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Cyclic and finite surgeries on Montesinos knots

KAZUHIRO ICHIHARA

IN DAE JONG

We give a complete classification of the Dehn surgeries on Montesinos knots which
yield manifolds with cyclic or finite fundamental groups.

57M50; 57M25

1 Introduction

A Dehn surgery on a knot K in a 3–manifold M is an operation to create a new
3–manifold from M and K as follows: Remove an open tubular neighborhood of K ,
and glue a solid torus back. By gluing a solid torus back as it was, the surgery gives
the original manifold again. So such a surgery is called trivial, and we will ignore it in
general.

On knots in the 3–sphere S3 , it is an interesting problem to determine and classify all
nontrivial Dehn surgeries which produce 3–manifolds with cyclic or finite fundamental
groups, which we call cyclic surgeries or finite surgeries, respectively.

As part of the Hyperbolic Dehn Surgery Theorem, Thurston [23] established that there
are finitely many cyclic and finite surgeries. In fact, Culler, Gordon, Luecke and
Shalen [4] (respectively, Boyer and Zhang [3]) proved there are at most three cyclic
(resp. five finite) surgeries. Furthermore, it is conjectured that knots admitting cyclic
(resp. finite) surgeries are doubly primitive (resp. primitive/Seifert fibered) knots as
introduced by Berge [1] (resp. Dean [5]). See Kirby [13, Problem 1.77] for more
information.

Cyclic and finite surgeries have been studied extensively for some classes of knots. For
example, it was shown by Delman and Roberts in [8] that no hyperbolic alternating
knot admits a cyclic or finite surgery.

One of the other well-known classes of knots, containing nonalternating ones, is the
Montesinos knots. A Montesinos knot is defined as a knot admitting a diagram obtained
by putting rational tangles together in a circle. See Figure 1 for instance. In particular,
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Figure 1: A diagram of a Montesinos knot

a Montesinos knot K is called a .a1; a2; : : : ; an/–pretzel knot if the rational tangles in
K are of the form 1=a1; 1=a2; : : : ; 1=an .

In this paper, based on studies by Delman [6] and Mattman [15], we give a complete
classification of cyclic / finite surgeries on Montesinos knots as follows.

Theorem 1.1 Let K be a hyperbolic Montesinos knot. If K admits a nontrivial cyclic
surgery, then K must be equivalent to the .�2; 3; 7/–pretzel knot and the surgery
slope is 18 or 19. If K admits a nontrivial acyclic finite surgery, then K must be
equivalent to either the .�2; 3; 7/–pretzel knot and the surgery slope is 17, or the
.�2; 3; 9/–pretzel knot and the surgery slope is 22 or 23.

As a direct corollary, together with the result by Wu [25], we have the following.

Corollary 1.2 Let K be a hyperbolic arborescent knot. If K admits a nontrivial
cyclic surgery, then K must be equivalent to the .�2; 3; 7/–pretzel knot and the surgery
slope is 18 or 19. If K admits a nontrivial acyclic finite surgery, then K must be
equivalent to either the .�2; 3; 7/–pretzel knot and the surgery slope is 17, or the
.�2; 3; 9/–pretzel knot and the surgery slope is 22 or 23.

Recently, using Khovanov homology, it was shown by Watson in [24, Theorem 7.5]
that the .�2;p;p/–pretzel knot does not admit finite surgeries for p 2 f5; 7; : : : ; 25g.

Very recently, Futer, Ishikawa, Kabaya, Mattman and Shimokawa [9] obtained, inde-
pendently, a complete classification of finite surgeries on .�2;p; q/–pretzel knots with
odd positive integers p and q .

Remark 1 It is already known which Montesinos knots are nonhyperbolic. If a
Montesinos knot is equivalent to one consisting of at most two rational tangles, then
it actually is a two-bridge knot. Menasco [16] showed that the nonhyperbolic two-
bridge knots are the .2;p/–torus knots. The only other nontrivial nonhyperbolic
Montesinos knots are the .�2; 3; 3/– and .�2; 3; 5/–pretzel knots, which are actually
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the .3; 4/– and .3; 5/–torus knots, respectively. This was originally shown by Oertel [19,
Corollary 5] as well as in an unpublished monograph [2] by Bonahon and Siebenmann.
The cyclic and finite surgeries of torus knots have been completely classified by
Moser [17].

To prove Theorem 1.1, we will prepare two propositions, Proposition 2.1 and Proposition
3.1, which will be shown in Section 2 and Section 3 respectively. Then, in the last
section, Theorem 1.1 will be proved from these propositions together with a result of
Mattman [15].
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2 Cyclic/finite surgeries and the Alexander polynomials

In this section, we prove the following proposition.

Proposition 2.1 Let K be a hyperbolic Montesinos knot admitting a nontrivial cyclic
or finite surgery. Then K is equivalent to a .�1; 2n;p; q/–pretzel knot, where n is a
nonzero integer and p; q are odd positive integers with 3 � p � q . Furthermore all
nonzero coefficients of the Alexander polynomial for K are ˙1.

Proof Suppose that a hyperbolic Montesinos knot K admits a nontrivial cyclic or
finite surgery. Then Delman showed in [7; 6] that K must be equivalent to either a
.�2l;p; q/–pretzel knot, a .�1; 2n;p; q/–pretzel knot or a .�1;�1; 2m;p; q/–pretzel
knot with an integer n, integers l;m> 1 and odd positive integers p; q (3� p � q ).
Also see a survey [26, Section 2, Section 3] by Wu. Actually Delman showed that
any Montesinos knot except for those listed above admits an essential lamination in
its exterior which survives all nontrivial Dehn surgeries. Essential laminations were
introduced by Gabai and Oertel in [11] and, actually, they showed that if a 3–manifold
admits an essential lamination, then its universal cover must be the 3–space R3 . In

Algebraic & Geometric Topology, Volume 9 (2009)



734 Kazuhiro Ichihara and In Dae Jong

particular its fundamental group is not cyclic or finite. See Gabai and Oertel [11] for
the precise definition.

By virtue of Delman’s result, in order to prove Proposition 2.1, it suffices to show
that the first and the third types of pretzel knots described above cannot have cyclic
or finite surgeries. Note here that a .�2;p; q/–pretzel knot (the case l D 1 in the
first) is equivalent to a .�1; 2;p; q/–pretzel knot (the case n D 1 in the second).
Also a .�1;�1; 2;p; q/–pretzel knot (the case mD 1 in the third) is equivalent to a
.�1;�2;p; q/–pretzel knot (the case n D �1 in the second). Thus, excluding over
laps, we are assuming l;m¤ 1.

Among the classes of knots described above, the first one was already studied by
Mattman in [15]. He actually showed in [15, Theorem 1.1 and 1.2] that any .�2l;p; q/–
pretzel knot with l > 1 and odd positive integers p; q (3� p � q ) has neither cyclic
surgeries nor finite surgeries.

Thus, in the following, we focus on the third class above. We here use the follow-
ing strong result of Ni [18, Corollary 1.3], established by using the Heegaard Floer
homology theory: If a knot in S3 admits a cyclic or finite surgery, then it must be a
fibered knot. Actually he showed that a knot K in S3 must be fibered if K admits a
surgery yielding an L–space. Here a rational homology sphere Y is called an L–space
if the rank of bHF.Y / is equal to jH1.Y IZ/j. In fact, any 3–manifold with a cyclic
or finite fundamental group is an L–space, as is shown by Ozsváth and Szabó in [22,
Proposition 2.3].

Now, the next claim, together with the result by Ni, imply the first conclusion of
Proposition 2.1.

Claim 1 Let m > 1 and p , q be odd positive integers where p � q . Then the
.�1;�1; 2m;p; q/–pretzel knot is not fibered.

Proof We just apply the algorithm given by Gabai in [10, Theorem 6.7]. Here we
include only an outline, assuming that the reader is rather familiar with [10, Theo-
rem 6.7].

Let K be a .�1;�1; 2m;p; q/–pretzel knot with an integer m> 1 and odd positive
integers p; q (p � q ). We start to apply the algorithm in [10, Theorem 6.7] with
n1D�1, n2D�1, n3D2m, n4Dp , n5Dq . After a cyclic permutation, the surface R

obtained by applying Seifert’s algorithm is of type II in [10, TYPE II.6.5] with m1D�1,
m11D2m, m2Dp , m3Dq , m4D�1. (See [10, Figure 6.3].) We now see CASE 2 in
[10, Theorem 6.7]. Here we note that the associated oriented pretzel link L0 (defined in
[10, TYPE II.6.5]) is of type .2m;�2;�2/. Since

P4
jD1 mj=jmj jD�1C1C1�1D0
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and L0 is of type .2m;�2;�2/¤˙.2;�2; 2/ if m> 1, we check CASE 2B in [10,
Theorem 6.7]. Then we see that K is fibered if and only if L0 is fibered. For L0 , we
check CASE 1 in [10, Theorem 6.7], and verify that L0 is not fibered since no nj is
˙1 and L0 is not equivalent to a pretzel link of type ˙.2;�2; : : : ; 2;�2; n/ with an
integer n. Therefore we conclude that K is not fibered.

The second conclusion of Proposition 2.1 follows from results of Ozsváth and Szabó,
also achieved by using the Heegaard Floer homology theory in [21; 22; 20]. We first
prepare the following claim, which is implicitly used in [18, Proof of Corollary 1.3].

Claim 2 If ˛=ˇ–Dehn surgery on a nontrivial knot K in S3 yields an L–space for
some coprime integers ˛; ˇ with ˇ � 2, then ˛–Dehn surgery on K also yields an
L–space.

Proof Given coprime integers ˛; ˇ and a knot K in S3 , let S3
˛=ˇ
.K/ denote the

3–manifold obtained from S3 by ˛=ˇ–Dehn surgery on K . We recall the following
general formula given in [20, Proposition 9.5]:

rk bHF.S3
˛=ˇ.K//D j˛jC2 max.0; .2�.K/�1/jˇj�j˛j/Cjˇj

�X
s

.rk H�. yAs/�1/

�
:

This holds for any pair of coprime integers ˛; ˇ .

For simplicity, let X.�.K/; ˛; ˇ/ denote max.0; .2�.K/� 1/jˇj � j˛j/ and Y denoteP
s.rk H�. yAs/� 1/. Then we have

(1) rk bHF.S3
˛=ˇ.K//D j˛jC 2X.�.K/; ˛; ˇ/CjˇjY:

Now, for some coprime integers ˛; ˇ with ˇ � 2, we assume that S3
˛=ˇ
.K/ is an

L–space, ie, by definition,

rk bHF.S3
˛=ˇ.K//D j˛j:

It then suffices to show that S3
˛.K/ is an L–space, ie, rk bHF.S3

˛.K//D j˛j.

On the other hand, in general, we see that rk bHF.S3
˛.K//� j˛j � 0 for any integer ˛

as follows. In the proof of [21, Proposition 5.1], it is claimed that

�.bHF.S3
˛.K///D jH1.S

3
˛.K/IZ/j:

Also see [22, Section 2]. By definition, the Euler characteristic (the left-hand side) is
the alternating sum of the dimensions of bHF.S3

˛.K//. Hence, it is not greater than the
total rank of bHF.S3

˛.K//, ie,

rk bHF.S3
˛.K//� �.bHF.S3

˛.K///D jH1.S
3
˛.K/IZ/j D j˛j:
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From this equation, in order to obtain rk bHF.S3
˛.K//D j˛j, it suffices to show that

rk bHF.S3
˛.K//� j˛j � 0. Actually, we have from Equation (1)

(2) rk bHF.S3
˛.K//� j˛j D 2X.�.K/; ˛; 1/CY:

Note here that we have Y � 0 as follows. It is seen that

(3) 2X.�.K/; ˛; ˇ/CjˇjY D 0

from Equation (1) and the assumption that rk bHF.S3
˛=ˇ
.K// D j˛j. Thus, together

with X.�.K/; ˛; ˇ/� 0 by definition, we have Y � 0.

If �.K/� 0, then

X.�.K/; ˛; 1/Dmax.0; .2�.K/� 1/� j˛j/D 0:

Since Y � 0, together with Equation (2), we obtain that rk bHF.S3
˛.K//� j˛j � 0 as

desired.

If �.K/� 1, then we have X.�.K/; ˛; 1/ <X.�.K/; ˛; ˇ/ from the assumption that
ˇ � 2. Thus, together with Y � 0 and Equation (3), we obtain that

2X.�.K/; ˛; 1/CY < 2X.�.K/; ˛; ˇ/CY D�jˇjY CY � 0:

Together with Equation (2), this implies that rk bHF.S3
˛.K//� j˛j � 0 as desired.

Then, in [22, Corollary 1.3], Ozsváth and Szabó proved that if a knot K in S3 admits
an integral Dehn surgery yielding an L–space, then the Alexander polynomial �K .t/

has the form

�K .t/D .�1/k C

kX
jD1

.�1/k�j
�

tnj C t�nj
�

for some increasing sequence of positive integers 0< n1 < n2 < � � �< nk . This means
that all nonzero coefficients of �K .t/ are ˙1.

Remark 2 In the above proof, Claim 2 is actually necessary for the following reason.
By the Cyclic Surgery Theorem established in [4], all cyclic surgeries on hyperbolic
knots in S3 are shown to be integral surgeries. However, the Finite Surgery Theorem
of [3] shows that finite surgeries on hyperbolic knots in S3 are half-integral or integral.
In other words, at present, we cannot rule out the possibility of a half-integral surgery
and it is currently only a conjecture that such finite surgeries are integral: See Kirby [13,
Problem 1.77 A(6)] for more information.
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3 Calculation of the Alexander polynomials

In this section, we prove the following proposition, which will be shown by direct
calculations of the Alexander polynomials.

Proposition 3.1 Let K be a pretzel knot of type .�1; 2n;p; q/, where n is an integer
and p; q are odd positive integers with p � q . If every nonzero coefficient of the
Alexander polynomial of K is ˙1, then nD 1 and p D 3.

Recall that the Alexander polynomial �L.t/ for a link L satisfies the following skein
relation (see Lickorish [14, page 82] for example):

�LC.t/��L�.t/D .t
�1=2
� t1=2/�L0

.t/;(4)

where LC , L� , and L0 possess diagrams DC , D� and D0 which differ only in a
small neighborhood as shown in Figure 2.

DC D� D0

Figure 2: Skein triples

Remark 3 Let l be a positive integer, and �l.t/ the Alexander polynomial of a
.2; l/–torus link. Set fl D

Pl
iD0 t i . Then we have �l.�t/D .�t/.1�l/=2fl�1 . See

Kawauchi [12, page 98] for example.

Proof of Proposition 3.1 We divide our proof of Proposition 3.1 into three claims.
We denote by P .a1; : : : ; aj / a pretzel link of type .a1; : : : ; aj /, and by Œg.t/�j the
coefficient of tj in a polynomial g.t/.

Claim 3 Let n be an integer with n� 1. Let p and q be odd integers with 3� p � q .
Let K be a pretzel knot of type .�1;�2n;p; q/. Then we have

Œ�K .t/�1 D

�
�4 if nD 1;

�3 if n� 2;

where �K .t/ is normalized so that mindeg�K .t/D 0 and Œ�K .t/�0 > 0.

Proof Let K D P .�1;�2n;p; q/ with 1� n and 3� p � q . By applying the skein
formula (4) at crossings in the .�2n/–twists repeatedly, we can obtain a resolving
tree such that each leaf node corresponds to either P .�1; 0;p; q/ or P .�1;�1;p; q/.
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Notice that P .�1; 0;p; q/ is equivalent to a connected sum of a .2;p/–torus knot and
a .2; q/–torus knot. Then we have

�K .t/D�2n�1.t/�P.�1;0;p;q/.t/��2n.t/�P.�1;�1;p;q/.t/

D�2n�1.t/�p.t/�q.t/��2n.t/�P.�1;�1;p;q/.t/:

Next we calculate the Alexander polynomial of P .�1;�1;p; q/ by the same ar-
gument as above. By applying the skein formula (4) at crossings in the p–twists
repeatedly, we can obtain a resolving tree such that each leaf node corresponds to
either P .�1;�1; 0; q/ or P .�1;�1; 1; q/. Note that P .�1;�1; 0; q/ is equivalent to
a .2; q/–torus knot and that P .�1;�1; 1; q/ is equivalent to a .2; q � 1/–torus link.
Then we have

�P.�1;�1;p;q/.t/D�p�1.t/�P.�1;�1;0;q/.t/C�p.t/�P.�1;�1;1;q/.t/

D�p�1.t/�q.t/C�p.t/�q�1.t/:

Hence we have

�K .t/D�2n�1.t/�p.t/�q.t/��2n.t/�p�1.t/�q.t/��2n.t/�p.t/�q�1.t/:

To calculate easily, we consider the polynomial obtained by substituting �t in the
Alexander polynomial, namely, �K .�t/. By Remark 3, we have

�K .�t/D .�t/.4�p�q�2n/=2
�
f2n�2fp�1fq�1�f2n�1fp�2fq�1�f2n�1fp�1fq�2

�
:
D�f2n�2fp�1fq�1Cf2n�1fp�2fq�1Cf2n�1fp�1fq�2:

Here the symbol :D means that both sides are equal up to multiplications by units of
the Laurent polynomial ring ZŒt; t�1�. Here we recall that 1� n and 3� p � q . Then
we have

Œf2n�2fp�1fq�1�1 D

�
2 if nD 1;

3 if n� 2;

Œf2n�1fp�2fq�1�1 D 3;

Œf2n�1fp�1fq�2�1 D 3:

Therefore we have

Œ�K .�t/�1 D

�
�2C 3C 3D 4 if nD 1;

�3C 3C 3D 3 if n� 2;

Œ�K .t/�1 D

�
�4 if nD 1;

�3 if n� 2:
that is,

This completes the proof.
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Claim 4 Let n be an integer with n� 2. Let p and q be odd integers with 3� p � q .
Let K be a pretzel knot of type .�1; 2n;p; q/. Then we have

Œ�K .t/�3 D 2;

where �K .t/ is normalized so that mindeg�K .t/D 0 and Œ�K .t/�0 > 0.

Proof The proof is similar to that of Claim 3. Let K D P .�1; 2n;p; q/ with 2� n

and 3 � p � q . By applying the skein formula (4) at crossings in the 2n–twists
repeatedly, we can obtain a resolving tree such that each leaf node corresponds to
P .�1; 0;p; q/ or P .�1; 1;p; q/. Then we have

�K .t/D�2n�1.t/�P.�1;0;p;q/.t/C�2n.t/�P.�1;1;p;q/.t/

D�2n�1.t/�p.t/�q.t/C�2n.t/�P.�1;1;p;q/.t/:

By applying the same argument as above at crossings in the p–twists, we have

�P.�1;1;p;q/.t/D�p�1.t/�P.�1;1;0;q/.t/C�p.t/�P.�1;1;1;q/.t/

D�p�1.t/�q.t/C�p.t/�P.�1;1;1;q/.t/:

Notice that P .�1; 1; 1; q/ is equivalent to a .2; qC 1/–torus link. By applying the
skein formula (4), we have �qC1 D�q�1.t/C .t

�1=2� t1=2/�q.t/. Hence we have

�K .t/D�2n�1.t/�p.t/�q.t/C�2n.t/�p�1.t/�q.t/C�2n.t/�p.t/�q�1.t/

C .t�1=2
� t1=2/�2n.t/�p.t/�q.t/;

and then we have

�K .�t/
:
D�tf2n�2fp�1fq�1� tf2n�1fp�2fq�1� tf2n�1fp�1fq�2

C .1C t/f2n�1fp�1fq�1:

Here we recall that 2� n and 3� p � q . Then we have

Œtf2n�2fp�1fq�1�3 D Œf2n�2fp�1fq�1�2

D 6;

Œtf2n�1fp�2fq�1�3 D Œf2n�1fp�2fq�1�2

D

�
5 if p D 3; q � 3;

6 if 5� p � q;

Œtf2n�1fp�1fq�2�3 D Œf2n�1fp�1fq�2�2

D

�
5 if p D 3; q D 3;

6 if p � 3; q � 5;
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Œ.1C t/f2n�1fp�1fq�1�3 D Œf2n�1fp�1fq�1�3C Œf2n�1fp�1fq�1�2

D

8<:
8C 6D 14 if p D 3; q D 3;

9C 6D 15 if p D 3; q � 5;

10C 6D 16 if 5� p � q:

Therefore we have

Œ�K .�t/�3 D

8<:
�6� 5� 5C 14D�2 if p D 3; q D 3;

�6� 5� 6C 15D�2 if p D 3; q � 5;

�6� 6� 6C 16D�2 if 5� p � q;

that is, Œ�K .t/�3 D 2.

Here we note that P .�1; 2;p; q/ is equivalent to P .�2;p; q/.

Claim 5 Let p and q be odd integers with 5 � p � q . Let K be a pretzel knot of
type .�2;p; q/. Then we have

Œ�K .t/�4 D�2;

where �K .t/ is normalized so that mindeg�K .t/D 0 and Œ�K .t/�0 > 0.

Proof Let K D P .�2;p; q/ with 5� p � q . By applying the skein formula (4) at a
crossing in the .�2/–twists, we have

�K .t/D�p.t/�q.t/C .t
�1=2
� t1=2/�pCq.t/:

Then we have

�K .�t/
:
D�tfp�1fq�1C .1C t/fpCq�1:

Here we recall that 5� p � q . Then we have Œtfp�1fq�1�4 D Œfp�1fq�1�3 D 4 and
Œ.1C t/fpCq�1�4 D 1C1D 2. Therefore we have Œ�K .�t/�4 D�4C2D�2, that is,
Œ�K .t/�4 D�2.

This completes the proof of Proposition 3.1.

4 Proof of Theorem 1.1

Proof of Theorem 1.1 By Proposition 2.1 and Proposition 3.1, if a hyperbolic Mon-
tesinos knot K admits a nontrivial cyclic or finite surgery, then K is equivalent to a
.�1; 2; 3; q/–pretzel knot, where q is an odd positive integer with 3� q . This K is
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actually equivalent to a .�2; 3; q/–pretzel knot. Then Mattman showed in [15, Theo-
rems 1.1 and 1.2] that, among such pretzel knots, only the .�2; 3; 7/– and .�2; 3; 9/–
can have cyclic/finite surgeries, and the surgery slopes are as described in Theorem 1.1.
This completes the proof of Theorem 1.1.

Remark 4 The techniques we have used in this paper cannot be applied to the
.�2; 3; q/–pretzel knots as they are fibered and all nonzero coefficients of their Alexan-
der polynomials are ˙1.
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