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The volume conjecture
for augmented knotted trivalent graphs

ROLAND VAN DER VEEN

We propose to generalize the volume conjecture to knotted trivalent graphs and we
prove the conjecture for all augmented knotted trivalent graphs. As a corollary we
find that for any link L there is an arithmetic link containing L for which the volume
conjecture holds.

57M25, 5TM27

1 Introduction

The volume conjecture proposes a relation between the colored Jones invariants of a knot
and the simplicial volume of its complement. In the formulation of H Murakami and
J Murakami [14], the precise statement is as follows. Note that we use the variable 4
from skein theory instead of the ¢ used in [14] (the variables are related by A% = ¢).

Conjecture 1 (Volume conjecture [9; 14]) For any knot K we have
. 2m i 3
lim —log|Jy(K)(e2N)| = Vol(S” — K)
N—oo N

where Jn denotes the N —colored Jones invariant of K and Vol is the simplicial
volume.

To gain more insight into this conjecture and to find simple examples where it holds
true we seek to generalize the conjecture to the class of knotted trivalent graphs (KTGs)
as defined by D Thurston [17]. Roughly speaking a KTG is a thickened embedded
graph that is allowed to have multiple edges and also edges without vertices, so that
KTGs generalize framed knots and links.

Before turning to general KTGs we first discuss the generalization of the volume
conjecture to links. For links the above version of the volume conjecture does not hold,
because it fails for many split links (see Murakami et al [15]) and it also fails in a more
serious way for the Whitehead chains defined in van der Veen [20].
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692 Roland van der Veen

For a split link (a link some of whose components can be separated from each other by
a sphere in the complement) the normalization of the colored Jones invariant has to be
adjusted slightly. For knots the colored Jones invariant was normalized by dividing
by the unnormalized invariant of the unknot. If we use this normalization for a split
link then the colored Jones invariant vanishes at the root of unity as was noted in [15].
To avoid this problem we propose the following normalization. For a split link with
s split components we normalize by dividing by the unnormalized invariant of the
s—fold unlink. With this normalization the normalized colored Jones invariant becomes
multiplicative under distant union; see Section 3. Since the simplicial volume is
additive with respect to distant union it follows that using this normalization the volume
conjecture is true for a split link if it holds for all its split components.

The above conjecture fails in a more serious way in the case of the Whitehead chains.
For these links it was shown [20] that Jy (e%) = 0 for all even N but that the limit
proposed in the volume conjecture is still valid when one restricts to odd colors N . In
Section 3 we will argue that the sequence of even colors is special and that the same
failure is not as likely to occur in any other subsequence.

The above motivates the following modification of the volume conjecture that we
propose to call the SO(3) volume conjecture. To the best knowledge of the author it
still stands a chance to hold for all knots and links.

Conjecture 2 (SO(3) volume conjecture) The following form of the volume conjec-
ture holds for all knots and links L :

2 i
lim —log|Jn(L)(e2N)| = Vol(L
Jim L log |7y (L) (e 39)] = Vol(L)
where N runs over the odd numbers only and Jy is normalized as described above.

The name SO(3) is chosen because we restrict ourselves to odd colors N, ie repre-
sentations of the Lie group SO(3) instead of the Lie algebra sl(2). The restriction to
odd N is natural because Kashaev’s original invariant for triangulated links in S3 was
also defined for odd N only; see Condition (3.12) in Kashaev [8]. One might also
argue more generally that the odd colors correspond to the spherical representations of
s1(2).

Now we would like to generalize the volume conjecture even further to the class of
knotted trivalent graphs (KTGs). A motivation for this generalization is that such
graphs show up naturally in the computation of the colored Jones invariant when one
applies fusion. Another motivation is that very simple graphs such as planar graphs
will have relatively simple Jones invariants and a complement that is easy to triangulate.
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Considering graphs in their own right will furthermore clarify the role of six—j symbols,
since they are the sl(2)—invariants of the tetrahedral graph. In order to obtain a volume
conjecture in the case of a KTG we need to define both the colored Jones invariant of a
KTG and the volume of a KTG.

The generalization of the colored Jones invariant to KTGs is fairly straightforward
and is based on the Kauffman bracket; see Section 3. The idea is to connect the three
incoming Jones—Wenzl idempotents in a trivalent vertex in the only possible planar
way. Alternatively one can think of a trivalent vertex as a Clebsch—Gordan injector of
the representation on the incoming strand into the tensor product of the representations
of the two outgoing strands. We need a slight extension of the usual formalism to deal
with half twisted edges such as a Mobius band. It is well known that this procedure
yields a Laurent polynomial when or KTG is a knot or a link. For general KTG’s this
will not be the case and we obtain an invariant that is a quotient of Laurent polynomials.

The definition of the volume of a KTG is more complicated and will be treated in detail
in Section 4. Here we give a brief overview of the ideas involved. The boundary of the
exterior of a graph is a closed surface of high genus so if the exterior is to be hyperbolic
then the boundary cannot be a cusp but we can require it to be a totally geodesic
boundary as in Frigerio [4]. However very different graphs can have homeomorphic
exteriors because the structure of edges and vertices is lost. To fix this we exclude
annuli and tori around the edges from the boundary so that they become cusps and the
remaining punctured spheres become a geodesic boundary. This version of the exterior
will be called the outside of the graph. Frigerio [3] showed that rigidity still holds for
such structures provided that we use a system of closed curves on the boundary to keep
track of where the cusps should be.

To deal with nonhyperbolic graphs we can no longer use the simplicial volume as
was done for knots and links. This is because Jungreis [7] showed that the simplicial
volume of a hyperbolic manifold with geodesic boundary does not agree with its
hyperbolic volume when the boundary is nonempty. To get around this we use the
JSJ—decomposition and define the volume as the sum of the volumes of the hyperbolic
pieces in the decomposition. For links this definition is known to agree with the
simplicial volume.

Having defined the colored Jones invariant and the volume of a KTG, the above
statement of the SO(3) volume conjecture also makes sense for KTGs. Indeed, we
propose that with this interpretation of volume and Jones invariant, Conjecture 2 should
be true for all KTGs.

Conjecture 3 The SO(3) volume conjecture holds for all knotted trivalent graphs.
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694 Roland van der Veen

To provide some evidence for this claim we will prove the SO(3) volume conjecture
for the class of augmented KTGs defined below. This will be the main purpose of the
paper.

To describe the construction of augmented KTGs and to organize the calculations it is
convenient to have a way to generate all KTGs by simple operations that we define
now. For now let us think of a KTG as a thickened embedding of a graph whose edges
are ribbons and whose vertices are disks. A more detailed treatment can be found in

Section 2.

SA L] T
O X-3¢
v b

Figure 1: First row: The four KTG moves triangle A4, positive and negative
half twists H+ and Unzip U. Second row: The standard tetrahedron and the
n—unzip U, (we have drawn the case n = 2).

Definition 1 The following four operations on KTGs will be called the KTG moves;
see Figure 1. The triangle move A replaces a vertex by a triangle, the positive half
twist move H inserts a positive half twist into an edge, the negative half twist H_
inserts a negative half twist and finally the unzip move U takes an edge and splices it
into two parallel edges.

We also define the following variations on the unzip move called the n—unzip U, . This
is the unzip together with the addition of » parallel rings encircling the two unzipped
strands.

The four KTG moves defined above are sufficient to generate all KTGs starting from
the standard tetrahedron graph shown in Figure 1.

Theorem 1 Any KTG can be obtained from the standard tetrahedron using the KTG
moves only.

According to this theorem we can work with KTGs by studying sequences of KTG
moves. Of course there are many inequivalent ways to produce the same KTG using
the KTG moves; see Section 2.
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Now we can define the notion of an augmented KTG.

Definition 2 Let S be a sequence of KTG moves. Define the singly augmented KTG
corresponding to .S to be the KTG obtained from the standard tetrahedron by the moves
of S except that all unzip moves are to be replaced by 1-unzip moves. We will denote
the singly augmented KTG corresponding to S’ by ng.

Likewise the n—augmented KTGs corresponding to S are defined to be all the KTGs
that can be produced from the standard tetrahedron by the moves of S except that
every unzip move is to be replaced by an m—unzip move, where m > n. Note that one
may choose a different m for all unzip moves in S'.

Let I's be the KTG obtained from a sequence of KTG moves S and let ® be an
n—augmented KTG corresponding to S. Then I'g is contained in ® and ® — I'g is
an r—fold unlink. Here is r the number of rings that were added to I'g to obtain the
augmented KTG ©. The number r is called the number of augmentation rings of ®.

With all definitions in place we can now formulate the main theorem of this paper.

Theorem 2 (Main theorem) Let S be a sequence of KTG moves. There exists an
n € N such that all n—augmented KTGs T" corresponding to S satisty the following.

1) Lett be the number of triangle moves in S and let r be the number of augmenta-
tion rings of I". Let 0 be the number of half twists counted with sign and define
the following numbers:

(N=1)/2 i
¢N = (_1)(N—1)/2e(N2_1)/4N7Ti and SinN — Z [(N —kl)/2] (e%)
k=0

The normalized N —colored Jones invariant of I satisfies

i O N7sixitd! if N is odd,
In(D)(exN) = { (gN ' if N is even

2) The JSJ-decomposition of the outside of I" consists of the outside of ' and a
Seifert fibered piece for every n—unzip used in the construction of I' such that
n > 2. It follows that Vol(I") = Vol(T').
Moreover the outside of I‘fg is hyperbolic with geodesic boundary and can be
obtained explicitly by gluing 2t + 2 regular ideal octahedra.

3) T satisfies the SO(3) volume conjecture, but not the original volume conjecture.
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The quantum binomial coefficients used in the above definition of sixj, are defined in
Section 3. For a definition of the colored Jones invariant of a KTG, see Section 3. The
outside of a graph is defined in Section 4; it plays the role of the complement but it is a
manifold with boundary pattern (see Matveev [13]). We will also define the volume
of such manifolds. In Section 4.2 we will show how to obtain the explicit gluing of
octahedra mentioned above.

The proof of parts 1) and 2) of the main theorem will be given in Sections 3 and 4,
but it is easy to see how part 3) follows from the first two parts. The key ingredient
is the following observation about the numbers sixj, . Costantino [2] showed that
limpy — o0 ZW” log |sixj | = 2Vol(Oct), where Vol(Oct) means the hyperbolic volume
of the regular ideal octahedron. Plugging in the formula for the colored Jones from
part 1) gives

2 i
lim 2 log |Jn (D) (e3V)| = 2(7 + 1) Vol(Oct)
N—oo N

as a limit over all the odd numbers N. According to part 2) of the main theo-
rem this is exactly the volume of T" since Vol(T') = Vol(I') and Vol(I'g) equals
(2t +2)Vol(Oct). The original volume conjecture does not hold because the even
values of N give a colored Jones of 0. This concludes the proof of part 3) assuming
the first two parts of the main theorem.

Now let us note some immediate corollaries.

Corollary 1 For every KTG T there is a KITG © containing I such that ©® — " is an
unlink and ® satisfies the SO(3) volume conjecture. If I happens to be a link then so
is ©.

Corollary 2 The SO(3) volume conjecture holds for all KTGs that can be constructed
from the standard tetrahedron using the triangle move and the half twist move only. The
original volume conjecture fails for such KTGs.

The final corollary has nothing to do with the volume conjecture, but gives an alternative
proof of a result by Baker [1] on arithmetic links. A link is said to be arithmetic if the
fundamental group of its complement allows a faithful representation into PSL(2, C),
whose image is commensurable with PSL(2, O), where O is the ring of integers in an
imaginary quadratic number field.

Corollary 3 Every link is a sublink of an arithmetic link.

Proof The singly augmented link corresponding to the given link is an arithmetic
hyperbolic 3-manifold, as it is obtained from gluing regular ideal octahedra by symme-
tries of the tiling of hyperbolic space by regular ideal octahedra; see Thurston [18]. O
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The organization of the paper is as follows. In Section 2 we discuss KTGs, KTG
diagrams and KTG moves. The subject of Section 3 is skein theory. Here we define
the colored Jones invariant of a KTG and show how it can be expressed in terms of
six—j symbols. Specializing to the N —th root of unity and making use of the special
properties of augmentation yields part 1) of the main theorem. In Section 4 we give a
definition of the volume of a 3—manifold with boundary and we study the geometry
of the outside of an augmented KTG. Here we prove part 2) of the main theorem.
Section 5 is a short summary and a conclusion.

Acknowledgements I would like to thank Dave Futer, Rinat Kashaev, Jessica Pur-
cell, Nicolai Reshetikhin and Dylan Thurston for enlightening conversations and the
organizers of the conferences, workshops and seminars in Hanoi, Strasbourg, Basel,
Aarhus and Geneva for giving me the opportunity to present parts of this work there.

2 Khnotted trivalent graphs

In this section we state some general facts about knotted trivalent graphs (KTGs).
We discuss the extra Reidemeister moves that are necessary to relate isotopic KTG
diagrams and describe how every KTG can be generated from the standard tetrahedron
by the KTG moves.

Definition 3 A fat graph is a 1-dimensional simplicial complex together with an
embedding into a surface as a spine.

A knotted trivalent graph (KTG) is a trivalent fat graph embedded as a surface into S*
and considered up to isotopy.

By a diagram of a KTG we will mean a regular projection of its spine KTG onto the
plane together with the usual crossing information and small diagonal lines indicating
where an edge of a KTG makes a half twist. Except for the locations in the diagram
where there is a half twist the surface of the KTG is assumed to be parallel to the
projection plane as in the blackboard framing. The half twist pictures are necessary
because a KTG such as the Mobius band cannot be given the blackboard framing. See
Figure 2 for an example of a KTG together with its diagram.

Next we consider the moves that relate diagrams of isotopic KTGs. We will call these
moves the trivalent isotopy moves. In addition to the usual Reidemeister moves for
framed links we have moves related to the trivalent vertex and the half-integral framing.
These additional moves are called the fork slide, trivalent twist, twist slide and addition
of twists; see Figure 3.
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Figure 2: A KTG and its diagram
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Figure 3: The additional trivalent isotopy moves on a KTG diagram. First
row: the fork slide and the twist slide. Second row: the trivalent twist and the
addition of twists (multiple cases).

Definition 4 The trivalent isotopy moves are the Reidemeister moves for framed links
and the following four moves on KTG diagrams:

(1) Let the fork slide be the move where a strand is slid over or under a trivalent
vertex (first picture of Figure 3).

(2) One can slide a half twist past a crossing (second picture of Figure 3). This is
called the twist slide.

(3) The trivalent twist is the move where a single half twist is moved past a trivalent
vertex. It starts on one edge, passes the vertex, creates a crossing and one half
twist on the other two edges (third picture of Figure 3). The sign of the initial
half twist equals the sign of the crossing and the two ensuing half twists.

(4) One may cancel or create two half twists of opposite sign on the same edge. Two
half twists of equal sign on the same edge may be replaced by a curl of the same
sign on that edge (last pictures of Figure 3). This is called addition of twists.
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The same arguments that are used in the proof of Reidemeister’s theorem can be
employed to prove the following theorem; see also Turaev [19].

Theorem 3 Two KTG diagrams define isotopic KTGs if and only if the diagrams are
related by trivalent isotopy moves.

2.1 KTG moves

We now take a closer look at the KTG moves defined in the introduction (Definition 1).
We will give a proof of Theorem 1 that states that any KTG can be generated from the
standard tetrahedron (see Figure 1) using the KTG moves.

It is important to note that the result of an unzip move is determined by the number
of half twists present on the edge. Technically such half twists have to be pushed
off the edge before one can perform the unzip. In practice it is however much easier
to remember that » half twists on an edge give rise to n crossings between the two
parallel edges produced by the unzip. This follows from the trivalent isotopy moves
defined above. Alternatively it can be checked physically by cutting a twisted band
into two pieces along its core.

Proof of Theorem 1 We start with the diagram D of the KTG that we want to generate
drawn hatched in the first picture of Figure 4. Below it we draw a standard tetrahedron

. 1
D i D D

L~ Lo~ b C

Figure 4: Generating an arbitrary diagram D from the tetrahedron by sweepout

in black. The hatched part of the picture still needs to be generated and the black part
is already done.

We generate the diagram D from the topmost edge of the tetrahedron step by step
using the elementary steps depicted in Figure 5. The edge of the tetrahedron moves
upwards over the hatched diagram D and at every step we delete the hatched part of
D that is covered and regenerate it by one of the moves indicated in Figure 5.

The elementary moves A, Hi and U in Figure 5 are the KTG moves, and the moves
B and C are a composition of KTG moves; see Figure 6 for a proof. The last step
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Figure 5: The elementary steps encountered by the edge of the tetrahedron.
The hatched parts are only meant to indicate the course of action, these parts
are not actually there. With this in mind one recognizes the U in the first
picture as the unzip move.

t

S IS I
T~ .Y
X A5 A

Figure 6: A derivation of the move B from the KTG moves (first row) and a
derivation of C from the KTG moves (second and third row).

|

in the derivation of the move C consists of unzipping the half twisted edge. To do
this one can either cut the edge along its core or first isotope the half twist up to get a
crossing. Compare Figure 3.

We stop the sweepout process right before reaching the last hatched maximum of D,
as indicated in the middle picture in Figure 4. To close the diagram we remove this
maximum and unzip the three vertical edges of the tetrahedron to obtain the required
diagram; see the last picture in Figure 4. |

There are many ways to produce the same KTG using the KTG moves. For example
if one starts with a single trivalent vertex and applies the triangle move then one can
proceed in two ways to produce the same diagram. Either perform a single triangle
move on the top vertex, or do two triangle moves on the two lower vertices followed
by an unzip on the middle edge at the bottom.
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3 The colored Jones invariant of a KTG

Our definition and calculation of the colored Jones invariant will be based on the
Kauffman bracket and its skein relation. We have chosen this language over the more
general representation theoretic language because its formulas do not require a preferred
direction in the projection plane. Throughout we will make use of the variable A from
skein theory. It is related to the ¢ from the introduction by A% =g.

3.1 Mbobius Skein Theory

To be able to include diagrams with half twisted edges we need to extend the usual
skein theory a little. We propose to introduce the following extra relations called the
half twist relations. A single edge with a positive half twist is equal to (—A4?) 172 times
an untwisted edge. A single edge with a negative half twist is equal to (—A3)~1/2
times an untwisted edge. This definition is consistent with the value of the curl in
ordinary skein theory and also with the trivalent isotopy move addition of twists from
Section 2.

- (e
= A4 + A7l & = (—A43)1/2
/ N

D = (=A*-47%H | D N = (=432

Figure 7: The Kauffman relations and the additional twist relations together
make up Mobius Skein Theory.

Definition S Let R be the quotient field of the ring of rational Laurent polynomials
in A'/2. Define the Mobius skein of a surface 3 to be the R—vector space of KTG
diagrams without vertices in ¥ modulo the Kauffman bracket relations and the half
twist relations shown in Figure 7.

The surface is allowed to have marked points on its boundary but in this case we only
allow diagrams that have edges ending at all the boundary points.

Note that the above definition coincides with the usual definition of a skein space except
for the half twist relations. A KTG diagram without vertices or half twists can be given

Algebraic & Geometric Topology, Volume 9 (2009)



702 Roland van der Veen

the blackboard framing and its value in the Mobius skein will be exactly its value in
the ordinary skein space.

We can now define the colored Jones invariant of a KTG using the notion of a Jones—
Wenzl idempotent and a trivalent skein vertex; see Masbaum and Vogel [12].

Definition 6 Define the unnormalized N —colored Jones invariant (I') 5 (4) of a KTG
I" to be the Kauffman bracket of the Mobius skein element obtained from a diagram of
I' in the plane by replacing every edge by (N —1) parallel edges joined by a (N —1)—th
Jones—Wenzl idempotent and every vertex by a trivalent skein vertex.

More generally we also define the bracket of a KTG diagram with integer labels on the
edges to be the bracket of the skein element obtained by replacing an edge labeled B
by a (B—1)-th Jones—Wenzl idempotent and the vertices by the appropriate trivalent
skein vertices.

With this definition (I"), coincides with the usual Kauffman bracket. As an example
we note that if M is the positive Mobius band then

(M)3 =—(A 4+ 4% +1).

Note that replacing an N —colored edge with a half twist by parallel strands will cause
the (N — 1) parallel edges to be intertwined and individually half twisted so that we
get additional crossings and half twists.

Since there is no planar way to connect an odd number of incoming edges, the trivalent
vertex is defined to be zero when all edges have even colors. Therefore the colored
Jones invariant of any KTG with at least one vertex is also zero for even N . In the next
section we will see that at the (4N )—th root of unity this is the case for all augmented
KTGs.

For the above definition to make sense we still have to prove that the value of (I') 5
does not depend on the particular KTG diagram we choose for I'". For this we first
need a fairly standard lemma on the half twist; see also the last diagram in Figure 8.

Lemma 1 A positive half twist on n bands on top of an n—th Jones—Wenzl idempotent
is equal to (—1)" /24" +2)/2 (imes the untwisted bands with the same idempotent at
the bottom. For the negative half twist we get (—1)"/247"("+2)/2 jn the same way.

Proof Because of the Jones—Wenzl idempotent there is only one way to resolve

the crossings in the diagram that will give a nonzero contribution. A half twist on n
parallel bands produces n(n—1)/2 positive crossings yielding a contribution A”"*=1/2
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Furthermore every strand contains a positive half twist, so the half twist relation gives
another contribution of (—1)"/243%/2 Together this is exactly (—1)"/24m(1+2)/2 44
required. For the negative half twist the proof is the same. a

Proposition 1 The unnormalized N —colored Jones invariant (I') 5 (A) of a KTG T
is a well defined invariant of KTGs.

Proof We need to check that the value of the unnormalized colored Jones invariant is
unchanged under the trivalent isotopy moves of KTG diagrams defined in Definition 4.
For the Reidemeister moves this is clear. Because a trivalent vertex is turned into a
skein element without trivalent vertices or half twists, invariance under the fork slide
move follows from invariance under Reidemeister II and III.

Lemma 1 proves the invariance of the Jones under the twist slide move and the addition
of half twists. Invariance under the trivalent twist move now follows from this lemma
in combination with Theorem 3 of [12]. O

Note that the above proof also shows that the bracket of a KTG whose edges are colored
by any integers is an invariant. This invariant is multiplicative under distant union.

To relate our definition of the unnormalized colored Jones invariant to the ones that
can be found in the literature we note that when I is a link it coincides with (—1)V ™!
times the value of the unnormalized Jones invariant defined in [11]. This follows from
the remark that the bracket of a KTG diagram without half twists or vertices equals the
bracket of the framed link in the usual skein theory.

The normalization of the Jones invariant that is used in the so(3) volume conjecture
(Conjecture 2) is defined as follows.

Definition 7 Define the normalized colored Jones invariant of a KTG I' with s split
components to be Jy(I') = (') 5 /(U?) n, where U? is the s—component unlink.

For the volume conjecture we need to specialize to A = exp(wi/2N) but (U%)y =
(=1)*NV=D[N]*, where [N] = (42N — A72N) /(4% — A~%). At this value of A we
have [N] = 0 so we have to check that we can divide out this pole and still get a well
defined answer.

Proposition 2 The normalized N —colored Jones invariant has a well defined value at
A =exp(wi/2N).
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Proof Since the unnormalized colored Jones invariant is multiplicative under distant
union, the normalized colored Jones invariant also has this property. Therefore we can
assume that the number of split components of our KTG I' is 1. Let I" be the closure
of a 1-1 tangle ®. We label the edges of ® with N and interpret ® as an element
of the Mobius skein of a square with 2N — 2 marked boundary points. As in the
Temperley—Lieb algebra we can now write ® as a scalar fy(A) times the (N —1)-st
Jones—Wenzl idempotent. Closing the tangle ® we find that (I') 5y = (U)n fn(A).

It now remains to show that fy(A) is a quotient of Laurent polynomials in A2

whose denominator is not zero at A = exp(7wi/2N). To calculate fa(A) we expand
all crossings and half twists in ® so as to obtain an element of the Temperley—Lieb
algebra and the component of the identity in this expression is fx(A). The calculation
of fn(A) will involve the Jones—Wenzl idempotents, the skein relation and the half
twist relations. From the recursive definition of the Jones—Wenzl idempotent it is clear
that fa(A) is a quotient of Laurent polynomials in A'/? whose denominator does not
have poles at A = exp(wi/2N). ad

It follows from our discussion that the normalized colored Jones invariant is mul-
tiplicative under both connected sum and distant union of KTG diagrams. To see
the multiplicativity with respect to connected sum we observe that it corresponds to
concatenation of 1-1 tangles and hence to multiplication of scalars.

We now move on to the problem of calculating the unnormalized colored Jones invariant
of a general KTG. Theorem 1 tells us that all KTGs can be constructed from the standard
tetrahedron by applying the KTG moves. It turns out that in skein theory the KTG
moves correspond to the well known formulas shown in Figure 8; see also Masbaum
and Vogel [12]. We will show below that these formulas can be used to calculate the
colored Jones polynomial of any KTG from a sequence of KTG moves generating it.

To be able to write down the formulas for the six—j symbols shown in Figure 8 we first

recall the definition of a quantum integer
A2n _ A—2n
="

The value of the unknot is (U)y = (N) = (—=1)VY~![N]. Quantum factorials and
binomial coefficients are defined in the usual way in terms of the quantum integers.

Given six integer labels ji,..., j¢ on the edges of a tetrahedron as in Figure 8 such
that all trivalent vertices are nonzero, define V7, V,, V3, V4 to be a half times the sums
of the three labels around each of the four vertices. For example V1 = (j1 + j» + j3)/2.

Algebraic & Geometric Topology, Volume 9 (2009)



The volume conjecture for augmented knotted trivalent graphs 705

C b d
_ <BCD>b J _ ;(0) .

b ¢ d

B C D c w2

b ¢ d =) 2472
— D

(BCD) 2 . :

Figure 8: The value of the skein of the labeled standard tetrahedron is the
six—j symbol defined below. The fusion formula reverses the unzip move, the
half twist formula undoes the half twist move and the triangle formula undoes
the triangle move.

Also define [y, O,, O3 to be a half of the sums of the labels in the three squares
(pairs of opposite edges). According to [12] the value of the tetrahedron is

<j1 J2 j3>
Ja Js Je
where

-
<j1+1 ja+1 j3+1>_1'[m,,,(Dm—Vn) jtiing (—1)?[z +1]!
Ja+1 js+1 je+1 18—, et s [1,18, =z T1,[z — Vs

The value of the labeled theta graph is given by {(a b ¢), where

[s + 1)![s —a]'[s = b]'[s —c]! b _a+b+c
'] wheres =———

The sum in the upper right equation in Figure 8 ranges over all possible triples for
which the trivalent vertex is nonzero, that is all ¢ such that |[a —b| <c¢ <a+ b and
a + b + ¢ is odd. It should be remarked that since we replace an edge labeled b by
a (b—1)—th Jones—Wenzl idempotent while they are replaced by b—th Jones—Wenzl
idempotents in [12] there is a slight shift of indices.

({a+1b+1c+1)=(-1)°

The formulas in Figure 8 suffice to give a formula for the colored Jones invariant of
any KTG in terms of the six—j symbols. By Theorem 1 we know that any KTG IT" can
be constructed from the tetrahedron by a sequence S of KTG moves. To calculate
(T') ;y we start with the diagram corresponding to S and label all edges by N . Now
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we reverse the KT'G moves in .S move by move. At every step we keep track of the
newly produced edge labels in the diagrams that we get. The formulas in Figure 8 tell
us that we get a six—j symbol when we reverse the triangle move A, a summation with
so called fusion coefficients from the unzip move U and a factor from the half twist
moves H.i . In the next subsection we will use this knowledge to calculate the colored
Jones of an augmented KTG at the relevant root of unity.

Finally note that it is well known that the colored Jones invariant of knots and links
is a Laurent polynomial. For KTGs this is generally not the case. The colored Jones
invariant (normalized or not) of a KTG is merely a quotient of Laurent polynomials
in A2, As an example let us calculate the normalized colored Jones invariant of the
theta graph 6. From the formula in Figure 8 we get

[3k + 1][k]

, N=2k+1.
[2k]B[2k + 1] +

In ) = (-1)%*

By considering the zeros of the numerator and the denominator it is clear that this is
not a Laurent polynomial for odd N greater than 3. For example we can look at the
number of zeros at A = exp(iw/4k).

3.2 Asymptotics and augmentation

We have seen that the unnormalized N —colored Jones invariant takes the form of a
multisum of products and quotients of quantum integers. Every unzip contributes a
summation with fusion coefficients, every triangle move produces a six—j symbol and
every half twist move contributes a power of A.

It is not trivial to determine the asymptotics of such a multisum formula. To circumvent
this difficulty we augment the KTG. Adding extra unknotted ring-like components
actually simplifies the sum at the relevant root of unity because of the following formula
from skein theory [10]; see Figure 9. The value of a kK — 1-th Jones—Wenzl idempotent
encircled by a closed (N —1)—th idempotent is (—1)N~![kN]/[k] times the idempotent.

k _ -1 VA k
R

Figure 9: The effect of adding a ring to a labeled edge. Note that every edge
is replaced by a Jones—WenzlI idempotent.

Algebraic & Geometric Topology, Volume 9 (2009)



The volume conjecture for augmented knotted trivalent graphs 707

The following lemma gives a calculation of the above value at our root of unity.

Lemma 2 In skein theory adding a ring labeled N encircling an edge labeled k is the
same as multiplying the edge by (—1) ~![kN]/[k]. The value of this constant is

: _1)N_1[kN]_ (—=)N-1+k=k/N N if N | k,
A—semi/2N k] |0 if N} k.

Proof The value of

Nt Nt AZkN _ A—ZkN
DN RN = (DN
at A = e™i/2N depends on whether or not the denominator vanishes. The numerator
is always zero but the denominator is zero if and only if N | k, therefore the value is 0
if N does not divide k. Using I’Hospital’s rule we calculate the value in case N | k:

kN 2kNA™' A2kN 4 4=2kN
lim —1)N—lu = lim (-DHN! +
Asemi/2N [k] — A—emi/2N 2kA™T Ak 4 p2k
2(—1)k
_ (LN D" o (—)N-Hk/N

TR

The above lemma suggests that we can use an edge with a ring as a kind of delta
function. In other words we can try to pick only the term k = N from a sum over
edges labeled k& by adding a ring to the edge. This will turn the expression of the
colored Jones invariant into a single term thus making an asymptotic analysis possible.
To make this idea precise we need to be careful because of poles in the six—j symbols
and the possibility of several multiples of N dividing k. This is done in the proof of
part 1) of the main theorem that we will now present.

Proof of part 1) of the main theorem (Theorem 2) Let us fix a sequence S of
KTG moves and let ® be the KTG generated by S starting from the tetrahedron. In
the previous subsection we have seen that it is possible to express the colored Jones
invariant of ® in terms of the sequence S and the formulas from Figure § by reversing
the KTG moves one by one until one reaches the tetrahedron. From the formulas in
Figure 8 one sees that the unnormalized colored Jones invariant can be written as a
multisum of products and quotients of quantum integers.

Let n be a fixed integer that is at least one more than the maximum number of poles
at A = e™/2N in the summands of the expression of the unnormalized N colored
Jones of our KTG ©. It is very important to note that one can choose such an n to
be independent of NV . To see this we write out all the six—j symbols in the expression
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for the colored Jones invariant to see that it is a multisum of quotients of quantum
factorials. Moreover there is a number a depending only on .S such that if [#] occurs in
a summand of the expression for the colored Jones then r < aN . Since the number of
zeros of [r]! at A =exp(2wi/2N) is |r/N | we know that all terms [r]! that occur have
less than a zeros. It follows that the number of poles in a summand of the multisum is
less than a times the number of quantum factorials present in the denominator. Suppose
that the number of quantum factorials is at most f then we can set n = af + 1. Note
that f is independent of N as well.

Now let I' be an n—augmented KTG. If we calculate the unnormalized colored Jones
invariant then we get the same multisum as we did for ® except that according to
Lemma 2 we have at least n factors (—1)Y~1([kN]/[k]) for every unzip move, where
k is the summation variable created by the formula for reversing the unzip in skein
theory; see Figure 8. By Lemma 2 and the construction of # only those summands of
the multisum for I" for which the summation variables are multiples of N are nonzero
at A =exp(2wi/2N).

Actually only the term where all summation variables are equal to N is nonzero at
the root of unity. To see this suppose that we have a term where one summation index
equals u N for some integer ¥ > 1. We may assume that the index whose value is
uN is the first in the order of appearance of the summations in the calculation. This
means that the index what created at a stage of the calculation when multiples of N
other than N itself did not occur. Since labels that are not multiples of N will not
contribute the only possibility is that the label came from fusing two edges labeled N .
But this implies that the new summation ranges over the odd integers between 0 and
2N . Therefore only the summand where all labels are N contributes.

Now that we know that in the multisum expression for the unnormalized colored Jones
invariant of I" only the term where all indices are N contributes at this root of unity,
we can easily write down a closed form expression for its value. Reversing the KTG
moves in S now becomes a matter of multiplying by a particular factor. For the triangle
move this factor is

N N N

< N N N >

(NNN) '’

for the unzip it is
(V)

(N N N)’

for the half twist Hy itis

(_1):|:(N—1)/2A:i:(N2—1)/2
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and finally one factor

2=
2=
2=

for the tetrahedron.

Taking into account the normalization and the powers of N from the augmentation
we get the following formula for the normalized N —colored Jones invariant at 4 =
exp(wi/2N). Note that I" has only one split component so that we divide by (U) x
only once.

P e NNN\/NNN
(1 YN=1)/2 g (N2=1)/2\0 prr (NY \*
((=1) A )N—<NNN) <\NNN/\NNN
(NN N) (N)

where 6 is the number of half twists counted with sign, u is the number of unzips in
the sequence, ¢ the number of triangle moves and r the number of augmentation rings.

Note that this formula is zero when N is even, because then

N N N
N N N

is zero for generic A because the trivalent vertices do not exist.

For odd N = 2k + 1 we actually have (N N N)/(N) =1 at A =exp(ni/2N). To
see this, first observe that at this value of 4 we have [N + j] = —[j] = —[N — j]. For
generic values of 4 we write

(NNN) _ 1) [3k + 1]1[k]!?
(N) [2k + 1][2k]!3
)k[l] - [klk + 1]+ [2k)2k + 1][2k +2]---[3k + 1]
([k +1]---[2k])3[2k + 1]
1] [KR2k +2]--- 3k + 1]
([k +1]---[2k])? '

= (1)

Since [1]---[k] = [2k][2k — 1] -+ [k + 1] and [2k +2]---[3k + 1] = (=D*[1][2]-- - [],
at A =exp(wi/2(2k + 1)) this becomes equal to 1.
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The same type of calculation shows that
< N N N >
N N N .
S = (™) =sixjy
(N)
(N-1)/2 4
N—-1)/2 ;
where Sixjy = Z [( ) )/ :| (e’”/zN).
P J
j=0
To see this, note that after cancelling the factors [N], the expression S at the N —th
root of unity is equal to

k .
o = N (ks B AL ]2k + 2)2K]
,-;o( : 114k — j113
This equals sixjy since [2k]! = [k]!? and
Bk +1+ j]--- Bk + 23k + 1]---[2k + 2] = (=1)I[k + 1 — j]--- [k](=D)*[K]..

Therefore the formula for the colored Jones of the KTG ® at the root of unity simplifies
to
IN(©)(eFh) = ((—1) (V=172 gN2=1/2y0 it

as claimed in part 1) of the main theorem. a

4 The geometry of the complement of an augmented KTG

In this section we are concerned with the definition and the calculation of the volume
of a KTG. The generalization to graphs is not straight forward because of the following
problem. A knot is determined by its complement but a graph is not. The homeomor-
phism type of the complement of a graph does not say much about the graph itself. For
example the standard tetrahedron and the connected sum of two theta graphs, shown in
Figure 10 have homeomorphic complements. From the point of view of the volume
conjecture this is very inconvenient because the colored Jones invariant at the root of
unity does distinguish these graphs. If the volume conjecture is to hold for KTGs then
we need to add a little structure to the complement so that we can recover the adjacency
matrix of the graph from its complement.

In the first subsection we will show how to assign a 3—manifold with boundary to any
embedded graph such that the graph can be recovered from the 3—manifold and we
still have the possibility of rigid hyperbolic structures. In the second subsection we
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apply these ideas to augmented KTGs very explicitly and we give a proof of the second
part of the main theorem (Theorem 2).

Figure 10: Two KTGs with homeomorphic complements

4.1 The volume of a 3—manifold with boundary

In this section we lay down the necessary foundations that allow us to define the
hyperbolic volume of a graph in S3. We start with some general notions about
hyperbolic structures on 3—manifolds with boundary following [3].

Definition 8 A 3-manifold M is called a hyperbolic manifold with geodesic boundary
if it is locally modeled on the right upper half space {(x, y,z) € H? | x > 0}.

In the next subsection we will construct many hyperbolic manifolds with geodesic
boundary by gluing ideal polyhedra along some of their faces. The remaining faces
will make up the boundary.

Mostow rigidity holds for finite volume hyperbolic 3—manifolds with geodesic boundary
provided that the boundary is compact [3] but when the boundary is noncompact then
it may fail. However even in the case of noncompact boundary one can save the
rigidity result by considering annular cusp loops. In order to define this notion we first
sketch the construction of the natural compactification of a hyperbolic 3—manifold with
geodesic boundary.

Let M be an orientable, finite volume, hyperbolic 3—manifold with geodesic boundary.
The double D(M) of M (that is the manifold obtained by gluing two copies of M
along dM) is hyperbolic without boundary. Therefore it consists of a compact portion
together with some cusps based on Euclidean surfaces. It follows that M also consists
of a compact portion together with some cusps of the form 7' x [0, 00), where T is a
Euclidean surface with geodesic boundary such that (7" x [0, 00)) NadT = 3T %[0, 00).
M now admits a natural compactification M by adding such a surface T for each
cusp. Note that the compactification M of M is obtained by adding tori and closed
annuli. The set of these annuli will be called Ay .
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Definition 9 A loop y in a hyperbolic 3—manifold with geodesic boundary M is
called an annular cusp loop if in M it is freely homotopic to the core of an annulus
of Aur.

With this notion in place we can state the rigidity theorem for hyperbolic 3-manifolds
with boundary proven in [3].

Theorem 4 Let M and M’ be two orientable finite volume hyperbolic 3—manifolds
with geodesic boundary and let ¢: w{(M) — m1(M') be an isomorphism. Suppose
that ¢ satisfies the additional requirement that ¢ (y) is an annular cusp loop in M’ if
and only if y is an annular cusp loop in M . Then ¢ is induced by an isometry between
M and M’.

The additional requirement is necessary only in the case of 3—manifolds with noncom-
pact geodesic boundary. In the compact case the set Ay is empty.

In order to save the rigidity we need to include the annular cusp loops into the structure
of the manifold itself. This will be done in the context of 3—manifolds with boundary
pattern that were introduced by Johannson [6].

Definition 10 A 3-manifold with boundary pattern is a pair (M, P) where M is a
3—manifold with boundary and P C dM is a one dimensional polyhedron. A homeomor-
phism of manifolds with boundary patterns is required to restrict to a homeomorphism
between the boundary patterns.

If M is a hyperbolic 3—manifold with geodesic boundary then we would like to
include the boundary circles of the annuli Az in the natural compactification of M
as a boundary pattern but of course they are not part of dM . Since the annuli connect
in M to M we can push them inside a little to become part of dM .

Definition 11 The boundary pattern corresponding to the hyperbolic structure with
geodesic boundary on a M is defined to be the set of boundary curves of the annuli in
Az, pushed inside of dM .

A corollary of the above rigidity theorem is now the following:
Theorem 5 Let (M, P) and (M’, P') be two orientable finite volume hyperbolic
3—manifolds with geodesic boundary and let P and P’ be their corresponding bound-

ary patterns. If f: (M, P) — (M', P’) is a homeomorphism of 3—manifolds with
boundary pattern then f is induced by an isometry between M and M'.
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Thus the hyperbolic structure is still rigid if one takes into account the boundary patterns.
Therefore we should only allow hyperbolic structures that agree with the given boundary
pattern.

Definition 12 A 3-manifold with boundary pattern (M, P) is said to allow a hyper-
bolic structure with geodesic boundary if it can be given a finite volume hyperbolic
structure with geodesic boundary that turns the components of P into annular cusp
loops.

To define the volume for more general manifolds with boundary pattern we use the
JSJ—decomposition and add up the volumes of the pieces allowing a hyperbolic structure
with geodesic boundary. We state a version of the JSJ-decomposition for 3—manifolds
with boundary pattern taken from [13].

Theorem 6 Let (M, P) be an orientable, irreducible and boundary irreducible 3—
manifold with boundary pattern. There exists a JSJ-system of annuli and tori that is
unique up to admissible isotopy. The system decomposes (M, P) into three types of
JSJ-chambers: simple 3—manifolds, Seifert manifolds and I-bundles.

Note that the JSJ—chambers are also 3—manifolds with boundary pattern. In addition to
the original boundary pattern of (M, P) they also inherit the adjacent boundary curves
of the annuli in the JSJ—system [13].

Definition 13 Let (M, P) be an orientable, irreducible and boundary irreducible
3—manifold with boundary pattern. We define the hyperbolic volume Vol(M, P) of
(M, P) to be the sum of the hyperbolic volumes of the JSJ—chambers that allow a
hyperbolic structure with geodesic boundary.

The rigidity theorem (Theorem 5) above and the uniqueness of the JSJ —decomposition
show that the volume is a well defined invariant of orientable, irreducible and boundary
irreducible 3—manifold with boundary pattern. The definition of volume can be extended
further by demanding it to be additive under connected sums.

As a motivation for this definition of the hyperbolic volume of a 3—manifold with
boundary pattern we note that it coincides with the simplicial volume in the case of
an empty boundary [16]. However for manifolds with boundary this notion seems to
be more appropriate. Indeed the Gromov norm no longer agrees with the volume of a
hyperbolic manifold as soon as the boundary is nonempty [7].

The most important example for our purposes is the so called outside of a graph. This is
the version of the complement of a graph that is suitable for carrying a rigid hyperbolic
structure.
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Definition 14 Let I' be an embedded graph in S3, where edges without vertices and
multiple edges are allowed. We define the outside Or of I' to be the 3—manifold with
boundary pattern constructed as follows.

Let N(I") be the neighborhood of I" made up from small open balls around the vertices,
closed solid tori around the edges of I" without vertices and small closed solid cylinders
around the edges that intersect the closure of the balls around the adjacent vertices in
disjoint disks. Define the outside Or be S3 — N(I"). Also define the exterior ET to
be the closure of Or as a subspace of S3.

We will endow Or with the boundary pattern Pr consisting of a circle around every
hole on every holed sphere in its boundary.

The outside of a graph may not be irreducible because the graph might be the distant
union of a number of split components. If this is the case we cut the outside along
spheres and cap the spheres off with balls. The resulting pieces are outsides of nonsplit-
table graphs. For such graphs the outside is an orientable, irreducible and boundary
irreducible 3—manifold whose boundary consists spheres from which closed disks have
been removed. We have one sphere for every vertex and its number of holes is equal to
the valency of the vertex.

The outside of a graph is not compact and neither is its boundary. The corresponding
exterior is compact and will play the role of the natural compactification mentioned
above. In the next section we will investigate the geometry and decomposition of
1—augmented KTGs in greater detail.

4.2 The geometry of augmented KTGs

In this subsection we prove part 2) of the main theorem. Let I be an n—augmented
KTG. Let us consider the JSJ—system of its outside Or. We have one essential torus
for every k—unzip move used to produce I', such that k¥ > 2. The tori encircle the
augmentation rings produced by the k—unzip move. Cutting along such a torus splits
off a Seifert fibered JSJ—chamber of the form (Dj x S!, @), where Dy is a k—times
punctured disk and k is the number of augmentation rings produced in the k—unzip
move. After removing all such Seifert pieces we are left with the outside of the singly
augmented KTG TI' corresponding to I'. Below we will show that such a singly
augmented outside is hyperbolic. It then follows that the JSJ—decomposition of the
outside of ' consists of the above Seifert fibred pieces and the outside of T'.

Note that by definition the hyperbolic volume of T' is equal to the volume of I/, since
we neglect Seifert fibered chambers in the JSJ—-composition.
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We aim to show that the outside of any singly augmented KTG I'’ admits a hyperbolic
structure with geodesic boundary by decomposing it into regular ideal octahedra. The
method of decomposition is similar to the construction for links in [5].

Figure 11: A truncated octahedron with colored faces (left). The truncated
octahedron as the half space beyond the paper plus infinity (right).

The first step is to use truncated octahedra to create the exterior of the augmented
KTG. The truncated octahedra we use are combinatorial closed polyhedra with eight
hexagonal faces and six square truncation faces. Half of the hexagonal faces are colored
blue, the other half white in an alternating fashion. The truncation faces are painted
red; see Figure 11 (left).

Lemma 3 Every sequence of KTG moves S has the following properties:

(1) The exterior Eg of the singly augmented KTG ng is homeomorphic to the
space obtained by gluing together 2t + 2 truncated octahedra, where t is the
number of triangle moves in S .

(2) If B is a sufficiently small ball around an interior point of an edge in Eg, the
intersection of B and the union of the interiors of the octahedra making up Eg
has either two or four components.

(3) For each vertex of T'g there is a pair of blue faces that is sent by the homeomor-
phism from part (1) onto the three holed sphere in the boundary of the exterior
of ng corresponding to that vertex. The boundary circles of every hole are glued
together from pairs of red edges of the two blue faces.

Proof The proof proceeds by induction on the number of KTG moves in the se-
quence S'.

Induction basis Let us suppose first that S is empty so that ng is the standard
tetrahedron. Now take two truncated octahedra and glue their white faces together in
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pairs via the identity. To see how this produces the exterior of the tetrahedron graph let
us first look at a single truncated combinatorial octahedron; see Figure 11 (right).

By a homeomorphism we can present the truncated octahedron as the upper half space
(thought of as lying behind the paper) plus infinity with the colored faces on its boundary.
The blue faces are now small blue disks in the plane, while one white face is stretched
out so as to contain infinity. Now we bend the blue and red faces up as in Figure 12. In
this figure the interior of the octahedron is located directly above the blue dome-like
faces in the upper half space. The horizontal plane on which the blue domes rest
contains the white faces.

We can place the second octahedron in the lower half space with the blue faces pushed
downwards so that it looks like the reflection of the upper octahedron in the horizontal
plane. Gluing the octahedra together along the white faces thus produces a 3—manifold
homeomorphic to the exterior of the tetrahedral graph. Since we used exactly two
octahedra part (1) is proven.

For part (2) note that all edges of the exterior are alike so that we can concentrate on
one of them. Let B be a small ball around an interior point of such an edge. The
intersection of B with the interiors of the octahedra has two components, one in the
upper half space and one in the lower half space.

The third part is also clear since the exterior can be arranged in such a way that the
horizontal plane cuts it into mirror symmetrically arranged truncated octahedra.

Figure 12: The exterior of the standard tetrahedron can be obtained by gluing
two truncated octahedra. Only the upper one is shown.
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Induction step Suppose S is a sequence of KTG moves that has the properties (1),
(2), (3) in the lemma. Let 7" be a sequence of KTG moves obtained by performing one
of the four KTG moves directly after .S'. In order to show that 7" also has properties
(1), (2), (3) we need to consider four cases depending on which KTG move was made:
negative or positive half twist, triangle or unzip.

Half twist. If the last move was a half twist then the exteriors of I's and I'r are
homeomorphic and the number of triangle moves in producing them is equal. We can
therefore use the gluing of truncated octahedra that worked for S'.

Triangle move. Since 7" contains one more triangle move than S we need two more
truncated combinatorial octahedra to glue the exterior E7 than we needed to glue
Eg. We will call the two new truncated octahedra O; and O,. Let v be the vertex
of I'g where the triangle move was performed. By the induction hypothesis (3) we
know there are two blue faces By and B, in Eg that make up the three-holed sphere
corresponding to v. The new gluing is produced from the old by decreeing that one
blue face of O; is to be identified with the face B;. The corresponding pairs of white
faces of 01 and O, should be identified also.

To see that the exterior of I'7 is homeomorphic to the above gluing we start by bringing
the truncated octahedron O; into the dome-like form seen in Figure 13 (right). The

o <

Figure 13: The operation corresponding to the triangle move. Only the
boundary of the upper half has been depicted. The smaller pictures are a top
view and should remind one of the KTG move.

chosen blue face (drawn slightly transparent) is a hemisphere and the rest of O; is
below it. The other blue faces are small domes and the white faces are horizontal.
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The red faces are half tubes. Now bring O, into mirror symmetric position below the
horizontal plane and glue them along the white faces. The result is a closed ball with
three tubular entrances connecting to a triangular tunnel in the middle. It is now clear
that once we glue this ball inside the three-holed sphere corresponding to the vertex v
we get the exterior of I'7.

To check property (2) we only need to check the edges of O; and O,. For them
it is clear from the mirror symmetric arrangement of O; and O,. This also proves

property (3).

Unzip. We will show that the gluing of octahedra that produces the exterior Eg also
produces E7 after adding an extra identification of faces. Suppose that I'7 is obtained
from I'g by performing a 1—unzip move on the edge e. Take a small open ball
neighborhood B in S3 of the tube around e that contains the two three-holed spheres
around to the endpoints of e but does not meet any other parts of the boundary of Eg.
This ball is depicted as a cylinder in Figure 14 (upper left). By the induction hypothesis
we know that under the homeomorphism from part 1) the three-holed spheres both split
up into two blue faces each in such a way that the boundary circles are glued from
pairs of edges. One can thus arrange the ball B in R3 such that it is mirror symmetric
with respect to the horizontal plane. Cutting along the horizontal plane produces two
balls B; and B,. The boundary of one of the balls can then be flattened to look like
the second picture of Figure 14 (upper right).

Now let us glue together the two blue faces in By. This produces the next picture in
Figure 14 (lower right). The red face in the middle of the second picture becomes a
tube and the opposite red faces are joined. Now glue the blue faces of B; in the same
way and then glue B and B, back together. We get the ball B’ seen in the last picture
of Figure 14 (lower left).

Figure 14: The homeomorphism corresponding to the 1—unzip
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Note that when there are / half twists present on the edge e then performing an unzip
produces /1 half twists between the resulting strands. To accommodate this feature
in our gluing we cut B’ open again along the two pairs of blue faces. They form a
punctured disk whose boundary circle is a longitude of the newly produced ring. The
disk is pierced twice by the two horizontal components of the graph that go through
the ring. A half twist in these two components is produced by regluing the disks with
a half twist. This last correction gives the homeomorphism between the exterior Er
and the gluing of octahedra. When / is even then the correction has not changed the
gluing, but if / is odd then we have identified the blue faces of B; to the diagonally
opposite ones of Bj.

The extra identification of faces has doubled the number of parts of octahedra coming
together at some of the edges of the blue faces involved, but these were previously
unglued so this settles part (2) of the lemma. Part (3) is still true because we simply
deleted two vertices and left the exterior unchanged around the other ones. O

Now that we have constructed the exterior of the singly augmented KTG T" the next
step is to go back to its outside.

Lemma 4 The outside Oy is homeomorphic as a 3—manifold with boundary pattern
to the gluing of truncated octahedra that we constructed for the exterior in Lemma 3,
except that we remove all closed red square faces and endow it with the boundary
pattern formed by lines on the unglued blue faces that are parallel to the removed red
edges.

Proof The proof of the previous lemma goes through step by step if we replace the
exterior by the outside and remove the red truncation faces. It is easy to see that the
homeomorphism can be made to identify the boundary patterns. a

Finally we turn to hyperbolic geometry. The above gluing of truncated octahedra has
the property that at each edge either two or four solid angles meet. This means that if
we declare all the truncated octahedra to be regular ideal hyperbolic octahedra then we
obtain a hyperbolic manifold with geodesic boundary with cusps based on the tori and
annuli that used to be truncation faces [16].

The circles in the boundary pattern of the outside Or/ now become annular cusp loops
because in the exterior they are freely homotopic to the boundary circles of the annuli
in the closure of Or/. The exterior is exactly the natural compactification of Or.
This finishes the construction of the hyperbolic structure on the outside of a singly
augmented KTG and also the proof of part 2) of the main theorem.
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5 Conclusion

The purpose of this paper was to generalize the volume conjecture to KTGs and to
prove it for augmented KTGs. In order to generalize to links and KTGs it was necessary
to restrict to odd colors. For knots this seems unnecessary and in general one may ask
which KTGs will satisfy the original volume conjecture.

The generalization of the volume of the complement to KTGs involved considering
a specific 3—manifold with boundary pattern called the outside of a graph. This
notion also makes sense for arbitrary graphs so that one may try to apply geometric
techniques to questions in graph embedding. One may also hope to generalize the
volume conjecture to arbitrary graphs, but then one must first be able to define the
colored Jones invariant of any vertex. For trivalent vertices the colored Jones invariant
has a natural meaning as a Clebsch—Gordan projector but for arbitrary vertices there is
more choice.

In this paper we have proven the volume conjecture for augmented KTGs provided they
had sufficiently many augmentation rings. It would be very natural to try to remove
this restriction on the number of rings but this will require a more detailed analysis of
the colored Jones invariant of such KTGs.

Looking back we can summarize our proof as follows. We have seen three different
meanings of the KTG moves. Firstly they can be used to generate all KTGs from the
tetrahedron. Secondly, reading them backwards yields an expression for the colored
Jones invariant in terms of six—j symbols. Thirdly the augmented moves encode combi-
natorics of the triangulation by octahedra of the corresponding singly augmented KTG.
The second and the third viewpoint come together once one notices that augmenting
kills the summations in the expression for the Jones invariant (at least at the root of
unity). Using the known asymptotics of the regular six—j symbol that remains this gives
a natural and proof for the volume conjecture for augmented KTGs.

It seems that the augmented KTGs form a tractable class of KTGs that makes a
good testing ground for further extensions of the volume conjecture. For example the
complexified volume conjecture [15]. It is to be hoped that with the right definition of
the Chern—Simons invariant for manifolds with boundary pattern this conjecture also
holds for KTGs.

A reason for the tractability of the augmented KTGs might be that they are of arithmetic
type; see Corollary 3. So far all knots links and KTGs for which the volume conjecture
was proven, were of arithmetic type or not hyperbolic at all (or a combination of the
two).
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