions first.

Definition 1.1 Fix a positive integer n. Denote Œn� WD f1; : : : ; ng.

Two subsets I;J � Œn� WD f1; 2; : : : ; ng are called overlapped if I \J is a nonempty
proper subset of I and of J .

A nest S of Œn� is a set of subsets of Œn� such that each subset I 2 S contains at least
two elements and any two subsets I;J 2 S are not overlapped.

Next we explain some definitions in graph theory. All trees in the paper will be rooted
trees.

Definition 1.2 A (rooted) tree is a finite graph in which any two nodes are connected
by exactly one path, together with a root node.

The tree-order is the partial ordering on the nodes of a tree with u < v if and only
if u¤ v and the unique path from the root to v passes through u. (So the root is the
minimal node in a tree.)

A forest is a disjoint union of trees; it has a natural partial order induced from the
tree-order. (A tree is a forest by definition.)

A leaf is a maximal node in a forest.

In a forest, a node v is called a child of a node u if u < v and there is no node w
satisfying u<w < v .

We will explain in Section 2.2 that there is a 1–1 correspondence between the set of
nests of Œn� and the set of forests with n leaves, such that each element of the nest
labels a node of the forest.

Definition 1.3 Let S be a nest of Œn�.

Define c.S/ to be the number of connected components of the forest corresponding
to S .
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Define cI .S/ (or cI if no ambiguity arises) to be the number of children of the node
with label I .

For a nonempty nest S , define the set MS of lattice points in the integer lattice ZS as

(1) MS WD
˚
�D .�I /I2S W 1� �I � .cI � 1/ dim X � 1; �I 2 Z

	
:

Define the norm k�k WD
P

I2S �I for � 2MS . For S D∅, we assume that there is
only one lattice point 0 in MS whose norm is 0.

The first main theorem asserts that the Lawson homology group of X Œn� can be
decomposed as a direct sum of the Lawson homology groups of the Cartesian products
of X with shifts of bidegrees.

Theorem 1.2 Let X be a smooth projective variety defined over C . Then for each pair
of integers p , k such that k � 2p � 0, there is an isomorphism of Lawson homology
groups

LpHk.X Œn�/Š
M
S

M
�2MS

Lp�k�kHk�2k�k.X
c.S//;

where the direct sum
L
S run over all the nests S of Œn�.

As a consequence of the above theorem, we obtain the following more explicit formula
for LpHk.X Œn�/. We explain some notation first: generalizing R Stanley’s notation
Œxi �F.x/ in [20] (which gives the coefficient of xi in the power series F.x/) to two
variables x and t , we define Œxi tn=n!�F.x; t/D ain for a power series

F.x; t/ WD
X
j ;k

ajk

xj tk

k!
:

Theorem 1.3 Let X be a smooth d –dimensional projective variety defined over C .
Then for each pair of integers p , k such that k � 2p � 0, there is an isomorphism of
Lawson homology groups

LpHk.X Œn�/Š
M

1�m�n
0�i�p

Lp�iHk�2i.X
m/˚Œx

i tn=n!�N m=m!

where N WD N.x; t/D
P

i�1 hi.x/.t
i= i !/ is the exponential generating function of

polynomials hi.x/ determined by the identity

.1�x/xd t C .1�xdC1/D exp.xdN /�xdC1 exp.N /:

We also obtain a formula similar to Theorem 1.2 for Deligne–Beilinson cohomology.
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Theorem 1.4 Let X be a smooth projective variety defined over C . Then for each pair
of integers p , k , there is an isomorphism of Deligne–Beilinson cohomology groups

H k
D.X Œn�;Z.p//Š

M
S

M
�2MS

H
k�2k�k

D
�
X c.S/;Z.p�k�k/

�
:

Similarly, as a consequence of the above theorem, we obtain the following more explicit
formula for H k

D.X Œn�;Z.p//.

Theorem 1.5 Let X be a smooth d –dimensional projective variety defined over C .
Then for each pair of integers p , k , there is an isomorphism of Deligne–Beilinson
cohomology groups

H k
D.X Œn�;Z.p//Š

M
1�m�n
0�i�p

H k�2i
D

�
X m;Z.p� i/

�˚Œxi tn=n!�N m=m!

where N is the same as in Theorem 1.3.

The key tools used to prove the main results are the blow-up formula for Lawson
homology proved by the first author [10] and the method for computing the Chow
groups of the Fulton–MacPherson configuration space of the second author [15]. The
structure of the paper is as follows: In Section 2, we briefly review background material
about Lawson homology, as well as the construction on Fulton–MacPherson spaces and
we compute the Lawson homology groups of the Fulton–MacPherson configuration
space thus constructed. In Section 3, we briefly review background material about
Deligne–Beilinson cohomology and we compute the Deligne–Beilinson cohomology
for the Fulton–MacPherson configuration space. In Section 4, we compare Lawson
homology with integral singular homology using simple examples. In Section 5, we
write down the formula in Theorem 1.3 explicitly for nD 2 and nD 3.

2 Lawson homology groups of Fulton–MacPherson spaces

In this section, we prove Theorem 1.2 and Theorem 1.3. According to the construction,
the Fulton–MacPherson configuration space X Œn� is obtained by successively blowing
up X n along (the strict transforms of) its diagonals in a suitable order, where each
blow-up is along a nonsingular subvariety. Therefore, we can calculate the Lawson
homology groups of X Œn� by successively applying the blow-up formula for Lawson
homology (see Theorem 2.1).
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2.1 Lawson homology

Recall that for a morphism f W W !V between projective varieties, there exist induced
homomorphisms f�W LpHk.W /!LpHk.V / for all k � 2p� 0. Furthermore, it has
been shown that if W and V are smooth and projective, there are Gysin “wrong way”
homomorphisms f �W LpHk.V /!Lp�cHk�2c.W /, where c D dim.V /� dim.W /

(see Peters [19]).

Let X be a smooth projective variety and Y be a smooth subvariety of X of codimen-
sion r with the natural embedding i0W Y ,! X . Let � W zXY ! X be the blow-up of
X along Y , let D be the exceptional divisor and � W D! Y and i W D ,! zXY be the
natural morphisms. Set U WDX �Y Š zXY �D . Denote by j0 the inclusion U ,!X

and j the inclusion U ,! zXY . That is, we have a diagram:

D
� � i //

�

��

zXY

�

��

U D zXY �D? _
joo

D

��
Y

� � i0 // X U DX �Y? _
j0oo

It is well known that � W D!Y gives a projective bundle of rank r�1 by identifying D

with P .NY=X /. (Note: We adopted the “old fashioned” geometric notation for the
projective bundle P .E/ associated with a vector bundle E used in Fulton’s book [8,
B.5.5], instead of Grothendieck’s notation in EGA.)

Moreover, we have (see Voison [23, page 271])

O zXY
.D/jD DOP.NY =X /.�1/:

Denote by h the class of OP.NY =X /.�1/ in Pic.D/. We have h D Œ�D�jD and
�h D i�i�W LqHm.D/ ! Lq�1Hm�2.D/ for 0 � 2q � m [7, Theorem 2.4; 19,
Lemma 11]. The last equality can be equivalently regarded as a Lefschetz operator

�hD i�i�W LqHm.D/!Lq�1Hm�2.D/; 0� 2q �m:

The following result is essential to the proof of Theorem 1.2.

Theorem 2.1 (Lawson homology for a blow-up [10, Theorem 1.2]) Let X be a
smooth projective variety and Y � X be a smooth subvariety of codimension r. Let
� W zXY ! X be the blow-up of X along Y , � W D D ��1.Y /! Y the natural map,
and i W DD ��1.Y /! zXY the exceptional divisor of the blow-up. Then for each p , k
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with k � 2p � 0, we have the isomorphism

Ip;k W

� M
1�j�r�1

Lp�j Hk�2j .Y /

�
˚LpHk.X /

Š
�!LpHk. zXY /

Ip;k.u1; : : : ;ur�1;u/D

r�1X
jD1

i�.h
j
���uj /C �

�u:given by

Remark 2.2 The above theorem proved in [10] can be generalized without difficulty
to l –adic Lawson homology (see Friedlander [6]) for nonsingular projective varieties X

over any algebraic closed field of characteristic p where .p; l/D 1.

2.2 The Fulton–MacPherson configuration spaces

The Fulton–MacPherson configuration spaces X Œn� were discovered around 1989 [9].
In their original paper, Fulton and MacPherson used it to construct a differential graded
algebra which is a model for F.X; n/ in the sense of Sullivan. Axelrod and Singer
constructed a similar compactification in the setting of smooth manifolds [1, Section
5.1]. The space P1Œn� is closely related the Deligne–Mumford compactification xM0;n

of the moduli space of nonsingular rational curves with n marked points (see Keel [12]).

The following notation is needed. Fix a positive integer n. There is a 1–1 correspon-
dence between the set of nests of Œn� and the set of forests with n leaves which sends a
nest S to a forest F as follows: the n leaves in F are labeled by 1; 2; : : : ; n. Each
element I of S gives a node of F , labeled by I . Two nodes with labels I and J are
connected by an edge if I ¨ J and there does not exist K 2 S such that I ¨ K ¨ J .
Denote by c.S/ the number of connected components of the forest corresponding to S
and denote by cI .S/, or cI , the number of children of the node with label I . Below is
an example.

Example 2.3 Let nD 7 and S D f1234; 12; 56g. See Figure 1.

In this example, c.S/D 3, c12 D c56 D 2 and c1234 D 3.

For a nonempty nest S , define the set MS as in equation (1).

Example 2.4 Let nD 7 and S D f1234; 12; 56g be as in Example 2.3 and let d D

dim X . Then

MSDf.�1234; �12; �56/2Z3
W1��1234�2d�1; 1��12�d�1; 1��56�d�1g:
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u
u

u
u
u

u
�
�
�A
A
A

�
�
�

S
S
S

u
u uA
A
A

�
�
�

u

1

12

2

3 4 5 6

71234 56

Figure 1: The forest corresponding to the nest S D f1234; 12; 56g

Consider the following ordered set of diagonals

(2) �12���n„ƒ‚…
.n

n/

; �12���.n�1/; �12���.n�2/;n; : : : ; �23���n„ ƒ‚ …
. n

n�1/

; : : : ; �12; : : : ; �n�2;n; �n�1;n„ ƒ‚ …
.n

2/

which induces an order on fI � Œn� W jI j � 2g:

f1; 2; : : : ; ng< f1; 2; : : : ; n� 1g< f1; 2; : : : ; n� 2; ng< � � �< fn� 2; ng< fn� 1; ng:

The following lemma is needed for the proof of Theorem 1.2. This lemma is implicit
in De Concini and Procesi [3], MacPherson and Procesi [18, Section 5.1], and has been
pointed out, but not as explicitly as below, in Thurston [21, Proposition 3.5 and 3.6] in
the situation of real manifolds.

Lemma 2.5 X Œn� can be constructed by successively blowing up (the strict transforms
of) the 2n� n� 1 diagonals of X n in the order (2).

Proof A proof is given in [16, Proposition 2.13] by the second author and we will not
reproduce it here. The idea is to prove inductively for a more general situation – the
wonderful compactification of an arrangement – using the notion due to De Concini
and Procesi of building sets of arrangements. The interested reader is referred to
[16, Theorem 1.3] for a conclusion on orders of blow-ups in the construction of the
wonderful compactification spaces, which in particular applies to Fulton–MacPherson
spaces.

Proof of Theorem 1.2 Since the Fulton–MacPherson configuration space X Œn� can
be constructed by a sequence of blow-ups, we can obtain its Lawson homology group
by successively applying the formula of one blow-up (Theorem 2.1).

The notion of nest appears naturally when we decompose the Lawson homology groups
of X Œn� in terms of Lawson homology groups of Cartesian products of X . Take X n

as the ambient variety. For I � Œn� with at least two elements, it can be shown (as a
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special case of [15, Proposition 2.7]) that the strict transform z�I (which will be blown
up along) is obtained by successively blowing up �I along the centers �J \�I for
(J © I ) or (J < I and J \I D∅), so fI;J g is a nest; take �I as the ambient variety
instead of X n . The strict transform of �I \�J (which will be blown up along which
we blow up is obtained ) is obtained by successively blowing up �I \�J along those
�I \�J \�K such that K satisfies

� I \J \K D∅ and K < J ,

� K © I and K\J D∅ or

� K © J and K\ I D∅,

so the set fI;J;Kg is a nest. In general, consider a nest S D fI1; I2; : : : ; I`g which
is arranged in the order compatible with (2), that is, the elements in S is ordered as
the order of �Ij

, 1 � j � ` in (2). Then S determines a chain of polydiagonals (ie
intersections of diagonals) of X n :

\̀
jD1

�Ij
�

\̀
jD2

�Ij
�

\̀
jD3

�Ij
� � � � �

\̀
jD`�1

�Ij
��I`

�X n:

The codimension of the i –th polydiagonal in the .iC1/–th polydiagonal equals
.cIi
�1/ dim X . Blowing up along the strict transform of �Ii

makes .cIi
�1/ dim X�1

copies of the Lawson homology groups (with shifted bidegrees) of the strict transform
of the i –th polydiagonal

T`
jDi �Ij

contributing to the Lawson homology group of
the strict transform of the .iC1/–th polydiagonal

T`
jDiC1�Ij

. By successively
applying the formula of a blow-up (Theorem 2.1), one sees that for each lattice point
.�I1

; : : : ; �I`
/ 2 Z` such that

1� �Ii
� .cIi

� 1/ dim X � 1;

there is a copy of the Lawson homology group of X c.S/ (with shifted bidegree) in the
decomposition of the Lawson homology group of X Œn�. More precisely, we have the
following summand in the decomposition of LpHk.X Œn�/:

Lp�k�kHk�2k�k.X
c.S//;

where k�k WD
P`

iD1 �Ii
(notice that

T`
jD1�Ij

ŠX c.S/ ). Let S run through all the
nests of Œn�, we obtain all the direct summands of the decomposition of LpHk.X Œn�/,
and the theorem follows.

Corollary 2.6 When p D 0, Theorem 1.2 is reduced to a formula of the singular
homology groups with integer coefficients for X Œn�.
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Now we proceed to prove Theorem 1.3. A similar result for the Chow group and Chow
motive of X Œn� was proved in [15]. For the readers’ convenience we briefly recall
the proof with the necessary adaptations to the present context. We need to recall the
compositional formula of exponential generating functions. Let f be a map from
Z�0 to a field K of characteristic 0. We denote by Ef .t/ the exponential generating
function of f , ie,

Ef .t/D
X
n�0

f .n/
tn

n!
:

Theorem 2.7 (Compositional formula [20, Theorem 5.1.4]) Let K be a field of
characteristic 0. For any finite set S , denote by ….S/ the set of ordered partitions
of S . Given functions f W Z�0!K with f .0/D 0 and gW Z�0!K with g.0/D 1,
define a new function hW Z�0!K by h.0/D 1 and

h.jS j/D
X

fB1;:::;Bkg2….S/

f .jB1j/f .jB2j/ � � � f .jBk j/g.k/; for jS j> 0:

Then Eh.t/DEg.Ef .t//:

Proof of Theorem 1.3 By Theorem 1.2, it suffices to show that for any positive
integers m and i ,X

c.S/Dm

X
�2MS
k�kDi

1D

�
xi tn

n!

�
N m

m!
; (where S is a nest of Œn�)

which is equivalent to showing that for any positive integer m,

(3)
X

c.S/Dm

X
�2MS

xk�k D

�
tn

n!

�
N m

m!
; (where S is a nest of Œn�):

First we consider the special situation m D 1. Let K be the polynomial ring CŒx�.
Define f W Z�0!K by

(4) f .n/ WD
X

c.S/D1

X
�2MS

xk�k; (where n> 0 and S is a nest of Œn�)

and f .0/D 0. We need to show that

f .n/D

�
tn

n!

�
N; for n> 0:
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Fix an ordered partition fB1; : : : ;Bkg 2 ….Œn�/. Consider those nests S such that
c.S/D 1 and B1; : : : ;Bk are the maximal elements in

.S n Œn�/[ff1g; : : : ; fngg;

in other words, consider those trees such that B1; : : : ;Bk are the labels of the children
of the root. Each child of the root is the root of a subtree where we can use induction.
Then we get a recursive relation

f .n/D
X

fB1;:::;Bkg2….Œn�/

f .jB1j/f .jB2j/ � � � f .jBk j/g.k/; for n> 1;

where f .1/D 1 and g.k/ is the function

g.k/D

8<:
Pdk�d�1

iD1 xi D .xdk�d �x/=.x� 1/ if k > 1I

0 if k D 1I

1 if k D 0:

Eg.t/D 1C

1X
kD2

�
xdk�d �x

x� 1

�
tk

k!
Then

D 1C
1

xd .x� 1/

1X
kD2

.xd t/k

k!
�

x

x� 1

1X
kD2

tk

k!

D 1C
1

xd .x� 1/
.exp.xd t/� 1�xd t/�

x

x� 1
.et
� 1� t/

D 1C t C
exp.xd t/� 1

xd .x� 1/
�

x.et � 1/

x� 1
:

Define h.n/ to be the right hand side of 2.2 for n> 0 and define h.0/D 1. Then h.n/

and f .n/ only differ at nD 0; 1. Therefore

Eh.t/DEf .t/� t C 1:

By the compositional formula of exponential generating functions (Theorem 2.7),

Ef .t/� t C 1DEg.Ef .t//:

Denote N WD Ef .t/, we need to show that N satisfies the identity in Theorem 1.3.
This is indeed the case, since

N � t C 1D 1CN C
exp.xdN /� 1

xd .x� 1/
�

x.eN � 1/

x� 1
;
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or equivalently,

.1�x/xd t C .1�xdC1/D exp.xdN /�xdC1 exp.N /:

Thus we have proved (3) in the special case mD 1.

Now we prove (3) for m > 1, ie, the case when forests have m disjoint trees. First,
notice that X

c.S/Dm

X
�2MS

xk�k D Œym�F.n/;(5)

F.n/D
X

fB1;:::;Bkg2….Œn�/

f .jB1j/f .jB2j/ � � � f .jBk j/y
k ; for n� 1where

and f is defined in (4). Indeed, fixing a partition fB1; :::;Bmg2….Œn�/, we define S to
be the set of nests S such that c.S/Dm and the maximal elements in S[ff1g; : : : ; fngg
are B1; : : : ;Bm . Define a function nW .nests/! Z by

n.S/ WD number of leaves in the forest corresponding to S:

For each connected component (which is a tree) in the forest corresponding to S we
can use identity (3) in the case mD 1. Then we have

X
S2S

X
�2MS

xk�k D

mY
iD1

� X
c.Si /D1

n.Si /DjBi j

X
�2MSi

xk�k
�
D f .jB1j/f .jB2j/ � � � f .jBmj/:

Equation (5) immediately follows by adding up different partitions in ….Œn�/.

Applying again the compositional formula for g.k/D yk , we obtain

F.n/D

�
tn

n!

�
exp.yN /:

Therefore

Œym�F.n/D Œym�

�
tn

n!

�
exp.yN /D

�
tn

n!

�
Œym� exp.yN /D

�
tn

n!

�
N m

m!
:

This proves (3), and the theorem follows.
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3 Deligne–Beilinson cohomology of Fulton–MacPherson
space

3.1 Deligne–Beilinson cohomology

Let X be a complex manifold of complex dimension d . Let �k
X

the sheaf of holo-
morphic k –form on X . The Deligne complex of level p is the complex of sheaves

ZD.p/W 0! Z
.2i�/p

! �0
X !�1

X !�2
X ! � � � !�

p�1
X
! 0

The hypercohomology of the complex is called the Deligne–Beilinson cohomology
of X of level p :

H�D.X;Z.p// WDH�.X;ZD.p//

There is a multiplication of complexes

�W Z.p/D˝Z.q/D! Z.pC q/D

defined as

�.x �y/D

8<:
x �y; if deg x D 0;

x ^ dy; if deg x > 0 and deg y D q > 0;

0; otherwise:

This gives a product structure on the Deligne–Beilinson cohomology as follows:

[W H k
D.X;Z.p//˝Z H k0

D .X;Z.q//!H kCk0

D .X;Z.pC q//:(6)

For details, the reader is referred to Esnault and Viehweg [5].

Let X be an d –dimensional compact Kähler manifold. The Hodge filtration

� � � � FpH k.X;C/� Fp�1H k.X;C/� � � � � F0H k.X;C/DH k.X;C/

is defined by
FpH k.X;C/D

M
i�p

H i;k�i.X /:

We denote by pk
X

the natural quotient map

pk
X W H

k.X;C/!H k.X;C/=FpH k.X;C/:

It was proved (see Esnault and Viehweg [5, Corollary 2.4] and Voisin [22, Proposi-
tion 12.26]) that we have the following long exact sequence:

� � � !H k�1.X;C/=FpH k�1.X;C/!H k
D.X;Z.p//

!H k.X;Z/!H k.X;C/=FpH k.X;C/! � � �
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Now assume that X is projective, and Y , D are the same as defined in Section 2.1.
Denote by h the class of OP.NY =X /.�1/ under the first Chern class c1W H

1.D;O�
D
/!

H 2
D.D;Z.1//, ie, hD c1.OP.NY =X /.�1// 2H 2

D.D;Z.1// (see [5, page 88]).

The following proposition was proved in [5, Proposition 8.5].

Proposition 3.1 [5] The Deligne–Beilinson cohomology H k
D.D;Z.p// of the pro-

jective bundle � W D! Y is given by the isomorphismM
0�j�r�1

H
k�2j
D .Y;Z.p� j // � hj Š

�!H k
D.D;Z.p//;

where H
k�2j
D .Y;Z.p� j // � hj D f˛[ hj j ˛ 2H

k�2j
D .Y;Z.p� j //g.

Moreover, Barbieri Viale proved the following blow-up formula for Deligne–Beilinson
cohomology:

Theorem 3.2 [2, Section A.3] Let X , Y , D , zXY , Y be as above. Then for each p ,
k with p � r � 0, we have the isomorphism

(7) Ip;k W

� M
1�j�r�1

H
k�2j
D .Y;Z.p� j //

�
˚H k

D.X;Z.p//
Š
�!H k

D.
zXY ;Z.p//:

Remark 3.3 Barbieri Viale proved a general result, including the blow-up formula
for étale cohomology, to Theorem 3.2.

Similarly, we compute the Deligne–Beilinson cohomology for Fulton–MacPherson
configuration spaces.

Proof of Theorem 1.4 The proof is similar to the proof of Theorem 1.2: We use
the fact that the Fulton–MacPherson configuration space X Œn� can be constructed
by a sequence of blow-ups, and then successively apply the blow-up formula for
Deligne–Beilinson cohomology (Theorem 3.2). We only point out the difference here:

For each lattice point .�I1
; : : : ; �I`

/ 2N` such that 1 � �Ii
� .cIi

� 1/ dim X � 1;

there is a copy of the Deligne–Beilinson cohomology of X c.S/ in the decomposition of
the Deligne–Beilinson cohomology of X Œn�. More precisely, the summand for �2MS
in the decomposition of H k

D.X Œn�;Z.p// is

H
k�2k�k

D
�
X c.S/;Z.p�k�k/

�
:

Let S run through all the nests of Œn�, we obtain all the direct summands of the
decomposition of H k

D.X Œn�;Z.p//, and then the theorem follows.
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Remark 3.4 By using the same method, we can compute the étale cohomology for
Fulton–MacPherson configuration spaces.

Remark 3.5 The decomposition of Lawson homology (Theorem 1.2) and Deligne–
Beilinson cohomology (Theorem 1.4) of the Fulton–MacPherson configuration spaces
can be generalized with no difficulty to the wonderful compactifications of arrangements
of subvarieties, since the latter compactifications can also be constructed by a sequence
of blow-ups along smooth centers (for the definition and the blow-up construction of
these compactifications, see the second author’s paper [16]).

4 Comparing to homology

(1) Let X be a smooth d –dimensional complex projective variety. Then for each
integer k � 0, there is an isomorphism of singular homology groups

Hk.X Œn�/Š
M

1�m�n

Hk.X
m/˚Œt

n=n!�N m=m!

where N WDN.x; t/ is defined as in Theorem 1.3. This is a direct result of Theorem
1.3 and the Dold–Thom Theorem [4] which implies that L0Hk.V /ŠHk.V / for any
complex projective variety V . In particular, the integral singular homology of X Œn�

depends only the integral singular homology of X . If there is no torsion in Hk.X / for
all k � 0, then there is no torsion in Hj .X Œn�/ for all j � 0. In particular, Hk.C Œn�/

has no torsion for any smooth complex projective curve C since by the Künneth
formula Hk.C

m/ has no torsion for all integers k and m.

(2) If X is a smooth complex cellular variety, ie, X admits a filtration by closed
subvarieties ∅D X�1 � X0 � � � � � Xn D X such that Xi �Xi�1 Š Cmi for some
positive integer mi , then

LpHk.X Œn�/ŠHk.X Œn�/

for all integers k � 2p � 0. This follows from Theorem 1.3 and a result of Lima-
Filho [17], since the product of cellular varieties is cellular.

(3) In contrast to the singular homology where Hk.X Œn�/ is always finitely gener-
ated for any k , n and smooth projective variety X , the Lawson homology group
LpHk.X Œn�/ can be infinitely generated even if X is a smooth projective curve. This
statement follows from Theorem 1.3 and a result of the authors [11] where we have
found smooth algebraic curves C such that LpH2p.C

n/ is not finitely generated for
1� p � n� 2 if n� 3.
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5 Examples

Example 5.1 (The Lawson homology group of X Œ2�) The morphism � W X Œ2�!X 2

is a blow-up along the diagonal �12 . Theorem 1.3 asserts

LpHk.X Œ2�/ŠLpHk.X
2/˚

� d�1M
jD1

Lp�j Hk�2j .X /

�
:

Example 5.2 (The Lawson homology group of X Œ3�) Note that X Œ3� is the blow-up
of X 3 first along small diagonal �123 , then along three disjoint strict transforms of
diagonals �12 , �13 and �23 . Apply again Theorem 1.3, we have

LpHk.X Œ3�/ŠLpHk.X
3/˚

� d�1M
jD1

�
Lp�j Hk�2j .X

2/
�˚3

�

˚

� 2d�1M
jD1

�
Lp�j Hk�2j .X /

�˚minf3j�2;6d�3j�2g
�
:
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