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Symmetric topological complexity of projective and lens
spaces

JESÚS GONZÁLEZ

PETER LANDWEBER

For real projective spaces, (a) the Euclidean immersion dimension, (b) the existence of
axial maps and (c) the topological complexity are known to be three facets of the same
problem. But when it comes to embedding dimension, the classical work of Berrick,
Feder and Gitler leaves a small indeterminacy when trying to identify the existence
of Euclidean embeddings of these manifolds with the existence of symmetric axial
maps. As an alternative we show that the symmetrized version of (c) captures, in
a sharp way, the embedding problem. Extensions to the case of even-torsion lens
spaces and complex projective spaces are discussed.
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Dedicated to the memory of Bob Stong

1 Main result

The Euclidean immersion and embedding questions for projective spaces were topics
of intense research during the beginning of the second half of the last century. In the
case of real projective spaces, the immersion problem has recently received a fresh
push, partly in view of a surprising reformulation in terms of a basic concept arising in
robotics, namely, the motion planning problem of mechanical systems. In more detail,
Farber, Tabachnikov and Yuzvinsky [14] showed that for r ¤ 1; 3; 7, the immersion
dimension of Pr —the r –dimensional real projective space—agrees with TC.Pr /� 1,
one unit less than the topological complexity of Pr (see Definition 1.1 and Theorem
4.2 below). In this paper we accomplish a completely analogous goal by connecting
the Euclidean embedding dimension of Pr with Farber–Grant’s notion of symmetric
motion planning. Before stating our main results, we recall the relevant definitions.

The Schwarz genus [24] of a fibration pW E!B , denoted by genus.p/, is the smallest
number of open sets U covering B in such a way that p admits a (continuous) section
over each U .
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Definition 1.1 The topological complexity of a space X , TC.X /, is defined as the
genus of the endpoints evaluation map evW P .X /!X �X , where P .X / is the free
path space X Œ0;1� with the compact-open topology.

TC.X / is a homotopy invariant of X . Thinking of X as the space of configurations of
a given mechanical system, TC.X / gives a measure of the topological instabilities in a
motion planning algorithm for X —a perhaps discontinuous (but global) section of the
map ev. We refer the reader to Farber [10] for a very useful survey of results in this
area, and to the Farber’s book [11] for a thorough introduction to the new mathematical
discipline of topological robotics.

We now come to the main definition (introduced and explored by Farber and Grant [12]).
For a topological space X , let �X be the diagonal in X �X and ev1W P1.X /!

X �X ��X be the restriction of the fibration ev in Definition 1.1. Thus P1.X / is the
subspace of P .X / consisting of paths  W Œ0; 1�!X with  .0/¤  .1/. Note that ev1

is a Z=2–equivariant map, where Z=2 acts freely on both P1.X / and X �X ��X ,
by running a path backwards in the former, and by switching coordinates in the latter.
Let P2.X / and B.X; 2/ denote the corresponding orbit spaces, and let ev2W P2.X /!

B.X; 2/ denote the resulting fibration.

Definition 1.2 With the above conditions, the symmetric topological complexity of X ,
TCS .X /, is defined by TCS .X /D genus.ev2/C 1.

Finally, let E.r/ stand for the Euclidean embedding dimension of Pr . Then, our main
result is:

Theorem 1.3 For r>15 as well as for r 2f1; 2; 4; 8; 9; 13g, the symmetric topological
complexity of Pr satisfies TCS .Pr /DE.r/C 1.

Before introducing an alternative characterization of TCS .Pr / (which implies Theorem
1.3), it is convenient to say a few words (to be expanded in Section 4) comparing the
immersion and the embedding situations. It is known that the key concept bridging
the immersion dimension of Pr to its topological complexity is that of an axial map.
Not only do axial maps capture, in a sharp way, the immersion problem for projective
spaces (see Adem, Gitler and James [1]), but as shown by Farber, Tabachnikov and
Yuzvinsky [14], they conveniently encode instructions for the motion planning problem
associated to TC.Pr /. Now, the work of Berrick, Feder and Gitler [4] does show a
relation, at least in Haefliger’s metastable range, between embeddings of real projective
spaces on the one hand and symmetric axial maps on the other. However, as of
today, this relation has an unsettled indeterminacy of one dimension—spelled out
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in (14) below. Instead, motivated by the main trick in [4] (see the proof of Proposition
2.2), our approach leads to a direct proof of Theorem 1.3. To this end we actually need
to give up using the concept of symmetric axial map, and replace it by that of the level
of an involution (as defined in (1) below). This allows us to get the following sharp
and unrestricted characterization for the symmetric topological complexity of Pr .

Theorem 1.4 For all values of r , TCS .Pr /D level .Pr �Pr ��Pr ;Z=2/C 1.

Here the pair .Pr �Pr ��Pr ;Z=2/ stands for the Z=2–action on Pr �Pr ��Pr that
interchanges coordinates, whereas the level of a principal Z=2–action on a space X ,
level.X;Z=2/, is defined by the formula

(1) level.X;Z=2/Dminf` > 0 W 9 Z=2–equivariant map X ! S`�1
g

where the sphere is considered with the antipodal Z=2–action (see Dai and Lam [5]).

The paper is organized as follows. Section 2 is devoted to the proof of Theorem
1.4. After observing that Theorem 1.3 is a consequence of Theorem 1.4 together
with Haefliger’s characterization of Euclidean embeddings of smooth manifolds, in
Section 3 we make an ad hoc analysis of the numerical values of TCS .Pr / for those
cases of r outside Haefliger’s metastable range. Section 4 surveys the relation of
axial maps to immersion dimension [1], and to (not necessarily symmetric) topological
complexity [14], focusing on the way those ideas compare to (and motivate) our results.
In Section 5 we study the symmetric topological complexity of m–torsion lens spaces,
for m even. Here our results are weaker than the case mD 2, due in part to the fact
that, as the 2-torsion increases, the end terms in (15) below start measuring different
phenomena, thus preventing us from closing the cycle of inequalities. Yet, we manage to
give alternative characterizations (Theorem 5.3 and Proposition 5.5) for the symmetric
topological complexity of even-torsion lens spaces. One of these characterizations
leads to a particularly convenient upper bound (Corollary 5.4) which depends not only
on the dimension of the lens space, but also on its torsion. Theorem 5.8 illustrates the
use of such an upper bound in the context of nonsymmetric topological complexity.
In the final Section 6 we compute the numerical value of the symmetric topological
complexity of complex projective spaces.

Acknowledgements The first author gratefully acknowledges the kind support re-
ceived from Professor Michael Farber and the Department of Mathematical Sciences
at Durham University during a visit in October 2008. Michael Farber’s suggestions
to an earlier version of this work were very helpful. In particular, Farber noticed that
our proof of Theorem 1.3 actually leads to the proof of Theorem 1.4 and that our
results and methods in Section 5 (originally written for 2e –torsion) apply just as well
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2 Main proof

There are three ingredients in the proof of Theorem 1.4. For the first one we note
that Corollary 1 on page 97 of Schwarz [24] affirms that the canonical Z=2–cover
Sn�1 ! Pn�1 classifies Z=2–covers of genus at most n. Explicitly, the principal
Z=2–actions on a space X which admit a Z=2–equivariant map X ! Sn�1 are
precisely those for which the canonical projection pW X !X=.Z=2/ has genus� n.
In particular,

(2) genus.p/D level.X;Z=2/:

Propositions 2.1 and 2.2 below are the other two auxiliary ingredients. They are based on
the following preliminary constructions. For a path  2P .Pr /, let y W Œ0; 1�!Sr be any
lifting of  through the canonical projection Sr!Pr , and then set f . / to be the class
of .y .0/; y .1// in the Borel construction Sr�Z=2Sr D .Sr �Sr / =.�x;y/� .x;�y/.
This gives a Z=2–equivariant commutative diagram

(3)

P .Pr /
f //

ev
$$JJJJJJJJJ

Sr �Z=2 Sr

�
xxpppppppppp

Pr �Pr

where � is the canonical projection, and the Z=2–action on Sr �Z=2 Sr switches
coordinates (and the Z=2–actions on P .Pr / and Pr �Pr are the obvious extensions
of the respective Z=2–actions on P1.Pr / and Pr �Pr ��Pr described just before
Definition 1.2). In particular, by restricting to Pr �Pr ��Pr and then passing to
Z=2–orbit spaces, (3) yields corresponding triangles:

(4)

P1.Pr /
f1 //

ev1 ''OOOOOOOOOOO
E1

�1xxqqqqqqqqqqq

Pr �Pr ��Pr

P2.Pr /
f2 //

ev2 %%KKKKKKKKKK
E2

�2{{vvvvvvvvv

B.Pr ; 2/

Proposition 2.1 For i 2 f1; 2g, genus.evi/D genus.�i/.

Proof It suffices to construct a fiber-preserving Z=2–equivariant map g1W E1 !

P1.Pr / running backwards in the left triangle of (4). To this end, we use a straightfor-
ward adaptation of the idea in the first part of the proof of [14, Proposition 17]. An
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explicit model for E1 is the quotient of Sr�Sr� z� by the relation .x;y/� .�x;�y/,
where z� � Sr �Sr is given by z� D f.x;y/ 2 Sr �Sr jx ¤ ˙yg. In these terms,
the Z=2–action on E1 interchanges coordinates. Then, the required map g1 takes the
class of a pair .x1;x2/ into the curve Œ0; 1�! Sr ! Pr , where the second map is the
canonical projection, and the first map is given by

(5) t 7! �.tx2C .1� t/x1/:

Here �W RrC1�f0g ! Sr is the normalization map.

The main trick in [4] is adapted for the proof of the following result.

Proposition 2.2 If �W Pr �Pr ��Pr !B.Pr ; 2/ stands for the canonical projection
associated to the involution .Pr � Pr ��Pr ;Z=2/ in Theorem 1.4, then genus.�/D
genus.�2/.

Proof As indicated in the proof of Proposition 2.1, E2 is the quotient of Sr �Sr � z�

by the relations

(6) .�x;�y/� .x;y/� .y;x/:

Likewise, the space Pr �Pr ��Pr is the quotient of Sr �Sr � z� by the relations

(7) .�x;y/� .x;y/� .x;�y/:

Moreover, the map

(8) Sr
�Sr

� z�
‰
�! Sr

�Sr
� z�; ‰.x;y/D

�
�.xCy/ ; �.x�y/

�
;

where � is the normalization map at the end of the proof of Proposition 2.1, sends
relations (6) into relations (7) and vice versa. Moreover, the resulting maps ‰0W E2!

Pr � Pr ��Pr and ‰00W Pr � Pr ��Pr ! E2 are easily seen to be equivariant with
respect to the Z=2–action on E2 coming from �2 in the right triangle of (4) and on
Pr �Pr ��Pr coming from interchanging coordinates.

The result is now a direct consequence of (2).

Proof of Theorem 1.4 Use, in this order, Definition 1.2, Proposition 2.1, Proposition
2.2 and (2).

Algebraic & Geometric Topology, Volume 9 (2009)



478 Jesús González and Peter Landweber

3 Haefliger’s metastable range

Most cases in Theorem 1.3 will follow directly from Theorem 1.4 and the following
characterization of smooth embeddings (proved in [17, Théorème 10 ]).

Theorem 3.1 (Haefliger) Let 2m� 3.nC 1/. For a smooth compact n–dimensional
manifold M , there is a surjective map from the set of isotopy classes of smooth
embeddings M � Rm onto the set of Z=2–equivariant homotopy classes of maps
M �! Sm�1 . Here Z=2 acts antipodally on Sm�1 and by interchanging coordinates
on M � DM �M ��M .

Of course, all we need from Theorem 3.1 is the fact that, under the stated hypothesis
(the so-called metastable range), the existence of a smooth embedding M � Rm is
equivalent to the existence of a Z=2–equivariant map M �! Sm�1 . Although not
relevant for our immediate purposes, it is worth remarking that the surjective map in
Theorem 3.1 is explicit (see (10)) and that it is in fact bijective when 2m> 3.nC 1/.

Proof of Theorem 1.3 An immediate consequence of Proposition 3.2 below is that the
cases with r � 8 in Theorem 1.3 lie within the metastable range hypothesis in Theorem
3.1. Therefore, in those cases, Theorem 1.3 follows from Theorems 1.4 and 3.1. The
few cases in Theorem 1.3 outside Haefliger’s metastable range (r 2 f1; 2; 4g) will be
handled at the end of this section. (It would be interesting to know whether any one
of the remaining cases r 2 f3; 5; 6; 7; 10; 11; 12; 14; 15g gives an actual exception to
Theorem 1.3.)

Recall that Pr � Pr ! Ps is said to be an axial map if it is homotopically nontrivial
over each axis. From [1, Lemma 2.1] we know that, when r > 15, an axial map
Pr � Pr ! Ps can exist only for 2s > 3r (in view of Theorem 4.3 below, such an
axial map that in addition was symmetric would yield an embedding within Haefliger’s
metastable range). We will need to consider the following slight improvement.

Proposition 3.2 For r 2 f8; 9; 13g or r > 15, an axial map Pr � Pr ! Ps can exist
only when 2s � 3.r C 1/.

Proof The main result in [1] (see Theorem 4.1 below) implies that the axial map
hypothesis can be replaced by an immersion Pr # Rs , and we need to prove that,
for r as stated, the smallest such s satisfies 2s > 3r C 2. Cases with r 2 f8; 9; 13g

follow from inspection of [6]. For r > 15 we revisit the argument in the proof of [1,
Lemma 2.1]. Pick � � 4 with 2� � r < 2�C1 . Each of the cases
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� r � 2�C 3

� r D 2�C1� 1

� 2�C 2��1C 2� r � 2�C1� 3

can be dealt with by the corresponding nonimmersion result stated in [1].

Assume 2�C4� r �2�C2��1C1 and choose � 2f1; 2; : : : ; ��2g with 2�C2�C2�

r � 2� C 2�C1C 1. From [7], P2�C2�C2 does not immerse in Euclidean space of
dimension 2�C1C 2�C1� 4. Therefore, in the optimal immersion Pr # Rs , we must
have s � 2�C1C 2�C1� 3, and this easily yields the required inequality 2s > 3r C 2

when � � 3 or � � 5. For the smaller cases with �D 4 and 1� � � 2, the required
2s > 3r C 2 follows, as above, from direct inspection of [6].

It remains to consider the case r D 2�C1� 2. As the case �D 4 follows again from
inspection of [6], we assume further �� 5. Let mD 2��1C2��2C2��3 . From [7] we
know that P2.mC˛.m/�1/ does not immerse R4m�2˛.m/ , where ˛.m/ is the number
of ones appearing in the dyadic expansion of m. Therefore, in the optimal immersion
Pr # Rs , we must have s � 4m� 2˛.m/C 1D 2�C1C 2�C 2��1� 5, from which
one easily deduces the required inequality 2s > 3r C 2.

We close this section by describing what we know about the numerical value of TCS .Pr /

for the small values of r not covered by the hypothesis of Proposition 3.2, ie, when
Haefliger’s metastable range hypothesis in Theorem 1.3 might fail to hold.

The starting point is

(9) TC.Pr /� TCS .Pr /�E.Pr /C 1:

The first inequality has been proved (for any space and not only for projective spaces)
in [12, Corollary 9], whereas the second inequality holds without restriction on r in
view of Theorem 1.4 and since the construction of the map in Theorem 3.1 makes no
use of Haefliger’s range (see (10) below). In our current range r � 15, the precise
numeric value of the lower bound for TCS .Pr / coming from the first inequality in (9)
is determined by [6; 14]. As for the upper bound, the term E.Pr / on the right hand side
of (9) can even be replaced by the potentially smaller ETOP.Pr /, the dimension of the
smallest Euclidean space where Pr admits a topological embedding. Indeed, such an
embedding gW Pr ,!Rd determines a Z=2–equivariant map zgW Pr�Pr��Pr !Sd�1

by the usual formula

(10) zg.a; b/D
g.a/�g.b/

jg.a/�g.b/j
:
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Now, the low dimensional cases under consideration either have r � 7 or r D 10,
11, 12, 14, 15. For r D 7 and r D 15 the use of ETOP.Pr / gives more accurate
information than that available for E.Pr /. Indeed, the PL embeddings P7 ,! R10

and P15 ,!R23 constructed in [23] improve by 2 and 1 units, respectively, the upper
bound in (9) obtained from the best smooth embedding results currently known [6].
Also worth noticing is the fact that Rees’ upper bound

level.P6
�P6
��P6 ;Z=2/� 9;

obtained in [22, Corollary 11], improves by 2 units the upper bound in (9). On the
other hand, it is elementary to check that, in all cases with r � 7, [12, Theorem 17]
improves by one unit the lower bound in (9).

Table 1 summarizes the resulting improved bounds `.r/� TCS .Pr /� u.r/. Note that
the case r D 4 does lie within Haefliger’s metastable range and together with the cases
r D 1; 2 gives the three missing instances in the proof of Theorem 1.3.

r 1 2 3 4 5 6 7 10 11 12 14 15

u.r/ 3 5 6 9 10 10 11 18 19 22 24 24

`.r/ 3 5 5 9 9 9 9 17 17 19 23 23

Table 1: Upper and lower bounds for TCS .Pr / for low values of r

Examples 3.3 Let ı D .0; 1; 2/, i � .1; 3; 4/ and r D 2i C ı . According to [6] and
Theorems 1.3 and 4.2 (below), we have

(11) TCS .Pr /�TC.Pr /D .1; 2; 1/:

This situation contrasts with the fact, proved in Section 6, that the first inequality in (9)
becomes an equality for all complex projective spaces. Actually, in view of the main
result in [20], there is even a (weird) possibility that the left hand side of (11) might turn
out to be an unbounded function of r (compare to [12, Example 28]). Other situations
with a behavior resembling that in (11) are given by spheres: according to [9; 12],
TCS .Sr /�TC.Sr /D 0 for n even, whereas TCS .Sr /�TC.Sr /D 1 for n odd.

4 Relation to axial maps

In Sections 1 and 2 we made it clear that, in characterizing the embedding dimension
for real projective spaces, one might prefer to avoid the use of symmetric axial maps.
However, in this section we analyze the way Theorem 1.3 is related to such maps.
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Our justification for including this section is three-fold. First, it shows how our proof
of Theorem 1.3 arose (compare the map ‰ in (13) below with that in (8)). Second,
it illustrates the use (and, as observed in the next section, the limitations) of the
constructions in Section 4.2 when applied to the case of even-torsion lens spaces. And
third, this material will allow us to make explicit comparisons with the maps arising
in the next section (eg, (17), (18) and (19) as generalized forms of (12)) towards a
characterization of the symmetric topological complexity of lens spaces (Theorem 5.3
and Proposition 5.5).

The section has been divided into three short subsections. We start with a brief review
of the axial map interpretation for the immersion problem of real projective spaces
(Section 4.1) and the corresponding (partial) interpretation known before this paper for
embeddings (Section 4.2). The main goal then is to compare our methods in Section 2
to those in [4] (Section 4.2) and [14] (Section 4.3).

There are no new results in this section; instead, it has a retrospective flavor, written
much in the way the ideas in this paper originally arose. The reader interested in
our analysis and results on the symmetric topological complexity of lens spaces and
complex projective spaces can safely skip this section and proceed directly to the final
Sections 5 and 6, respectively.

4.1 Axial maps, immersions and topological complexity

Activities were launched with Hopf’s early work [19] constructing, for n > r , a
Euclidean n–dimensional embedding for Pr from a given symmetric nonsingular
bilinear map ˛W RrC1�RrC1!RnC1 . By restricting to unit vectors (and normalizing),
this yields a symmetric Z=2–biequivariant map z̨W Sr �Sr ! Sn , ie, one satisfying
conditions (12) below. Note that z̨ covers an axial map y̨W Pr � Pr ! Pn that, in
addition, is symmetric in the sense that the relation y̨.a; b/D y̨.b; a/ holds for a; b2Pr .

Using Hirsch’s characterization of smooth Euclidean immersions in terms of the geo-
metric dimension of the normal bundle, the relevance of (not necessarily symmetric)
axial maps was settled in [1] by showing:

Theorem 4.1 For n> r , the existence of an axial map Pr � Pr ! Pn is equivalent to
the existence of a smooth immersion Pr # Rn .

The hypothesis n> r is needed only for r D 1; 3; 7. In those cases Pr is parallelizable
and has an optimal Euclidean immersion in codimension 1; however the complex,
quaternion and octonion multiplications yield axial maps with nD r .

But the connection with robotics was established after 30 years with M Farber’s work
(initiated in [8; 9]) on the motion planning problem. The main result in [14] is:
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Theorem 4.2 For r ¤ 1; 3; 7, TC.Pr / is the smallest integer n such that there is an
axial map Pr � Pr ! Pn�1 . Consequently, TC.Pr /� 1 is the smallest dimension of
Euclidean spaces where Pr can be smoothly immersed. This assertion holds for the
three exceptional values of r provided TC.Pr /� 1 is replaced by TC.Pr /.

4.2 Symmetric axial maps and embeddings

As shown in [4], the embedding problem for real projective spaces can be closely
modeled by keeping Hopf’s original symmetry condition for axial maps. We give below
a quick review of some of the main ideas in [4].

Start by observing that a symmetric axial map y̨W Pr �Pr ! Ps is covered by a map
z̨W Sr �Sr ! S s satisfying

(12) �z̨.x;y/D z̨.�x;y/D z̨.x;�y/ and z̨.x;y/D z̨.y;x/

for x;y 2 Sr . Under these conditions it is elementary to check that the composite

(13) VrC1;2
‰
�! Sr

�Sr z̨
�! S s; ‰.x;y/D

�
xCy
p

2
;
x�y
p

2

�
is a D4 –equivariant map. Here D4 is the dihedral group written as the wreath product
.Z=2�Z=2/Ì Z=2 where Z=2 acts on Z=2�Z=2 by interchanging factors. This
group acts on S s via the canonical projection .Z=2�Z=2/Ì Z=2! Z=2, and on
VrC1;2 (the Stiefel manifold of orthonormal 2–frames in RrC1 ) via the restricted left
D4 –action in Sr �Sr , where Z=2�Z=2 and Z=2 act on Sr �Sr by the product
antipodal-action and by switching coordinates, respectively.

On the other hand, with the notation z�D f.x;y/ 2 Sr �Sr jx ¤˙yg in the proof
of Proposition 2.1, the map H W .Sr � Sr � z�/� Œ0; 1�! Sr � Sr � z� defined by
H.u1;u2; t/D .zu1; zu2/ where

zu1 D
u1C t.v1�u1/

jju1C t.v1�u1/ jj
zu2 D

u2C t.v2�u2/

jju2C t.v2�u2/ jj

v1 D w1Cw2 v2 D w1�w2

w1 D
u1Cu2p

1Chu1;u2i
w2 D

u1�u2p
1� hu1;u2i

gives a D4 –equivariant deformation retraction of Sr �Sr � z� onto VrC1;2 . (Figure 1
depicts the case in which the angle between u1 and u2 is less than 90 degrees; the
situation for an angle between 90 and 180 degrees is similar, but lowering the angle to
be 90 degrees.) Then, composing the retraction H.�; 1/ with z̨ ı‰ and passing to
(Z=2�Z=2)-orbit spaces, we get a Z=2–equivariant map .Pr /�! S s .
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Figure 1: The D4 –equivariant deformation retraction H

In view of Theorem 3.1, the above construction settles the first statement of Theorem 4.3
below. The bulk of the work in [4] uses Haefliger and Hirsch’s fundamental work [17;
18] on embeddings and immersions in the stable range to establish the second statement
of Theorem 4.3.

Theorem 4.3 The existence of a symmetric axial map Pr � Pr ! Ps implies the
existence of a smooth embedding Pr � RsC1 , provided 2s > 3r . The existence
of a smooth embedding Pr � Rs implies the existence of a symmetric axial map
Pr �Pr ! Ps .

The arguments in [4] go a bit further. Using the full power of Theorem 3.1, it is possible
to explicitly relate, for instance, isotopy classes of embeddings to symmetric homotopy
classes of symmetric axial maps. We will not make use of these more complete results,
though.

Theorem 4.3 can be interpreted as follows. Let aS .r/ denote the smallest integer k

for which there exists a symmetric axial map Pr � Pr ! Pk . It is immediate from
Theorem 4.3 that, at least for r as in Proposition 3.2,

(14) E.r/D aS .r/C ı with ı D ı.r/ 2 f0; 1g:

To the best of our knowledge, the explicit value of ı (as a function of r ) remains an open
question. As explained in Section 1, Theorems 1.3 and 1.4 avoid this ı indeterminacy
by replacing aS .r/ with TCS .Pr /.

4.3 Symmetric axial maps and symmetric TC

The goal of this section is to offer a direct comparison between our methods and those
used in [14] for the nonsymmetric case. To this end, we start by observing the following
obvious consequence of (14) and the second inequality in (9).

Corollary 4.4 For any r , TCS .Pr /� aS .r/C 2.
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In view of Theorem 1.3, this can be thought of as extending the E vs. aS relation
in (14) within the topological complexity viewpoint. Of course, for r as in Theorem
1.3, the above inequality is within one unit of being an equality.

Proof Corollary 4.4 can be settled with a straightforward adaptation of the idea in the
first part of the proof of [14, Proposition 17]. Namely, let z̨W Sr�Sr!S s satisfy (12),
with s D aS .r/. For 1� i � sC 1, let ˛i W S

r �Sr !R be the i –th real component
of z̨ , and set Ui to be the open subset of Pr � Pr ��Pr consisting of pairs .L1;L2/

of lines with ˛i.`1; `2/¤ 0, for representatives j̀ 2Lj \Sr , j D 1; 2. Consider the
function si W Ui!P1.Pr / defined as follows: given .L1;L2/2Ui , choose elements j̀

as above with ˛i.`1; `2/ > 0. The two such possibilities .`1; `2/ and .�`1;�`2/ give
the same orientation for the 2–plane P .L1;L2/ generated by L1 and L2 . Under these
conditions, si.L1;L2/ is the path rotating L1 to L2 in the oriented plane P .L1;L2/.

Evidently si is a continuous section of the fibration ev1 over Ui . It is also Z=2–
equivariant, in view of the last condition in (12). Therefore, it induces a corresponding
(continuous) section xsi of the fibration ev2 over the image of Ui under the canonical
(open) projection Pr �Pr ��Pr !B.Pr ; 2/. But Pr �Pr ��Pr is covered by the Ui ’s,
so we deduce genus.ev2/� sC 1. Adding 1 gives the conclusion in Corollary 4.4.

Next, we elaborate on the main difference between our methods and those in [14].
Let � be the Hopf line bundle over Pr and consider the exterior tensor product �˝ �
over Pr �Pr . Let I.r/ denote the smallest integer k such that the iterated .kC 1/–
fold Whitney multiple of �˝ � admits a nowhere vanishing section. Finally, let a.r/

denote the smallest integer k for which there is a (perhaps nonsymmetric) axial map
Pr �Pr ! Pk . The main results in [14], Corollary 5 and Proposition 17, give

(15) I.r/C 1� T C.Pr /� a.r/C 1;

an assertion a bit sharper than its symmetric analogue (Theorem 1.3 and Corollary
4.4). The punch line then comes from the classical fact that, for n ¤ 1; 3; 7, both
I.r/ and a.r/ agree with the dimension of the smallest Euclidean space where Pr

admits a smooth immersion (in the case of I.r/ see, for instance, the proof of [16,
Proposition 2.7]). However, there is no sectioning-Whitney-multiples interpretation
available for a symmetric version of (15). Instead, as detailed below, the solution comes
from an adaptation of the ideas in [4].

Recall the Borel construction Sr�Z=2Sr introduced in Section 2. The 2–fold Cartesian
product of the canonical projection Sr ! Pr factors through Sr �Z=2 Sr yielding
the Z=2–covering space � W Sr �Z=2 Sr ! Pr � Pr in (3). It is well known that � is
the sphere bundle associated to �˝ �! Pr �Pr (see for instance [26, Lemma 3.1]).
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The relevance of such an observation comes from [24, Theorem 3 and final remarks in
Chapter II], which affirms that the Whitney multiple k.�˝ �/ admits a global nowhere
zero section for k D genus.�/, that is, I.r/C 1� genus.�/. In these terms, the work
in [14] for settling the first inequality in (15) comes from observing that the topological
complexity of Pr is bounded from below by genus.�/. (The second inequality in (15)
is actually settled in [14] with a sharpening of the argument we gave above for proving
Corollary 4.4.) This lower bound is easily settled in [14, Theorem 3] from diagram (3).
In fact, as a byproduct of the methods in [14], it is known that

(16) TC.Pr /D genus.�/:

But, in order to get up to this key stage in the symmetric situation, we needed to adapt
the main trick in [4]. Indeed, as shown in Section 2, Propositions 2.1 and 2.2 provide
us with the needed substitute for (16), from which the proof of Theorems 1.3 and 1.4
easily follows.

5 Lens spaces

Unlike the case of real projective spaces, the symmetric topological complexity of a
lens space L2nC1.m/—the orbit space of the standard Z=m–action on S2nC1 —is
in general not related to its embedding dimension nor, for that matter, to the level
of the switching involution on L2nC1.m/�L2nC1.m/��L2nC1.m/ . And here is an
extreme example: while the high-torsion lens spaces L2nC1.m/ in Section 5.3 have
symmetric topological complexity equal to 4nC � , with � 2 f2; 3g (see (22)), the
level of the corresponding switching involution is at most 2nC 3, for all odd m (see
Rees [22]).

In retrospect, the problem arises (in the 2–local situation) from the fact that the (non-
symmetric) topological complexity of L2nC1.2e/ actually differs from the immersion
dimension of this manifold, and the difference gets larger as e increases, until it attains
a certain stable value (see the remark following Theorem 5.7).

Following the nonsymmetric lead, in this section we (a) indicate how one can charac-
terize the symmetric topological complexity of an even-torsion lens space (Theorem
5.3 and Proposition 5.5) and (b) point out concrete differences with respect to a similar
characterization for its embedding dimension. To better appreciate the picture, it will
be convenient to start by making a summary of, and comparing to, the known situation
in the nonsymmetric case.
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5.1 e–axial maps, immersions and embeddings of L2nC1.2e/

The well known relation (Theorem 4.1) between Euclidean immersions of real projective
spaces and (not necessarily symmetric) axial maps has been generalized in [2] for
2e –torsion lens spaces to prove that, with the possible exceptions of nD 2; 3; 5, the
existence of an immersion L2nC1.2e/# Rm is equivalent to the existence of an e–
axial map P2nC1�Z=2e�1 P2nC1! Pm , that is, a map that yields a standard axial map
when precomposed with the canonical projection P2nC1 �P2nC1! P2nC1 �Z=2e�1

P2nC1 . Here the notation P2nC1 �Z=2e�1 P2nC1 refers to the usual Borel construction
with respect to the standard free Z=2e�1 –action on P2nC1 with orbit space L2nC1.2e/.

At the level of covering spaces, the e–axial map condition translates into having a map
z̨W S2nC1 �S2nC1! Sm satisfying the relations

(17) z̨.!x;y/D z̨.x; !y/ and z̨.�x;y/D�z̨.x;y/

for x;y 2S2nC1 and ! 2Z=2e�S1 —these correspond to the first group of conditions
in (12). Our first objective is to indicate how the slight variation in (18) below of
the obvious symmetrization of these conditions describes the Euclidean embedding
dimension for (arbitrary-torsion) lens spaces.

For an integer m � 2, the product action of Z=m�Z=m on the Cartesian product
S2nC1�S2nC1 extends to a left action of the wreath product Gm D .Z=m�Z=m/Ì
Z=2, where Z=2 acts on S2nC1�S2nC1 by interchanging axes. This action is stable on
the orbit configuration space FZ=m.S

2nC1; 2/ consisting of pairs in S2nC1 �S2nC1

generating different Z=m–orbits (this is the obvious generalization of the space
Sr �Sr � z� found in Section 4.2 as well as in the proofs of Propositions 2.1 and 2.2).
The quotient Fn;mDFZ=m.S

2nC1; 2/=.Z=m�Z=m/ has an involution induced by the
action of Gm on the orbit configuration space, and this gives a Z=2–equivariant model
for L2nC1.m/�L2nC1.m/��L2nC1.m/ , where Z=2 acts by switching coordinates.
In these terms, Theorem 3.1 translates into:

Lemma 5.1 Assume k � 3.nC 1/. L2nC1.m/ can be smoothly embedded in Rk if
and only if there is a Z=2–equivariant map Fn;m! Sk�1:

Of course, having a Z=2–equivariant map as above is equivalent to having a Gm –
equivariant map z̨W FZ=m.S

2nC1; 2/ ! Sk�1 , where Gm acts on Sk�1 via the
canonical projection .Z=m�Z=m/Ì Z=2! Z=2. Explicitly, z̨ must satisfy

(18) z̨.!x;y/D z̨.x;y/D z̨.x; !y/ and z̨.x;y/D�z̨.y;x/

for x;y 2 S2nC1 and ! 2 Z=m� S1 . As shown in Section 4.2, in the case mD 2,
the key connection between (18) and the symmetrized version of (17) is given by the
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ideas in [4], which teach us how to take care of the deleted “equivariant diagonal” in
FZ=2.S

2nC1; 2/. Unfortunately, we have not succeeded in obtaining such a connection
for larger values of m. The major problem seems to be given by the apparent lack1 of
a suitable equivariant deformation retraction of L2nC1.m/�L2nC1.m/��L2nC1.m/

that plays the role of V2nC2;2 in the m D 2 arguments of [4] described in Section
4.2. It is worth remarking that, in the symmetric m D 2 situation of Section 2, we
do make an indirect use—through the map ‰ in (8)—of this equivariant deformation
retraction. This problem will reappear, in a slightly different form, in regard to a
potential characterization for the symmetric topological complexity of m–torsion lens
spaces in terms of the Z=m–biequivariant maps of the next subsection (see the remark
following Corollary 5.4).

5.2 Symmetric biequivariant maps and TCS of lens spaces

As shown in [16], when m is even the (nonsymmetric) topological complexity of
L2nC1.m/ turns out to be (perhaps one more than) the smallest odd integer k for
which there is a Z=m–biequivariant map z̨W S2nC1 � S2nC1! Sk , that is, a map
satisfying the (stronger than (17)) requirements

z̨.!x;y/D z̨.x; !y/D ! z̨.x;y/;

for x;y 2S2nC1 and ! 2Z=m�S1 . Alternatively, if cW S2nC1!S2nC1 stands for
complex conjugation in every complex coordinate, then by precomposing with 1� c , a
Z=m–biequivariant map as above can equivalently be defined through the requirements

(19) z̨.!x;y/D ! z̨.x;y/D z̨.x; !�1y/:

In analogy to the aS notation introduced at the end of Section 4.2 to measure the
existence of symmetric axial maps, the following definition (which, up to composition
with 1�c , corresponds to the symmetrized version of the number sn;m defined in [16])
is intended to measure the existence of symmetric Z=m–biequivariant maps.

Definition 5.2 For integers n and m, denote by bS
n;m the smallest integer k such that

there is a map z̨W S2nC1 �S2nC1! S2k�1 satisfying (19) and

(20) z̨.x;y/D z̨.y;x/

for x;y 2 S2nC1 and ! 2 Z=m� S1 .

1Using the gradient flow navigation technique in [11, Section 4.4], Armindo Costa’s current PhD work
at Durham University offers a nice explanation of the way this problem arises.
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The next result gives our characterization for (half the value of) the symmetric topolog-
ical complexity of even-torsion lens spaces. The proof will be postponed to the end of
this section.

Theorem 5.3 For even m, the integral part of 1
2

TCS .L2nC1.m// agrees with the
smallest integer k such that there is a map z̨W FZ=m.S

2nC1; 2/ ! S2k�1 satisfy-
ing (19) and (20) for x;y 2 S2nC1 and ! 2 Z=m� S1 .

Most of the work in [12] goes in the direction of giving strong lower bounds for TC S .
However, there seems to be a relative lack of suitable upper bounds; the only ones2 we
are aware of are derived, some way or other, from Schwarz’s general estimate for the
genus of a fibration F !E!B in terms of the dimension of B and the connectivity
of F [24, Theorems 5 and 50 ]. For instance, in [12, Proposition 10] the upper bound

(21) TCS .M /� 2d C 1

is derived for any d –dimensional closed smooth manifold M . In the case M D

L2nC1.m/, Corollary 5.4 below (which is an immediate consequence of Theorem 5.3)
offers an alternative to (21) that takes not only dimension into account, but also torsion.
Theorem 5.8 below gives a typical example (in the nonsymmetric setting, though) of
the potential use of this kind of result.

Corollary 5.4 For even m, the integral part of 1
2

TCS .L2nC1.m// is no greater than
bS

n;m .

Remark In the direction of exploring a possible symmetric analogue of the main
result in [16], it would be useful to make precise how much the above upper bound
differs from being an equality. The main obstruction to such a goal seems to be the
apparent lack of an analogue for lens spaces of the map ‰ in (8) and (13).

We close this section with the proof of Theorem 5.3. As will quickly become clear,
the details are formally the same as in the mD 2 case. The m–analogue of (3), first
considered in [14, Theorem 3], reads:

P .L2nC1.m//
f //

ev ))SSSSSSSSSSSSSSS
.S2nC1 �S2nC1/

ı
.Z=m/

�ttiiiiiiiiiiiiiiiii

L2nC1.m/�L2nC1.m/

2The relativized notion of topological complexity [11, Sections 4.3 and 4.4] seems to lead to new such
upper bounds.
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The orbit space in the upper right corner is taken with respect to the diagonal Z=m–
action. The map f , whose definition is the obvious generalization of that in the
case m D 2, is Z=2–equivariant. In these conditions, the analogue of (4) and the
proof of Proposition 2.1 generalize in a straightforward way to produce the following
characterization of TCS .L2nC1.m//.

Proposition 5.5 For even m,

TCS .L2nC1.m//� 1D genus.�2;mW E2;m �! B.L2nC1.m/; 2//:

Here E2;m is the quotient of FZ=m.S
2nC1; 2/ by the two relations .x;y/� .!x; !y/

and .x;y/� .y;x/. Moreover, �2;m is a Z=m–cover with Z=m acting on E2;m as
! � Œx;y�D Œ!x;y�, for x;y 2 S2nC1 and ! 2Z=m� S1 , where Œx;y� stands for the
class of the pair .x;y/.

Remark The requirement that m be even is used in the construction of the map g1

in the proof of Proposition 2.1. The coordinates of a pair .x1;x2/ 2 FZ=m.S
2nC1; 2/

cannot be antipodal when m is even, so that (5) is well defined.

Theorem 5.3 is now a direct consequence of Proposition 5.5 and the following m–
analogue of (2) (proved in full generality in [24, Corollary 1, page 97]).

Lemma 5.6 The canonical Z=m–cover S2n�1!L2n�1.m/ classifies Z=m–covers
of genus at most 2n.

5.3 (Nonsymmetric) TC of high-torsion lens spaces

For an integer m� 2 we say that a lens space L2nC1.m/ is of high torsion when m

does not divide the binomial coefficient
�
2n
n

�
. A lens space that is not of high torsion

will be said to be of low torsion. The (nonsymmetric) topological complexity of a
high-torsion lens space has recently been settled in [13].

Theorem 5.7 (Farber–Grant) For a high-torsion lens space,

TC.L2nC1.m//D 4nC 2:

Remark This result is the analogue of the following (2–local) situation. For a fixed n,
the immersion dimension of L2nC1.2e/ is a bounded nondecreasing function of e

which, therefore, becomes stable for large e . As explained in [15] and [16, Section 6],
the stable value of the immersion dimension is expected to be attained roughly when 2e

does not divide
�
2n
n

�
—with an expected value close to the immersion dimension of the

complex projective n–dimensional space. A very concrete situation, which compares
TC to the immersion dimension of lens spaces, is illustrated in Example 5.10 below.
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The converse implication in the statement of Theorem 5.7 is true when m is even. In
fact, we extend Farber–Grant’s result to the first case outside the high-torsion range by
combining the techniques in [13] with the Z=m–biequivariant map characterization
of TC.L2nC1.m// discussed at the beginning of Section 5.2. The result arose from
an e-mail exchange, dating back to mid 2007, between the first author and Professor
Farber concerning the results in [13].

Theorem 5.8 Let m be even. If L2nC1.m/ is of low torsion, then TC.L2nC1.m//�

4n, with equality when m does not divide
�
2n�1

n

�
.

Proof Proposition 2.2 and Theorem 2.9 in [16] yield TC.L2nC1.m//� 4n. The rest
comes from [13, Theorem 11] (with k D n and `D n� 1).

Since
�
2n
n

�
D 2

�
2n�1

n

�
, the final part in the statement of Theorem 5.8 refers to a 2–local

property of m, namely, that the highest exponent of 2 in m agrees with that in
�
2n
n

�
.

Example 5.9 It is well known that the highest power of 2 dividing
�
2n
n

�
is ˛.n/,

the number of ones in the dyadic expansion of n. In particular, TC.L2nC1.2e// D

4n C 2 for e > ˛.n/. Theorem 5.8 now gives TC.L2nC1.2˛.n/// D 4n. Since
TC.L2nC1.2// is (one more than) the immersion dimension of the real projective
space L2nC1.2/ (Theorem 4.2), it is highly desirable to get as much information as
possible on the value of TC.L2nC1.2e// as e goes from ˛.n/� 1 down to 1.

Example 5.10 Table 2 summarizes the topological complexity and immersion dimen-
sion for L2nC1.2e/ and CPn in the case nD 2r C 1 with r � 1. The information is
taken from [6; 14] in the case of P2nC1 , from [15; 25] in the case of the immersion
dimension of L2nC1.2e/ for e � 2, from [14, Corollary 2] in the case of TC.CPn/

and from [3; 21] in the case of the immersion dimension of CPn . Note that in the case
under consideration TC.CPn/ is just half the stable value of TC.L2nC1.2e// (ie, for
e � 3). Such a behavior comes from the fact that CPn is simply connected and from
Schwarz’s estimates [24, Theorem 5] for the genus of a fibration.

P2nC1 L2nC1.4/ L2nC1.2e/ e � 3 CPn

TC 4n� 3 (r � 2) 4n 4nC 2 2nC 1

4n� 4 (r D 1)
Imm 4n� 4 4n� 3 4n� 2 4n� 3

Table 2: TC vs. Imm for 2e –torsion lens spaces (nD 2r C 1 , r � 1)
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We close this section by proposing what we believe should be an accessible challenge:
Determine the symmetric topological complexity of high-torsion lens spaces. We
remark that, in the high-torsion range, the inequalities

(22) 4nC 2� TCS .L2nC1.m//� 4nC 3

follow from (21), Theorem 5.7 and the analogue for lens spaces of the first inequality
in (9).

6 Complex projective spaces

The (nonsymmetric) topological complexity of the n–dimensional complex projective
space was computed in [14, Section 3] to be TC.CPn/D 2nC 1. In this brief final
section we show that the same value holds in the symmetric case.

Theorem 6.1 TCS .CPn/D 2nC 1:

Proof In view of the analogue for complex projective spaces of the first inequality
in (9), we only need to show that TCS .CPn/ � 2nC 1. The diagram of pullback
squares

P .CPn/

ev
��

P1.CPn/oo //

ev1

��

P2.CPn/

ev2

��
CPn �CPn CPn �CPn��CPnoo // B.CPn; 2/

where horizontal maps on the left are inclusions, and horizontal maps on the right are
canonical projections onto Z=2–orbit spaces, shows that the common fiber for the three
vertical maps is the path connected space �CPn . In particular, Theorem 50 in [24]
applied to ev2 gives

TCS .CPn/D genus.ev2/C 1�
dim .Y /

2
C 2

where Y is any CW complex having the homotopy type of B.CPn; 2/. The required
inequality follows since, as indicated below, there is such a model Y having dim.Y /D
4n� 2.

In the proof of [12, Proposition 10] it is observed that, for a smooth closed m–
dimensional manifold M , B.M; 2/ has the homotopy type of a (2m�1)-dimensional
CW complex. Although this is certainly enough for completing the proof of Theorem
6.1, we point out that an explicit (and smaller) model for B.CPn; 2/ was described by
Yasui in [27, Proposition 1.6]. We recall the details. The unitary group U.2/ has the
two subgroups:
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T 2 : diagonal matrices

G : matrices in T 2 together with those of the form
�

0 z1

z2 0

�
for z1; z2 2 S1 .

Consider the standard action of U.2/ on the complex Stiefel manifold WnC1;2 of
orthonormal 2–frames in CnC1 with quotient the Grassmann manifold of complex
2–planes in CnC1 . Yasui’s model for B.CPn; 2/ is the corresponding quotient
WnC1;2=G . Note that dim.G/ D dim.T 2/ D 2, so that the dimension of Yasui’s
model is

dim.WnC1;2/� 2D 4n� 2:
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