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Infinitesimal rigidity of a compact hyperbolic 4–orbifold
with totally geodesic boundary

TARIK AOUGAB

PETER A STORM

Kerckhoff and Storm conjectured that compact hyperbolic n–orbifolds with totally
geodesic boundary are infinitesimally rigid when n > 3 . We verify this conjecture
for a specific example based on the 4–dimensional hyperbolic 120–cell.

20F55, 20H10, 22E40

1 Introduction

Given a discrete subgroup � of a semisimple Lie group G , mathematicians have
long asked when � can be deformed inside G . On one side lie the great rigidity
theorems of Calabi, Weil, Mostow and Margulis, which roughly state that lattices in
most semisimple Lie groups have no deformations. On the other side lie the beautiful
deformation theories of discrete groups of 2� 2 matrices, famous exceptions to the
rigidity theorems. If G is not represented by 2� 2 matrices and � is not a lattice,
then nearly nothing is known about the possible deformations of � . Do reasonable
geometric conditions exist that guarantee rigidity or flexibility?

As a first step in this direction, Kerckhoff and Storm studied deformations of a specific
discrete subgroup of Isom.H4/, the isometry group of hyperbolic 4–space [5]. Of
particular interest in this study were groups with Fuchsian ends that are not Fuchsian,
meaning groups � < Isom.Hn/ whose convex hull is n–dimensional, has finite volume
and has totally geodesic boundary. This led them to the following rigidity conjecture.

Conjecture 1.1 If a discrete group � < Isom.Hn/ has Fuchsian ends, is convex
cocompact, is not Fuchsian and n> 3, then the inclusion map of � is infinitesimally
rigid.

Drop any of the three conditions on � and the conjecture becomes false. For any n,
there are many convex cocompact discrete groups in Isom.Hn/ that are not rigid, for
example if � is a free group. For n< 4 there exists a rich deformation theory applicable
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to discrete subgroups with Fuchsian ends. Even weakening the convex cocompact
condition to geometric finiteness makes the conjecture false. A counterexample is
presented in [5]. Nonetheless, it seems reasonable to expect that Conjecture 1.1 is true.

Before trying to prove the full conjecture, it seems prudent first to verify it in a nontrivial
case. This is our goal here. More specifically, we will construct an explicit reflection
group in Isom.H4/ satisfying the hypotheses of Conjecture 1.1 and verify that it is
infinitesimally rigid. The reflection group will be an infinite index subgroup of the
lattice generated by reflections in the 3–cells of the right-angled hyperbolic 120–cell
in H4 . This discrete group was chosen carefully to make the computations as simple
as possible. The group is described precisely in Section 3 and Section 4.

Acknowledgements The authors thank Daniel Allcock for his help with this research.
This research was partially supported by NSF grant DMS-0741604. Storm also re-
ceived support from the Roberta and Stanley Bogen Visiting Professorship at Hebrew
University.

2 Preliminaries

This section is a brisk introduction to a few necessary facts from hyperbolic geometry.
For a detailed introduction see, for example, Ratcliffe’s book [6].

Recall that Minkowski .nC1/–space, denoted as R1;n is a real .nC1/–dimensional
vector space equipped with the nondegenerate symmetric bilinear form

�
Ex; Ey

�
WD �x0y0C

nX
iD1

xiyi :

A vector with positive norm is a space-like vector, a vector of norm 0 is light-like and a
vector with negative norm time-like. The hyperboloid model of hyperbolic n–space Hn

is simply the set of vectors˚
Ex 2R1;n

ˇ̌
.Ex; Ex/D�1 and x0 > 0

	
;

with the metric induced by R1;n . Let O.1; n/ be the group of real .nC 1/� .nC 1/

matrices A such that AT KADK , where K is the .nC 1/� .nC 1/ diagonal matrix
with diagonal entries f�1; 1; 1; : : : ; 1g. In other words, O.1; n/ is the group of linear
transformations preserving the bilinear form . � ; � /. The group Gn WD Isom.Hn/ of
isometries of Hn is the open subgroup of O.1; n/ given by matrices preserving the
hyperboloid Hn . Note that orientation reversing isometries are included here; Gn has
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two connected components. Throughout the paper we will think of Gn as this explicit
group of matrices.

Consider a discrete finitely generated subgroup � of Gn with presentation

� D hr1; r2; : : : ; rM j w1 D w2 D : : :D wN D 1i ;

where each wi is a word in the generators rj . (The letter r stands for “reflection,”
which will soon be the focus.) To avoid degenerate cases, let us assume that � is not
virtually abelian and does not preserve a copy of Hm for m< n. If � is torsion-free,
then the quotient Hn=� will be a hyperbolic manifold. More generally, the quotient
will be an orbifold. If the quotient space has finite volume then � is called a lattice.
Here we will be mainly interested in infinite volume quotient spaces, where a little
more terminology is required.

Definition 2.1 The discrete group � has Fuchsian ends and is not Fuchsian if there
exists a closed � –invariant convex set C� �Hn that is an n–manifold with nonempty
totally geodesic boundary and such that the quotient C�=� has finite volume. Such
a � is convex cocompact if the quotient C�=� is compact.

We will not need it here, but � <Gn is Fuchsian if it is conjugate into the subgroup
Gn�1 . In the Fuchsian case the corresponding C� would be a manifold of dimension
at most n� 1.

If � has Fuchsian ends and is not Fuchsian, then @C� consists of an infinite number
of disjoint totally geodesic hyperplanes, each isometric to Hn�1 . The quotient C�=�

is a finite volume orbifold with totally geodesic boundary. For the reader familiar with
convex cores, we note that C� is the convex core of � .

Consider the representation variety Hom.�;Gn/. The slightly larger representation
space Hom.�;O.1; n// can be represented explicitly as the zero set of a collection
of real polynomials as follows. Recall � is generated by fr1; r2; : : : ; rM g. A ho-
momorphism �W � ! O.1; n/ is determined uniquely by the M matrices �.rj / of
O.1; n/, which can be thought of as a point in a real vector space V of dimension
M � .nC 1/2 . The �.rj / must lie in O.1; n/, meaning for each j the .nC 1/2 poly-
nomials �.rj /T K�.rj /DK are satisfied. Each of the N relations wi of � becomes
a system of .nC 1/2 polynomial equations in the coordinates of V . The variety
Hom.�;O.1; n// � V is precisely the set of points where these .M CN / � .nC 1/2

polynomial equations fP˛g are satisfied. Finally, we are interested in the subset
Hom.�;Gn/ � Hom.�;O.1; n//. It is the set of connected components where the
upper-left matrix entry of each �.rj / is positive. (This entry cannot be zero for a matrix
in O.1; 4/.)
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The group Gn acts algebraically on Hom.�;Gn/ by conjugation as follows:

.g � �/. / WD g�. /g�1:

The inclusion map � ! Gn is a point � 2 Hom.�;Gn/. In general, analyzing the
orbits of this Gn –action is complicated. However, using our assumptions that � is not
virtually abelian and does not preserve a lower dimensional hyperbolic space, it is easy
to show that the orbit Gn � �� Hom.�;Gn/ is a manifold of dimension equal to that
of Gn ; see Goldman [4].

A homomorphism � 2 Hom.�;Gn/ is locally rigid if it has an open neighborhood
contained inside the orbit Gn �� ; in other words all nearby representations are obtained
by conjugation. The infinitesimal analogue of this notion is useful. An infinitesimal
deformation of � is a tangent vector p0.0/ 2 T�V to a smooth path pW .�"; "/! V

such that
d

dt

ˇ̌̌
0
P˛.p.t//D 0

for the .M CN / � .nC 1/2 polynomial equations fP˛g defining Hom.�;O.1; n//
(and locally defining Hom.�;Gn/). This slightly odd definition is necessitated by the
possibility that Hom.�;Gn/ is singular at � . Similarly, an infinitesimal conjugation
of � is a tangent vector Ev 2 T�V such that

Ev D
d

dt

ˇ̌̌
0
.g.t/ � �/

for some smooth path gW .�"; "/! Gn satisfying g.0/ D Id. We say � is infinites-
imally rigid if every infinitesimal deformation is an infinitesimal conjugation. An
infinitesimally rigid homomorphism is also locally rigid [10]. By the above discussion,
to show that the inclusion map � of Gn is infinitesimally rigid, it suffices to show that
the linear subspace of infinitesimal deformations has dimension equal to that of Gn .

When � < Gn is a lattice, we have the famous rigidity theorem of Calabi, Weil and
Garland.

Theorem 2.2 [1; 10; 3] If � < Isom.Hn/ is a lattice and n > 3 then the inclusion
map of � is infinitesimally rigid.

For discrete groups that are not lattices, Theorem 2.2 is false, but it is interesting to
study whether or not a similar rigidity theorem might hold for other natural families of
discrete groups. Looking for infinite covolume groups that are as “close” to lattices
as possible, Kerckhoff and Storm were led to consider discrete groups with Fuchsian
ends that are not Fuchsian. In H3 , groups with Fuchsian ends are not rigid and have a
beautiful deformation theory investigated by many people (see Thurston [8]). In higher
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dimensions, simple dimension counts suggest non-Fuchsian groups with Fuchsian ends
are rigid. These dimension counts are, of course, not rigorous. Nonetheless, Kerckhoff
and Storm were led to the following conjecture, stated first in the introduction.

Conjecture 1.1 If a discrete group � < Isom.Hn/ has Fuchsian ends, is convex
cocompact, is not Fuchsian and n> 3, then the inclusion map of � is infinitesimally
rigid.

Roughly speaking, a group � satisfying the hypotheses of Conjecture 1.1 is similar
to a lattice in Gn . Its covolume is infinite, but � is nonetheless intuitively quite large
inside Gn . Note that Conjecture 1.1 is false without the assumption that � is convex
cocompact. A counterexample was studied in [5]. As a first step toward proving this
conjecture, our goal is to verify it in a specific 4–dimensional example. In search of
an example where the computations are as simple as possible, the first place to look
is among hyperbolic reflection groups, which we now introduce briefly. For more
information the authors recommend Vinberg and Shvartsman [9].

A reflection isometry in G4 D Isom.H4/ is given by a matrix in O.1; 4/ with a 4–
dimensional eigenspace of eigenvalue 1 and an eigenvalue �1 whose corresponding
eigenvector is space-like. It fixes a codimension 1 totally geodesic hyperplane of H4

given by the intersection of its C1–eigenspace with H4 . The orthogonal complement
of the fixed hyperplane is reflected across the hyperplane by the isometry. The reflection
isometry is determined uniquely by the hyperplane and vice versa.

Consider the interesting special case where � < G4 is a group generated by M

reflections r1; r2; : : : ; rM with corresponding hyperplanes H1;H2; : : : ;HM , and the
hyperplanes bound a convex (possibly infinite volume) region P of H4 known as a
fundamental domain. Moreover, assume the dihedral angles of P are all �=2. In this
case the presentation of � takes the following nice form [9]:

� D hr1; r2; :::; rM j .rirj /
mij D r2

i D 1i;

where for each pair 1 � i < j � M , mij is either 2 or infinity. The “relation”
.rirj /

1D1 indicates the product rirj has infinite order. The product rirj of reflections
has order 2 when the hyperplanes Hi and Hj intersect at angle �=2. This is best seen
by thinking about the picture in the Euclidean plane of the product of two reflections.
Otherwise the product has infinite order, or mij D 1. (Here we are not allowing
intersections at other angles.)

We will be considering the representation variety Hom.�;G4/�R25M for groups �
of the above form.
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The following lemma shows that near the inclusion map in Hom.�;G4/ any rep-
resentation has the property that it maps the generators ri to reflection isometries
of G4 .

Lemma 2.3 Let A 2 Gn be a reflection isometry. Then A has an open neighborhood
U �Gn such that if B 2 U and B2 D Id, then B is a reflection isometry.

Proof Recall that any involution can be diagonalized over C such that the diagonal
entries are all ˙1. Recall also that a reflection must have exactly one eigenvalue equal
to �1. We can define the open neighborhood U of A to be all matrices in Gn having
.n� 1/ positive eigenvalues (not necessarily distinct) and 1 negative eigenvalue. Then
any matrix in U that is an involution will necessarily be a nontrivial isometry which
fixes a hyperplane of codimension 1, in other words, a reflection.

Corollary 2.4 There exists an open neighborhood U � Hom.�;G4/�R25M of the
inclusion map such that if � 2 U , then �.ri/ is a reflection for all i .

The representation variety Hom.�;G4/ sits naturally as (connected components of)
a subvariety of R25M , but by exploiting the fact that locally all the generators are
reflections, it is possible to reduce the dimension considerably. To a reflection isometry r

with fixed hyperplane H we can associate the 1–dimensional subspace of R1;4 given
by vectors Minkowski orthogonal to H . This subspace is simply the �1–eigenspace
of the matrix corresponding to r , and it will consist of space-like vectors. In reverse,
choosing a space-like vector En determines a codimension 1 hyperplane En? \H4 ,
which in turn determines a reflection isometry. Letting S � R1;4 denote the set of
space-like vectors, this process defines a map

�W SM
!GM

4 �R25M

with image equal to the set of M –tuples of reflection isometries.

Moreover, the geometry of the fundamental domain P can be read from the normal
vectors. Specifically, let En1 and En2 be space-like in R1;4 , and

Hi WD
˚
Ev 2R1;4

ˇ̌ �
Ev; Eni

�
D 0

	
:

If H1\H2\ H4 ¤∅ and H1 and H2 intersect at angle � , then�
En1; En2

�q�
En1; En1

� �
En2; En2

� D� cos .�/ :
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We will only consider examples where � is always �=2, in which case the above
simplifies to �

En1; En2

�
D 0:

If on the other hand H1\H2\ H4 D∅ and the shortest hyperbolic geodesic from
H1\H4 to H2\H4 has length ` then�

En1; En2

�q�
En1; En1

� �
En2; En2

� D� cosh .`/ :(1)

Choose a representation � 2 Hom.�;G4/ sending each generator ri to a reflection. In
the above manner, we replace every reflection matrix �.ri/ by a corresponding normal
vector Eni . We now have M Minkowski 5–vectors, instead of M 5� 5 matrices. The
relations of � written in terms of normal vectors all have the form�

Eni ; Enj

�
D 0 when mij D 2:(2)

Let U �Hom.�;G4/ be the open neighborhood of the inclusion map of Corollary 2.4.
It is clear that, restricted to ��1.U /, � is a submersion with fibers given by scaling
the normal vectors Eni . Given a vector vD . PEni/

M
iD1

tangent to the point .Eni/ 2�
�1.�/,

��v 2 T�R25M is an infinitesimal deformation of � if and only if v satisfies the
following derivatives of Equation (2):�

PEni ; Enj

�
C
�
Eni ;
PEnj

�
D 0 when mij D 2:(3)

Any solution to this system of polynomials will now be a vector . PEni/ in R5M instead
of R25M . Note that we do not need to include each generator’s involution relation.
This interpretation clearly has an immense computational advantage over working with
the matrices directly.

Finally, to show � is infinitesimally rigid in Hom.�;G4/ it suffices to show that the
subspace of vectors . PEni/�R5M satisfying system (3) has dimension equal to 10CM ,
where 10D dim.G4/ dimensions come from infinitesimal conjugations by G4 , and
M dimensions correspond to scaling the normal vectors, one for each generator of � .

3 The 120–cell

Here we will outline some of the basic properties of the hyperbolic 120–cell. We will
use the word face to indicate a 2–cell and wall to indicate a 3–cell. The 120–cell is
a regular convex polytope formed by 120 dodecahedral walls, where regular means
that its symmetry group acts transitively on the set of flags. (A flag of the 120–cell
is a quadruple consisting of 1 point, 1 edge containing the point, 1 pentagonal face
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containing the edge and 1 dodecahedral wall containing the face.) The 120–cell has
600 vertices and is dual to the 600–cell formed by 600 icosahedra.

The 120–cell can be embedded into H4 such that the resulting convex hyperbolic
polytope is compact, regular, and all intersecting dodecahedra hit at right angles. The
quickest way to describe this polytope is by giving a list of 120 space-like vectors that
are Minkowski-normal to the 120 walls. For completeness, we list the 120 normal
vectors in R1;4 , using the golden ratio � D .1C

p
5/=2 [2]:

(i) 8 vectors obtained by permuting the last 4 coordinates of .
p

2�;˙2; 0; 0; 0/

(ii) 16 vectors of the form .
p

2�;˙1;˙1;˙1;˙1/

(iii) 96 even permutations in the last 4 coordinates of .
p

2�;˙�;˙1;˙��1; 0/

Consider the set C of walls of the 120–cell given by the 24 space-like vectors of items
(i) and (ii) above. Interestingly, these 24 vectors determine 24 hyperplanes of H4

which bound a regular (hyperideal) hyperbolic 24–cell, which is a polytope with 24

octahedral walls. This set C will play an important role here. Using Equation (1) one
can compute directly that the walls of C are pairwise disjoint in H4 .

Lemma 3.1 There does not exist a set of 25 pairwise disjoint walls in the 120–cell.

Proof Suppose we remove 24 pairwise disjoint walls from the 120–cell. For each
wall that we remove, we place a marker on any wall which was adjacent to the removed
wall. Each wall of the 120–cell is adjacent to 12 other walls; therefore after removing
24 walls we have placed 24 � 12 D 288 markers on the remaining 96 walls or an
average of 3 markers per wall that remains. The claim is that every remaining wall has
exactly 3 markers. If this is indeed true, then removing a 25–th disjoint wall would be
impossible because any wall we removed would be adjacent to 3 of the walls in the
original set of 24.

Suppose one of the walls had only 2 markers. Then there is at least one other wall
with 4 markers, implying the intersection of a certain set of 4 pairwise disjoint walls
with this wall of 4 markers is a set of 4 pairwise disjoint pentagonal faces of a
dodecahedron. This is impossible because the maximum number of pairwise disjoint
faces of a dodecahedron is 3. Therefore no wall has 2 or fewer markers implying every
wall has 3.

The above proof was explained to us by Allcock.
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4 The main theorem

We are now ready to discuss the main result.

Theorem 4.1 Let P � H4 be the hyperbolic regular right-angled 120–cell. Let
C be the set of 24 pairwise disjoint walls of P given in Section 3. Let � < G4 D

Isom.H4/<O.1; 4/ be the discrete infinite covolume group generated by the reflections
in the 96 walls of P that are not in C . Then the inclusion map �!G4 is infinitesimally
rigid in the representation variety Hom.�;G4/.

Before beginning the proof let us discuss the connection to Conjecture 1.1.

Proposition 4.2 Let � < G4 be the discrete group of Theorem 4.1. Then � has
Fuchsian ends and the quotient C�=� is isometric to the 120–cell P . In particular, �
is convex cocompact and not Fuchsian.

Proof Consider the collection of 24 dodecahedral walls C �H4 and its orbit � � C .
Using the facts that all the dihedral angles of P are �=2, and all the walls of C are
pairwise disjoint, it follows that any intersecting translates of C in the orbit � � C
glue together smoothly. In particular, the entire orbit is a disjoint union of totally
geodesic hyperplanes. Let C� �H4 be the � –invariant convex subset bounded by
� � C . This shows that � has Fuchsian ends. It is clear that the quotient C�=� is
isometric to P .

Theorem 4.1 and Proposition 4.2 imply Conjecture 1.1 is true for � .

Corollary 4.3 The discrete subgroup � <G4 has Fuchsian ends, is convex cocompact
and infinitesimally rigid, as predicted by Conjecture 1.1.

To prove Theorem 4.1, we begin with 96 5� 5 reflection matrices in G4 < O.1; 4/,
the image of the generators of � under the inclusion map. Replace each such reflection
matrix with one of its (space-like) eigenvectors Eni corresponding to eigenvalue �1.
(All possible choices are colinear.) The complete list of 96 vectors Eni is the 96 even
permutations in the last 4 coordinates of .

p
2�;˙�;˙1;˙��1; 0/, where � is the

golden ratio. Pairs Eni and Enj corresponding to orthogonal walls of P satisfy the
relation �

Eni ; Enj

�
D 0:

Let W � TEnR480 be the linear space of infinitesimal deformations. Suppose we are
given an infinitesimal deformation�

PEni

�
2W � TEnR480

ŠR480
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of the 96 space-like vectors which maps via �� to an infinitesimal deformation of �
in G4 . Then the following linear equation must hold for all pairs i , j corresponding
to intersecting orthogonal walls of P :�

PEni ; Enj

�
C
�
Eni ;
PEnj

�
D 0:

Keep in mind that the 24 walls of C have been removed from P . There are 432 equa-
tions of this type, corresponding to the 432 remaining faces of P . To prove that � is
infinitesimally rigid it suffices to show the solution space W has 10C 96 dimensions,
where 10 comes from the action of G4 by conjugation, and 96 comes from scaling
each of the 96 space-like vectors Eni . These 96 scaling dimensions are killed by �� .
It is easy to see the solution space W has at least 106 dimensions. It remains to show
it has at most 106 dimensions.

Enumerate the polynomials fp1;p2; : : : ;p432g defining W . Each pi is a polynomial
in the variables .v1; v2; : : : ; v480/ where

PEni D
�
v5.i�1/C1; v5.i�1/C2; v5.i�1/C3; v5.i�1/C4; v5i

�
:

Define the matrix Aalg of algebraic numbers

.Aalg/ij WD
d

dvj
.pi.v1; v2; : : : ; v480// :

Each entry .Aalg/ij is a number because each polynomial pi is linear in the variables vj .
Aalg has 432 rows and 480 columns. The goal is to show its kernel has dimension at
most 106. We do this by showing the rank is at least 374.

We bounded the rank from below using the computer algebra system Mathematica.
(For computer related information see Remark 4.4 at the end of the paper.) In order
to ensure Mathematica can correctly and quickly bound the rank, we replace every
algebraic number entry of Aalg with a square matrix of rational numbers. The number
field Q.˛/ contains every entry of Aalg when ˛ D

p
1C
p

5. We choose the basis

f1; ˛; ˛2; ˛3
g

for Q.˛/ as a vector space over Q. Then each entry of Aalg is replaced by a 4� 4

rational matrix representing its action by left multiplication on Q.˛/ with respect to
this basis. For example, the number 1

2
.�1�

p
5/ is replaced by the 4� 4 matrix:0BB@

0 0 �2 0

0 0 0 �2

�
1
2

0 �1 0

0 �
1
2

0 �1

1CCA
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Once we have the rational 4�4 matrix replacements for each entry of Aalg , it becomes
a 432� 480 matrix of 4� 4 matrices. By ignoring the structure of the 4� 4 matrices,
we can think of it as a 1728 � 1920 matrix AQ of rational numbers. It is easy to
see that the kernel of AQ has dimension at least 4 times that of Aalg . (If u is in
the kernel of Aalg then fu; ˛u; ˛2u; ˛3ug will be in the kernel of AQ and linearly
independent over Q.) Therefore the rank of AQ is at most 4 times the rank of Aalg .
To prove the infinitesimal rigidity of � , it suffices to show that the rank of AQ is at
least 4 � 374D 1496.

In order to further simplify the computation, multiply each row of AQ by the least
common multiple of the denominators of the rational numbers in that row. This gives
us the integer matrix AZ with the same rank as AQ . With some effort on a desktop
computer (in 2008), Mathematica was able to determine that the rank of this matrix is
1496, the desired result. Therefore Aalg has a kernel of dimension at most 106. This
proves that the inclusion map of the discrete group � <G4 is infinitesimally rigid in
the representation variety Hom.�;G4/.

The rank calculation for AZ took approximately 13 seconds. However, some machines
may have more difficulty. The calculation can be simplified by reducing AZ modulo a
suitable prime p , obtaining matrix Ap . Diagonalization is much easier in the finite
field of order p , and rank.Ap/ � rank.AZ/. Therefore, simply reduce AZ modulo
primes until one is found satisfying rank.Ap/D 1496. The prime 3 suffices, producing
a rank of 1496 in approximately 2 seconds.

Remark 4.4 The main calculations were performed in 2008 using Wolfram’s Math-
ematica versions 6 and 7 on a MacPro running 64–bit Linux. They were checked
using both Maple 11 and Sage 3:2:3. Detailed descriptions of the above computations,
including the relevant computer code, are available on the website of the second
author [7].
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