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Novikov homology
of HNN–extensions and right-angled Artin groups

DIRK SCHÜTZ

We calculate the Novikov homology of right-angled Artin groups and certain HNN–
extensions of these groups. This is used to obtain information on the homological
Sigma invariants of Bieri–Neumann–Strebel–Renz for these groups. These invariants
are subsets of all homomorphisms from a group to the reals containing information
on the finiteness properties of kernels of such homomorphisms. We also derive
information on the homotopical Sigma invariants and show that one cannot expect
any symmetry relations between a homomorphism and its negative regarding these
invariants. While it was previously known that these invariants are not symmetric in
general, we give the first examples of homomorphisms which are symmetric with
respect to the homological invariant, but not with respect to the homotopical invariant.

20J05; 20F65, 57R19

1 Introduction

The Sigma invariants of Bieri–Neumann–Strebel–Renz [4; 5] have proven to be an
important tool in studying finiteness properties of groups. While they are in general very
difficult to compute, there are interesting groups for which they have been completely
determined and which give rise to very intriguing examples. These groups include right-
angled Artin groups (see Meier, Meinert and VanWyk [19]), and Thompson’s group F

(see Bieri, Geoghegan and Kochloukova [3]). As an application, Bieri, Geoghegan
and Kochloukova [3] use the Sigma invariants of Thompson’s group F to show that
F contains subgroups of type Fm�1 which are not of type Fm for all m � 1; see
Section 2 below for the definition of type Fm .

There are two different versions of finiteness properties, one based on homotopical and
one based on homological techniques, and it was shown by Bestvina and Brady [1] that
they are indeed different. One also has homotopical and homological Sigma invariants
which are also different in general [19].

We will give a precise definition in Section 2, but for the moment we can think of
the Sigma invariants as certain subsets †k.G/ and †k.GIZ/ of Hom.G;R/ for any
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k � 0 and G a finitely generated group1. Here †k.G/ refers to the homotopical
version and †k.GIZ/ to the homological version.

Given a nonzero homomorphism �W G ! R, one can always consider the negative
homomorphism ��W G! R. There are very simple examples of groups and homo-
morphisms �W G!R which show that the Sigma invariants are not invariant under
this antipodal action, possibly the easiest example being the Baumslag–Solitar group
G D ha; b j a�1baD b2i with the homomorphism sending a to 1 and b to 0. On the
other hand, for right-angled Artin groups the Sigma invariants are invariant under the
antipodal action.

Groups for which a computation of the Sigma invariants are quite accessible include
HNN–extensions, provided one has information on the Sigma invariants of the groups
being extended. Also, for these groups it is easy to break the symmetry of †k.G/

under the antipodal action. Here one should note that right-angled Artin groups can
also be build via HNN–extensions, a fact used by Meier, Meinert and VanWyk in [19]
to determine their Sigma invariants, but as the extension is always along only one
inclusion one gets the described symmetry in the Sigma invariants.

By forming nonsymmetric HNN–extensions of right-angled Artin groups we show that
practically any behaviour under the antipodal action is possible.

Theorem 1.1 Let p; q be positive integers. Then there exists a group G of type F

and a homomorphism �W G! Z with

� 2†p.G/�†pC1.G/

�� 2†q.G/�†qC1.G/:

Recall that a group is of type F if there exists a finite K.G; 1/. For certain metabelian
groups G Kochloukova [15] has given a calculation of †k.G/ in terms of †1.G/.
Using this result one can obtain other examples satisfying the statement of Theorem
1.1. In these examples we always have †k.G/D†k.GIZ/.

There is also a version of Theorem 1.1 where †k.G/ is replaced by †k.GIZ/ and we
demand that �;��…†2.G/. Recall that we always have †k.G/�†k.GIZ/, and for
k � 2 we have � 2†k.G/ if and only if � 2†k.GIZ/\†2.G/. Finally, we obtain
examples where we only get one of � and �� in †2.G/.

1In fact G should satisfy certain finiteness conditions depending on k .
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Theorem 1.2 There exists a group G of type F and a homomorphism �W G ! Z
such that for all p � 2 we have

� 2†p.G/

�� 2†p.GIZ/�†2.G/:

Theorem 1.2 has interesting consequences for a Theorem of Latour [17] regarding
conditions for the existence of a nonsingular closed 1–form within a cohomology
class � 2H 1.M IR/, where M is a high-dimensional closed manifold. One condition
demands the contractibility of certain path spaces M� and M�� ; see Section 8 for
details. In all previously known examples with M a closed manifold, contractibility of
M� was equivalent to contractibility of M�� , but using Theorem 1.2 we construct an
example where only one of these path spaces is contractible.

We determine the homological Sigma invariants using Novikov homology. It is known
that � 2†k.GIZ/ is equivalent to the vanishing of certain Novikov homology groups;
see Lemma 2.4 for details. Knowing the exact value of a nonvanishing Novikov
homology group gives extra information which is useful for looking at HNN–extensions,
as we can use methods from group homology.

It turns out that the Novikov homology of a right-angled Artin group is easily accessible.
To make this more precise, recall that for a finite flag complex L the right-angled
Artin group GL is generated by the vertices of L, and two generators commute exactly
when the corresponding vertices span a 1–simplex. If �W GL!R is nonzero on all
generators, then

H�.GLI
1ZGL�/Š1ZGL�˝Z

zH��1.L/;

where the isomorphism is induced by an isomorphism of chain complexes. Here 1ZGL�

denotes the Novikov ring; compare Section 2. If � vanishes on some generators, we get
a spectral sequence which carries enough information to determine †k.GLIZ/. This
gives a purely algebraic and simple calculation of these Sigma invariants. The original
calculation of Meier, Meinert and VanWyk [19], which also included the homotopical
invariants, used both geometric and algebraic arguments, and a simplification using
geometric arguments was done by Bux and Gonzalez [7].

Arguments using Novikov homology will only give information about the homological
invariants; in order to understand the homotopical invariants it is necessary to get
information about the homotopy type of certain halfspaces. Such a halfspace is defined
as NLD h�1.Œ0;1// with hW XL!R a map with h.gx/D �.g/Ch.x/, where XL

is the universal cover of a finite K.GL; 1/. While in Bux and Gonzalez [7] the first
nonvanishing homotopy group of N is determined, Bestvina and Brady showed [1,
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Theorem 8.6] that N has the homotopy type of a wedge of copies of L, provided
all generators of GL are send to 1. This gives a bit of extra information which is not
needed for the Sigma invariants of a right-angled Artin group, but it is useful when
considering nonsymmetric HNN–extensions of right-angled Artin groups.

Namely, it turns out that considering subcomplexes K of L leads to naturality in
groups GK ! GL which is also reflected in the halfspaces, that is, up to homotopy
the natural map NK !NL corresponds to inclusion of the wedge of copies of K into
the wedge of copies of L. This naturality allows us to understand the halfspaces for
nonsymmetric HNN–extensions of right-angled Artin groups, leading to the examples
described in Theorems 1.1 and 1.2. Since we need this more refined version of [1,
Theorem 8.6], we give a proof in Section 5. Our proof uses in fact different techniques
than [1], we exploit the fact that GL can be build using HNN–extensions of a smaller
right-angled Artin group. However, the techniques of [1] can also be used to obtain
this result.

2 Sigma invariants and Novikov rings

A group G is said to be of type FPn , if there is a resolution

(1) � � � �! Fi �! Fi�1 �! � � � �! F0 �! Z �! 0

of free ZG –modules such that Fi is finitely generated for i � n. Here Z is considered
as a trivial ZG –module.

We define

S.G/D .Hom.G;R/�f0g/=RC;

that is, we identify nonzero homomorphisms, if one is a positive multiple of the
other. This is a sphere of dimension rank.G=ŒG;G�/� 1. If �W G! R is a nonzero
homomorphism, we still write � 2 S.G/.

Given such �, we let G�D fg 2G j�.g/� 0g. If there is a resolution (1) of free ZG�
modules with Fi finitely generated for i � k , we say G� is of type FPk . We now set

†k.GIZ/D f� 2 S.G/ jG� is of type FPkg:

If G is of type Fn , that is, there exists a K.G; 1/ with finite n–skeleton, there is a
more geometric criterion to check for � 2 †k.GIZ/. Let X be the universal cover
of the K.G; 1/ with finite n–skeleton and �W G!R a nonzero homomorphism. Let
hW X!R be a height function with respect to �, that is, we have h.gx/D�.g/Ch.x/

for all x 2X and g 2G . To see that such h exist, note that it can easily be defined on
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the 0–skeleton X .0/ , and since R is contractible, the map can always be extended to
the higher skeleta.

Now for r 2R, let

N r
D fx 2X j h.x/� rg:

We call N r a halfspace with respect to �.

Proposition 2.1 (Bieri–Renz [5]) Let G be a group of type Fn . For k � n we have
� 2 †k.GIZ/ if and only if there is a real number r � 0 with the property that the
homomorphism zHi.N

0/! zHi.N
�r /, induced by inclusion, is the zero map for all

i <m, where zH denotes reduced homology.

This Proposition suggests the definition of another invariant by replacing reduced
homology by homotopy. This leads to the homotopical Sigma invariants.

Definition 2.2 Let G be a group of type Fn and �W G!R a nonzero homomorphism.
We say � 2 †k.G/ if there is a real number r � 0 with the property that the map
�i.N

0/! �i.N
�r /, induced by inclusion, is the zero map for all i <m.

This definition does not depend on the choices involved. Furthermore, using Proposition
2.1 it is easy to see that †1.GIZ/ D †1.G/ and †k.G/ � †k.GIZ/. However, it
follows from the work of Bestvina and Brady [1] that in general †2.G/ 6D†2.GIZ/
[7; 19]. Nevertheless, †k.G/D†2.G/\†k.GIZ/ for k � 2 [5, Chapter 6].

We now want to describe yet another criterion for the homological Sigma invariant
involving Novikov homology. For this we need a completion of the group ring.

Let G be a group and �W G! R a homomorphism. We denote by ZG the abelian
group of all functions �W G! Z. For � 2 ZG denote supp�D fg 2G j�.g/ 6D 0g.

Definition 2.3 The Novikov–Sikorav completion bZG� is defined as

bZG� D f� 2 ZG
j 8 r 2R supp�\��1..�1; r �/ is finiteg:

The multiplication is given by the extension of the multiplication of the group ring.
The resulting Novikov homology is given by

H�.GIbZG�/DH�.bZG�˝ZG P�/

where P� is a free ZG –resolution of the trivial ZG module Z, that is, ordinary group
homology with coefficients in bZG� ,viewed as a right ZG –module.
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Definition 2.3 is in fact due to Sikorav [24], Novikov’s original definition [21] required
� to be injective. We denote this case by

yN� D 3ZG=ker��:

The ring yN� has the nice property that it is a Euclidean ring; see Farber [9]. In particular,
the homology groups Hi.GI yN�/DHi. yN�˝ZG P�/ have a well defined rank, called
the Novikov–Betti number bi.GI�/, and torsion coefficients for i � n, where n is
such that G is of type FPn .

The relation to the Sigma invariants is given by the following lemma, a proof of which
can be found in Bieri [2, Theorem A.1].

Lemma 2.4 Let G be a group of type FPn and k � n. Then the following are
equivalent.

(1) � 2†k.GIZ/.

(2) Hi.GIbZG�/D 0 for i � k .

From the Universal Coefficient Spectral Sequence we therefore get:

Corollary 2.5 Let G be a group of type FPn and k � n. If � 2 †k.GIZ/, then
Hi.GIM /D 0 for i � k and all right bZG�–modules M .

Let G be a group, H a subgroup and �W H ! G an injective homomorphism. The
HNN–extension of G with respect to � is defined as

G�� D hG; t j t
�1ht D �.h/ for all h 2H i;

that is, the group generated by G and a disjoint element t subject to conjugation
relations for elements of H . If � is inclusion, we simply write G�H .

Now if �W G ! R is a homomorphism with �jH D � ı � , we can extend � to
�x W G��!R for every x 2R via

�x.g/D �.g/ and �x.t/D x:

If x 2R is not of crucial importance, we will simply write �D �x W G��!R.

The inclusion i W G! G�� induces an inclusion of completions i WbZG�! 1ZG���
and we obtain a long exact sequence (see Brown [6, Chapter VII.9])

(2) � � � �!Hn.H I 1ZG���/
˛
�!Hn.GI 1ZG���/

ˇ
�!

Hn.G�� I 1ZG���/ �!Hn�1.H I 1ZG���/ �! � � �
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where ˇ is induced by inclusion i W G ! G�� , and ˛ D .�; t/� � i� , where i� is
induced by the inclusion i W H !G and

.�; t/W .H; 1ZG���/! .G; 1ZG���/

is the pair �W H ! G and t W 1ZG���!
1ZG��� , which is right multiplication by t .

Note that Brown [6] uses a different convention in the definition of group homology
leading to sign changes compared to [6, Chapter VII.9].

We note the following immediate corollary which is well known; see Meier, Meinert
and VanWyk [19] and Meinert [20].

Corollary 2.6 Let �W G��!R as above, and G , H of type FPm for m� 1.

(1) If �jG 2†m.GIZ/ and �jH 2†m�1.H IZ/, then � 2†m.G�� IZ/.

(2) If � 2†m.G�� IZ/ and �jG 2†m�1.GIZ/, then �jH 2†m�1.H IZ/.

(3) If � 2†m.G�� IZ/ and �jH 2†m.H IZ/, then �jG 2†m.GIZ/.

(4) If �jH D 0 and �jG 6D 0, then � …†1.G�� IZ/.

3 Right-angled Artin groups

A simplicial complex L is called a flag complex, if every finite collection of pairwise
adjacent vertices of L spans a simplex in L. We denote the set of vertices by L.0/ . By
a full subcomplex of L we mean a subcomplex xL of L such that xL.0/ �L.0/ and a
finite collection of vertices of xL spans a simplex in xL if and only if it spans a simplex
in L. Clearly xL is also a flag complex.

Definition 3.1 Let L be a finite flag complex. The right-angled Artin group GL asso-
ciated to L is the group with generating set ft1; : : : ; tng in one-to-one correspondence
with the vertex set L.0/ D fv1; : : : ; vng, and relations Œti ; tj � D 1 precisely if vi ; vj
span a 1–simplex.

If the vertices vi0
; : : : ; vik

2L.0/ form a k –simplex in L, we denote this simplex by
Œvi0
W � � � W vik

�. We also consider the empty simplex which we denote by Œ � or ∅.

If L is a finite flag complex, and L� a full subcomplex, let L| be the full subcomplex
of L spanned by the vertices in L�L� . Given a simplex � in L| , we write

L�.�/D lk.�/\L�

where lk.�/ is the link of � in L, that is, the union of all simplices � in L disjoint from
� , such that � [ � is also a simplex in L. We also allow the empty simplex ∅ for � ,
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in which case we get L�.∅/ D L� . Notice that L�.�/ is a full subcomplex of L�

and hence of L. We thus get subgroups GL�.�/ of GL , which are again right-angled
Artin groups.

For a simplex � in L we write j� j D k , if � is spanned by kC 1 vertices. We also
set j∅j D �1.

Remark 3.2 Let the vertex set of L be fv1; : : : ; vng and let L� be the full subcomplex
of L whose vertex set is fv1; : : : ; vn�1g. With KDL�.vn/, we get an HNN–extension

GL DGL��GK
:

In particular, any right-angled Artin group can be build inductively from the trivial
group by HNN–extensions along right-angled Artin subgroups. We can therefore build
a K.GL; 1/ complex inductively by using the standard procedure for HNN–extensions,
that is, given a K.GL� ; 1/ and a K.GK ; 1/, we get

K.GL; 1/DK.GL� ; 1/[K.GK ; 1/� Œ0; 1�=�;(3)

where .x; j / � i.x/, for j D 0; 1, x 2K.GK ; 1/ and i W K.GK ; 1/!K.GL� ; 1/ a
map inducing the inclusion on fundamental group; compare Geoghegan [11, Chapter
7.1].

Let L be a finite flag complex, and L.0/ the set of vertices. We write

T n
D

Y
v2L.0/

S1;

which we think of as a CW–complex, where each circle has the CW–structure with
one cell of dimension 0 and 1. That is, for every subset � of L.0/ , there is a unique
cell T� � T n with dimension j� j determined by the property that the projection
pvW T� ! S1 is onto if and only if v 2 � . Let

QL D

[
�2L

T� � T n

be the union of T� over all simplices � in L.

Lemma 3.3 With the notation above, QL is a K.GL; 1/.

Proof The proof is by induction over the number of vertices in L. The main obser-
vation is that QL is given via (3), if we use the inclusion QK �QL� , so the result
follows from Remark 3.2.
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Remark 3.4 Lemma 3.3 can also be proven using results from nonpositively curved ge-
ometry; compare for example Bestvina and Brady [1]. These more advanced techniques
can give more useful information; compare Remark 8.5.

Let XL be the universal cover of QL . The left ZGL –chain complex C�.XL/ can be
described as follows. The k –th chain group is freely generated by the .k�1/–simplices
of L. Here we also consider the empty simplex, which generates C0 . Let us write
hvi1
W � � � W vik

i for the generator corresponding to the simplex Œvi1
W � � � W vik

�. The
orientation can be chosen so that

@.hvi1
W � � � W vik

i/D

kX
jD1

.�1/j .1� tij /hvi1
W � � � W yvij W � � � W vik

i

where yvij indicates that this vertex is omitted.

Proposition 3.5 Let L be a flag complex, L� a full subcomplex, and L| the full
subcomplex spanned by the vertices in L�L� . Let M be a right ZGL –module. Then
there exists a spectral sequence .Er

p q/ with

E1
p q D

M
�2.L|/.p�1/

Hq.GL�.�/IM /;

which converges to HpCq.GLIM /. Here .L|/.p�1/ denotes the set of .p�1/–
simplices in L| ; in the case p D 0 this set contains the empty simplex.

If M D r�N , where N is a right ZGL� –module and r W GL!GL� is the retraction
sending the generators corresponding to vertices of L| to the trivial element, this
spectral sequence collapses at E1 and we get

H�.GLIM /Š
M
�2L|

H��j� j�1.GL�.�/IN /;

where the direct sum is over all simplices � in L| , including the empty simplex.

Proof Define a free ZGL –double complex C�� by

Cp q D

M
�2.L|/.p�1/

ZGL˝ZGL�.�/
Cq.L

�.�//:
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Let us denote the generators of Cq.L
�.�// by hvj1

W � � � W vjqC1
ijhvi1

W���Wvip
i, where

� D Œvi1
W � � � W vip � 2 .L

|/.p�1/ . Then let @00W Cp q! Cp q�1 be given by

@00.1˝hvj1
W � � � W vjqC1

ijhvi1
W���Wvip i

/ D

.�1/p
qC1X
kD1

.�1/k ˝ .1� tjk
/hvj1

W � � � W yvjk
W � � � W vjqC1

ijhvi1
W���Wvip i

;

and @0W Cp q! Cp�1 q be given by

@0.1˝hvj1
W � � � W vjqC1

ijhvi1
W���Wvip i

/ D

.�1/qC1

pX
lD1

.�1/l.1� tjl
/˝hvj1

W � � � W vjqC1
ijhvi1

W���Wyvil
W���Wvip i

:

The total complex .TC; @0C .�1/p @00/ can be identified with C�.XL/ via

1˝hvj1
W � � � W vjqC1

ijhvi1
W���Wvip i

$ hvj1
W � � � W vjqC1

W vi1
W � � � W vik

i:

The first part of the theorem follows directly.

If M is of the form r�N for some ZGL� –module N , we get that

1˝ @0W M ˝ZGL
Cp q!M ˝ZGL

Cp�1 q

is the zero homomorphism, because tjl
acts trivial on M for vjl

2 L| . Therefore
M ˝ZGL

TC� is a direct sum of chain complexes

M ˝ZGL
ZGL˝ZGL�.�/

C��j� j�1.XL�.�//DN ˝ZGL�
C��j� j�1.XL�.�//:

The result follows.

4 Novikov homology of right-angled Artin groups

In this section, we want to express the Novikov homology of GL in terms of the flag
complex L. Let �W GL!R be a homomorphism, and let L� be the full subcomplex
of L corresponding to the vertices vi with �.ti/ 6D 0. Similarly, let L| be the full
subcomplex of L corresponding to the vertices vj with �.tj / D 0. The retraction
r W GL! GL� , which sends all the generators corresponding to vertices of L| to 1,
induces a ring homomorphism r W1ZGL�!

1ZGL�� .
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Theorem 4.1 Let L be a flag complex, �W GL! R a homomorphism and L� , L|

be as above. If M is a right 1ZGL�–module which is torsion-free as an abelian group,
then there is a spectral sequence .Er

p q/ with

E1
p q D

M
�2.L|/.p�1/

M ˝Z
zHq�1.L

�.�//

converging to HpCq.GLIM /.

If M D r�N for a right 1ZGL��–module N , the spectral sequence collapses and

H�.GLIM /Š
M
�2L|

N ˝Z
zH��j� j�2.L

�.�//:

Proof For any simplicial complex L we can look at the reduced chain complex
zC�.L/, with zCk.L/ the free abelian group generated by the k –simplices. Note that
zC�1.L/D Z is generated by the empty simplex. Also, let zCC� .L/ be the suspension
of zC�.L/, that is, zCCn D zCn�1.L/ together with the obvious boundary map.

Now define 'nW
1ZGL��˝Z

zCCn .L
�/! 1ZGL��˝ZGL�

Cn.XL�/ by

'n.1˝ Œvi1
W � � � W vin

�/D

nY
jD1

.1� tij /
�1
˝hvi1

W � � � W vin
i:

Note that, since Œvi1
W � � � W vin

� is a simplex, all tij commute. Also, as �.tij / 6D 0,
1� tij is invertible. The inverse is 1C tij C t2

ij
C � � � or t�1

ij
C t�2

ij
C � � � , depending

on whether �.tij / > 0 or �.tij / < 0.

It follows that ' commutes with the boundary and therefore induces an isomorphism
between free 1ZGL��–chain complexes. Now if M is a right 1ZGL��–module, we get

Hn.GL� IM /ŠHn.M ˝1ZGL��
1ZGL��˝Z

zCC� .L
�//

ŠHn.M ˝Z
zCC� .L

�//;

and the right-hand side is M ˝Z
zHn�1.L

�/ by the classical Universal Coefficient
Theorem, provided that M is torsion-free.

The same argument works for L�.�/ for every simplex � of L| , so the result follows
from Proposition 3.5.

Let us note two special cases.
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Corollary 4.2 Let �W GL!R be a homomorphism with �.ti/ 6D 0 for all generators
of GL . Then

Hn.GLI
1ZGL�/Š1ZGL�˝Z

zHn�1.L/

for all n 2 Z.

Corollary 4.3 Let L be a flag complex, �W GL!R a homomorphism, L� the full
subcomplex generated by the vertices whose image under � is nonzero, and L| the
full subcomplex generated by the vertices whose image under � is zero. Then

Hn.GLI
yN�/Š

M
�2L|

yN�˝Z
zHn�j� j�2.L

�.�//

for all n 2 Z.

Proof Simply note that yN� viewed as a 1ZGL�–module is of the form r� yN� with
yN� viewed as a 1ZGL��–module.

Remark 4.4 Since L is a finite simplicial complex, the groups zHk.L
�.�// are finitely

generated abelian groups. If we write Z=nD Z=nZ, it is easy to see that

bZG�˝Z Z=nŠ 1Z=nG�

for any group G and homomorphism �W G!R. Therefore every nonzero summand
in zHn�j� j�2.L

�.�// leads to a nonzero summand in Hn.GLI
yN�/. In particular, for

the Novikov–Betti numbers we obtain

bi.GLI�/D
X
�2L|

zbi�j� j�2.L
�.�//;

where zbi is the “reduced” Betti number, that is, the rank of zHi , and for the torsion
coefficients

maxfqi�j� j�2.L
�.�// j � 2L|

g � qi.GLI�/ �
X
�2L|

qi�j� j�2.L
�.�//:

We can therefore recover the homological version of the main theorems of [7; 19].

Corollary 4.5 Let L be a flag complex, �W GL ! R a homomorphism, L� the
full subcomplex generated by the vertices whose image under � is nonzero, and L|

the full subcomplex generated by the vertices whose image under � is zero. Then
� 2†n.GLIZ/ if and only if for every simplex � of L| (including the empty simplex)
L�.�/ is .n�j� j�2/–acyclic.
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Proof If all L�.�/ are .n�j� j�2/–acyclic, then by Theorem 4.1, Hi.GLI
1ZGL�/D0

for all i � n which gives � 2†n.GLIZ/ by Lemma 2.4.

If L�.�/ is not .n�j� j�2/–acyclic for some � , we see from Corollary 4.3 together
with Corollary 2.5 that � …†n.GLIZ/.

If � vanishes on certain generators, it is in general very difficult to make precise
calculations with Theorem 4.1, but simpler calculations can sometimes be made.

Example 4.6 Let L be a finite flag complex and �W GL!R a homomorphism which
is nonzero on every generator. Extend � to �W GL �Z! R by sending the extra
generator to 0. The augmentation "W 3ZGL �Z�!1ZGL� induces a 3ZGL �Z�–module
structure on 1ZGL� and there is a short exact sequence

0 �! 3ZGL �Z�
1�t
�! 3ZGL �Z�

"
�!1ZGL� �! 0

where t corresponds to the generator of Z. The differential d1 in the spectral
sequence of Theorem 4.1 is induced by multiplication with 1 � t , and so E2

0 q
D

1ZGL�˝Z
zHq�1.L/. As E2

p q D 0 for p 6D 0, we get

H�.GL �ZI3ZGL �Z�/Š1ZGL�˝Z
zH��1.L/:

By Corollary 4.3 we have

H�.GL �ZI yN�/D . yN�˝Z H��1.L//˚ . yN�˝Z H��2.L//:

Remark 4.7 In [19] the invariant †k.GIZ/ is also considered for arbitrary commu-
tative rings R. To define the invariant †k.GIR/ one has to replace the Z in the
definition of †k.GIZ/ systematically by R, for example, one considers resolutions
over RG� , and the relevant Novikov homology is TorRG

p .bRG�;R/. The criterion in
Corollary 4.5 is then that � 2 †n.GLIR/ if and only if for every simplex � of L| ,
L�.�/ is .n�j� j�2/–R–acyclic, with a space X being k –R–acyclic if zHi.X IR/D0

for i � k .

The above proof carries over, except that one has to be slightly more careful in two steps.
Firstly, in Theorem 4.1 an R–torsion-free 1RGL�–module M need not be flat over R.
However, for Corollary 4.5 we are only interested in the first nonvanishing homology
group, and by the universal coefficient spectral sequence this is M ˝R Hi.L

�.�/IR/

for some i and � .
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Secondly, if M is an R–module, it need not be the case that 1RGL�˝R M Š 1MGL� ,
as in Remark 4.4. But there is a commutative diagram

RGL˝R M

��

Š
// M GL� _

��

1RGL�˝R M // 1M GL�

which shows that 1RGL�˝R M is nontrivial if and only if M is.

5 The homotopy type of halfspaces

For the homotopical Sigma invariants we want to understand the homotopy type of the
halfspaces N r D h�1.Œr;1// with respect to some � and a height function h. Let us
begin by constructing a specific height function for XL , the universal cover of QL .

We choose a basepoint � 2 XL which is a lift of the unique 0–cell in QL . We then
get an embedding G ,! XL sending g to g�. This can be repeated for every full
subcomplex K �L, resulting in inclusions iL

K
W XK ,!XL sending � to �.

Notice that the cells in XL are cubical in the sense that the characteristic maps for
each cell are of the form 'W Œ0; 1�k !XL .

Lemma 5.1 There exists a collection of height functions hK W XK !R for every full
subcomplex K �L with the following properties.

(1) For every pair K1 �K2 of full subcomplexes of L we have hK2
ı i

K2

K1
D hK1

.

(2) We have hL.�/D 0.

(3) For every cell in XL there is a characteristic map 'W Œ0; 1�k ! XL such that
hL ı'W Œ0; 1�

k !R is linear.

Proof The proof is by induction on the number of vertices in L. For the empty
subcomplex note that X∅ D f�g, and we let h∅.�/D 0.

Let v1; : : : ; vn be the vertices of L, and let L� be the full subcomplex containing
the vertices v1; : : : ; vn�1 . We also write K D L�.vn/. It follows from (3) (see also
Geoghegan [11, Chapter 6]) that

XL DGL �GL�
XL� [GL �GK

XK � Œ0; 1�=�(4)

Algebraic & Geometric Topology, Volume 9 (2009)



Novikov homology of HNN–extensions and right-angled Artin groups 787

where Œg;x; 0� � Œg; iL�

K
.x/� and Œg;x; 1� � Œgtn; i

L�

K
.x/� for all g 2 GL , x 2 XK .

Here G�H X is the quotient space of G�X via the H –action h �.g;x/D .gh�1; hx/

where H is a subgroup of G and X a space with left H –action.

Assume by induction that hL� and hK exist with the required properties. Then define

hL.Œg;x�/D �.g/C hL�.x/ for g 2GL; x 2XL�

hL.Œg;x; t �/D �.g/C hK .x/C t ��.tn/ for g 2GL; x 2XK :

It is easy to see that this is well defined and has the required properties.

Let NL be the maximal subcomplex of XL contained in N 0D h�1
L
.Œ0;1//. Then the

monoid

GC
L
D fg 2GL j�.g/� 0g

acts on NL . We can get an inductive description for NL as in (4). For this let
v1; : : : ; vn be the vertices of L, and let L� be the full subcomplex containing the
vertices v1; : : : ; vn�1 . We again write K DL�.vn/. Then

NL DGC
L
�

G
C

L�
NL� [GC

L
�

G
C

K

NK � Œ0; 1�=�

with � as in (4), and where GC
L
�G
C

L�
NL� is the quotient space of GC

L
�NL� via

identifying .gh;x/ with .g; hx/ for g 2GC
L

, h 2GC
L�

and x 2NL� .

Remark 5.2 Using the methods of [7] it is easy to see that NL has the homotopy
type of N 0 , but we will not need this result. As there is an r > 0 with N r �NL , we
can use NL and its translates g �NL for g 2GL in the definition of †k.GL/.

In [1, Th.8.6] it is shown (in the case �.ti/D 1 for all generators of GL ) that NL has
the homotopy type of a wedge of L’s. The statement is not completely precise in the
case when L is disconnected; compare the note below [1, Th.8.6].

We now want to give an alternative approach to determining the homotopy type of NL

which will also discuss the functoriality induced by subcomplexes K �L.

Let us analyze the components of NL . Since GC
L

acts on NL it also acts on �0.NL/D

�0.NL;�/, where � 2 NL is the basepoint. If we denote the component of x 2 NL

by Œx�, it is clear that every component is of the form g � Œ�� with g 2GC
L

.

Lemma 5.3 Every component of NL is of the form g � Œ�� with g 2 ker�.
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gt�1
2

g

gt2

gt1t�1
2

gt1

NL

Figure 1

Proof We can assume that �.ti/ � 0 for every generator of GL . Let g � Œ�� be a
component with �.g/� 0. Clearly g� and gti� are in the same component for every
generator (compare Figure 1), so we can assume that gŒG;G�D t

k1

1
� � � t

kn
n ŒG;G� with

all ni � 0, where ŒG;G� is the commutator subgroup. Then gt
�k1

1
� � � t
�kn
n 2 ker�,

and g� is in the same component as gt
�k1

1
� � � t
�kn
n �.

If we think of the set of components as a discrete space, we get that

�L DGC
L
�

G
C

L�
�0.NL�/[GC

L
�

G
C

K

�0.NK /� Œ0; 1�=�

with Œg; Œx�; 0� � Œg; iL�

K
Œx�� and Œg; Œx�; 1� � Œg; iL�

K
Œx��, is a graph with GC

L
–action,

such that �0.�L/D �0.NL/.

Lemma 5.4 The graph �L is a forest, that is, a disjoint union of trees.

Proof Since all the components of �L are homeomorphic with a homeomorphism
induced by some g 2 ker�, we only have to consider the component � containing
Œ1; Œ��� 2GC

L
�

G
C

L�
�0.NL�/. Let

HC D fh 2GC
L�
j hŒ��D Œ��g;

which is a monoid. Note that Œgh�1; Œ���D Œgh�1; hŒ���D Œg; Œ��� for h2HC , provided
that �.gh�1/� 0.

Two elements Œg1; Œ���; Œg2; Œ��� 2 �L are connected by an edge if and only if there are
h; k 2 HC with g2 D g1h"t"

0

n k"
00

and "; "0; "00 2 f˙1g. We have to show that edge-
loops in � are contractible, that is, finite sequences of points Œg0; Œ���; : : : ; Œgk ; Œ��� with
Œgi ; Œ��� and ŒgiC1; Œ��� connected by an edge, and such that Œg0; Œ���D Œgk ; Œ���D Œ1; Œ���.
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Hence there exist hi ; ki 2HC with giC1 D gih
"i
i t"
0
i

n k"
00
i

i . Therefore

1D h"0
0 t"

0
0

n k"
00
0

0 � � � h
"n�1
n�1 t"n�1

0

n k"n�1
00

n�1 :

But by the Normal Form Theorem for HNN–extensions [18, Chapter IV] we get that
there is an i and a subword t"i�1

0

n k"i�1
00

i�1
h"i

i t"
0
i

n with k"i�1
00

i�1
h"i

i 2K and "0
i�1
D�"0i .

Therefore

giC1 D gi�1h"i�1
i�1 t"i�1

0

n k"i�1
00

i�1 h"i
i t"
0
i

n k"
00
i

i

D gi�1h"i�1
i�1 k"i�1

00

i�1 h"i
i k"

00
i

i

and ŒgiC1; Œ���D Œgi�1h"i�1
i�1

k"i�1
00

i�1
h"i

i k"
00
i

i ; Œ���D Œgi�1; Œ���. Therefore the loop repre-
sented by Œgi�1; Œ���, Œgi ; Œ��� and ŒgiC1; Œ��� is null-homotopic, and the result follows
by induction.

Recall that v1; : : : ; vn are the vertices of the flag complex L. Define an equivalence
relation on the set of vertices by vi � vj if they are in the same component. Denote
an equivalence class by �i and embed �i into L by choosing a representative. This
defines a basepoint in every component of L.

Lemma 5.5 Let �W GL!R be a homomorphism with �.ti/ > 0 for all generators of
GL , and let g 2 GL . If ti ; tj are generators of GL such that vi � vj , then gtr

i Œ��D

gt s
j Œ�� for all r; s � 0 with gtr

i ;gt s
j 2G�

L
.

Proof We have that � and tk� are connected by a 1–cell in NL for all generators tk .
So if h 2 GC

L
, we get h� and htk� are connected by a 1–cell in NL . So for k � 0

we get
gtr

i Œ��D Œgtr
i ��D ŒgtrCk

i ��D gtrCk
i Œ��:

Also if ti and tj commute, we get

gtr
i Œ��D gtr

i t s
j Œ��D gt s

j tr
i Œ��D gt s

j Œ��:

If vi and vj are in the same component of L, there is a finite sequence of generators
ti D ti0

; : : : ; tik
D tj with tim

and timC1
commuting, and we get

gtr
i Œ��D gt

r1

i1
Œ��D � � � D gt

rk�1

ik�1
Œ��D gt s

j Œ��

by the argument above.

Proposition 5.6 Let �W GL ! R a homomorphism, L� the full subcomplex con-
taining the vertices with �.ti/ 6D 0 and let L| be the full subcomplex containing the
vertices with �.tj /D 0. Then the following are equivalent.
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(1) � 2†1.GL/.

(2) NL is connected.

(3) L� is connected, and for every vertex vi 2L| we have L�.vi/ is nonempty.

Proof (1) ) (3) follows from Corollary 4.5, because †1.G/D†1.GIZ/.

(2) ) (1) follows from the Definition.

(3) ) (2) is proven by induction on the number of vertices in L| . If L| D ∅, we
can assume that �.ti/ > 0 for all generators, as replacing ti with t�1

i induces an
automorphism of GL .

Let g2GC
L

, so that gŒ�� is a component of NL . If g is a word which uses only positive
powers of the generators ti , it is clear that gŒ��D Œ��. Otherwise let g D ht�1

j w , with
w a word which uses only positive powers of the generators. But by Lemma 5.5 there
is a r � 1 with ht�1

j wŒ��D htr�1
j Œ��. Therefore we can reduce the number of negative

powers in g without changing the component. By induction, we get gŒ��D Œ��.

If �.tn/ D 0, let xL be the full subcomplex of L containing all vertices except vn .
Then NxL is connected by (3) and the induction assumption. Also, there is a ti in
GL� which commutes with tn . If g 2 GxL , we get gŒ��D Œ�� by the connectivity of
NxL . If g D ht s

nw with w 2 GxL , let r � 0 such that w�1tr
i 2 GC

xL
. Then gŒ�� D

ht s
nww

�1tr
i Œ�� D htr

i t s
nŒ�� D htr

i Œ��, as t s
nŒ�� D Œ��. Therefore we can reduce the

occurrences of tn , which shows by induction that gŒ��D Œ��.

We will for now assume that �.ti/ > 0 for all generators ti of GL .

Define ML DGL �L[�0.NL/=�

where .g;�i/� gtr
i Œ�� for g 2GL and r � 0 such that �.gtr

i /� 0, and .g;x/� gŒ��

for g 2 GC
L

and all x 2 L. In words, ML has a copy of L for every g 2 GL with
�.g/ < 0, and basepoints are identified with certain components of NL . Clearly, ML

has a GC
L

–action.

Example 5.7 If L is connected, we get �0.NL/ is a point by Proposition 5.6, and
ML is a wedge of copies of L, one for each g 2GL with �.g/ < 0.

If K�L is a full subcomplex, the inclusion need not preserve basepoints. In fact, K can
have more components than L, but we can choose basepoints for the components of K

as above for L. Then choose a map j L
K
W K!L homotopic to the inclusion which sends

basepoints to basepoints. If K1 �K2 �L then we get maps with j L
K2
ı j

K2

K1
' j L

K1
.

This induces equivariant maps 'L
K
W MK !ML with 'L

K2
ı'

K2

K1
' 'L

K1
equivariantly.
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Proposition 5.8 For every full subcomplex K � L there is an equivariant map
 K W NK ! MK which is an unequivariant homotopy equivalence, and such that
for K1 �K2 �L the diagram

NK1

i
K2
K1

//

 K1

��

NK2

 K2

��

MK1

'
K2
K1

// MK2

commutes up to equivariant homotopy.

Proof The proof is by induction on the number of vertices in L. For 0 or 1 vertex the
statement is clear.

Using induction, we get

NL DGC
L
�

G
C

L�
NL� [GC

L
�

G
C

K

NK � Œ0; 1�=�

'GC
L
�

G
C

L�
ML� [GC

L
�

G
C

K

MK � Œ0; 1�=�

with Œg;y; 0� � Œg; 'L�

K
.y/� and Œg;y; 1� � Œgtn; '

L�

K
.y/� for g 2 GC

L
and y 2 NK ,

via an equivariant map with domain NL . The right-hand-side written out is

(5)
��

GL �L�[GC
L
�

G
C

L�
�0.NL�/

�
=�

�
[���

GL �K[GC
L
�

G
C

K

�0.NK /
�
=�

�
� Œ0; 1�

�ı
�

with identifications as before. If we do the �–identification in two steps, we get

NL ' .GL �L�[�L=�/[ .GL �K � Œ0; 1�/
ı
�(6)

with .g;x; 0/� .g; j L�

K
.x// and .g;x; 1/� .gtn; j

L�

K
.x// for x 2K and g 2 GL ,

and for s 2 Œ0; 1� we also identify .g;x; s/� Œg; Œ��; s� for g 2 GC
L

, and .g;�i ; s/�

Œgtr
i ; Œ��; s�, provided �.gtr

i /� 0.

This space is the forest �L , together with copies of L� wedged to it, one for each
g 2 GL with �.g/ < 0, and such that the copies of L� corresponding to g and gtn
are connected via K � Œ0; 1�.

Now if �.g/ < 0, but �.gtn/� 0, we get that L� corresponding to g is being coned
off along K . Denote this as CK L� , which is homotopy equivalent to L. Also, if form
L�[K� Œ0; 1�[CK L� by identifying K�f0; 1g with copies in L� and CK L� , it is
easy to see that the result is homotopy equivalent to the wedge of L.
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� � �

'

� � �

Figure 2

In the right-hand-side of (6) we have infinite sequences of such objects; compare
Figure 2. It follows that the right hand side is homotopy equivalent to ML by this and
collapsing the forest �L to its components.

To see that the construction is natural with respect to full subcomplexes, note that we
can do the above construction for every subcomplex containing vn and so that they are
natural up to equivariant homotopy. If we consider a subcomplex not containing vn ,
naturality follows by induction.

For r 2 im� let N r
L
D hNL , where h 2GL satisfies �.h/D r . Also let

M r
L DGL �L[�0.N

r
L/=�

where .g;�i/� Œgt s
i �� for g 2GL and s � 0 such that �.gt s

i /� r , and .g;x/� Œg��
for �.g/� r . For r < s we have an obvious projection psr W M s

L
!M r

L
.

If g2GL satisfies �.g/D r , we get a homeomorphism ugW ML!M r
L

by ug.Œh;x�/D

Œgh;x� and ug.Œx�/D Œgx� for .h;x/2GL�L and Œx�2�0.NL/. If vg�1 W N r
L
!NL

denotes left-multiplication by g�1 , we get that

 r
L D ug ı L ı vg�1 W N r

L!M r
L

is a homotopy equivalence which is GC
L

equivariant, and for r < s the diagram

(7) N s
L

//

 s
L

��

N r
L

 r
L

��

M s
L

psr

// M r
L

commutes, as is easily seen from the cases with r or s equal 0.

For  L to be a homotopy equivalence, we need � to be nonzero on all generators,
and we will not attempt to describe the homotopy type of NL in general. But the
next Lemma contains partial information which is useful for determining †2.GL/ in
general.

Algebraic & Geometric Topology, Volume 9 (2009)



Novikov homology of HNN–extensions and right-angled Artin groups 793

Lemma 5.9 Let �W GL!R a homomorphism, L� the full subcomplex containing
the vertices with �.ti/ 6D 0 and let L| be the full subcomplex containing the vertices
with �.tj /D 0. For every s 2 im� there is a retraction �sW N s

L
!N s

L�
which makes

the diagram

N s
L

�
//

�s

��

N r
L

�r

��

N s
L�

�
// N r

L�

commute for every s > r 2 im�.

Proof The proof is by induction on the number of vertices in L| with the induction
start L| empty being trivial. Assume the statement holds for xL a full subcomplex L

containing L� . If vn …
xL, let K be the full subcomplex of xL containing all vertices

adjacent to vn . Then if L0 is the full subcomplex of L containing xL and vn , we get

N s
L0 DGC

L0
�

G
C

xL

N s
xL
[GC

L0
�

G
C

K

N s
K � Œ0; 1�=�(8)

with identifications as in (4). If �W GL0 ! GxL is the retraction obtained by sending tn
to 1, we get a retraction �sW N s

L0
!N s

xL
defined by �s.Œg;x�/D �.g/ �x for g 2GC

L0

and x 2 N s
xL

, and �s.Œg;x; t �/ D r.g/ � i
xL

K
for g 2 GC

L0
, x 2 N s

xL
and t 2 Œ0; 1�. It is

clear that the resulting diagram for s > r commutes.

Theorem 5.10 Let �W GL!R a homomorphism, L� the full subcomplex containing
the vertices with �.ti/ 6D 0 and let L| be the full subcomplex containing the vertices
with �.tj /D 0. Then the following are equivalent.

(1) � 2†2.GL/.

(2) NL is simply connected.

(3) L� is simply connected, for every vertex vi 2 .L
|/.0/ we have L�.vi/ is

connected, and for every 1–simplex � 2 .L|/.1/ we have L�.�/ is nonempty.

Proof (1) ) (3) holds by the following argument: Since � 2 †2.GL/ implies
� 2 †2.GLIZ/, Corollary 4.5 implies that we only need to show that L� is simply
connected. If L� is not simply connected, then for all r < 0 the homomorphism
�1.NL�/! �1.N

r
L�
/ induced by inclusion is nontrivial, as follows from Proposition

5.8 together with diagram (7). This implies �1.NL/! �1.N
r

L
/ is nontrivial for all

r < 0 by Lemma 5.9, which by definition implies � …†2.G/.

(3)) (2) is again shown by induction on the number vertices in L| . If L| is empty, the
result follows from Proposition 5.8. Let L0 , xL and K be as in the proof of Lemma 5.9,
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and assume inductively that NxL is simply connected. Note that K� D L�.vn/ is
connected, and K�.vi/DL�.Œvi W vn�/ for every vertex vi 2K�L� . Therefore NK is
connected by Proposition 5.6. It follows from (8) and a Seifert–Van Kampen argument
that NL0 is simply connected. After finitely many steps we get NL simply connected.

(2) ) (1) follows from the definition.

Remark 5.11 Since †k.G/ D †k.GIZ/ \†2.G/ for k � 2, Theorem 5.10 and
Corollary 4.5 recover the main theorems of [7; 19].

6 Nontrivial HNN–extensions of right-angled Artin groups

Given a finite flag complex L and a full subcomplex K , we can form a new flag
complex xL by adding a vertex and requiring that it is adjacent to every vertex of K .
The resulting right-angled Artin group GxL is a trivial HNN–extension of GL along
GK ; compare Remark 3.2.

We now want to look at the situation where we have two full subcomplexes K1;K2 of
L which are isomorphic as simplicial complexes. Such an isomorphism induces an
isomorphism of groups �W GK1

!GK2
, and we can form the HNN–extension

G DGL�� ;

The extra generator of G is denoted by t .

Any homomorphism �W GL ! R with � ı � D �jGK1
extends to homomorphisms

�x W G!R by setting �x.t/D x for any x 2R. We will usually drop the subscript
x in �W G!R.

If we assume �.ti/ 6D 0 for all generators of GL , the exact sequence (2) becomes:

bZG�˝Z
zHn�1.K1/

˛
�!bZG�˝Z

zHn�1.L/ �!Hn.GIbZG�/ �!

bZG�˝Z
zHn�2.K1/

˛
�!bZG�˝Z

zHn�2.L/ �! � � �

Note for example, that L connected implies � 2†1.GIZ/. Also, if the Betti numbers
of K1 and L are different, we get nonvanishing H�.GIbZG�/ independent of �.t/.
By looking at the chain complex description in the proof of Theorem 4.1, we see that
˛WbZG�˝Z

zH�.K1/!bZG�˝Z
zH�.L/ is given by

˛.1˝ z/D t ˝ j�.z/� 1˝ i�.z/(9)

for z 2 zH�.K1/, with i�W zH�.K1/! zH�.L/ is induced by inclusion and j� is induced
by the isomorphism K1!K2 followed by inclusion. Now i� and j� can induce quite
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different maps on homology, and we want to construct examples where K1 ,!L is a
homotopy equivalence, while K2 ,!L is not.

Definition 6.1 Let f W K!L be a simplicial map between finite simplicial complexes.
We call f a full simplicial embedding, if it is injective as a continuous map, and if
vertices v0; : : : ; vk span a k –simplex in K if and only if f .v0/; : : : ; f .vk/ span a
k –simplex in L for all k � 0.

Example 6.2 Let K D f0; 1g and L D Œ0; 1� with two vertices 0 and 1. Then the
inclusion K!L is not a full embedding. But if we subdivide L by adding a vertex
1
2

, the inclusion becomes a full embedding. Note that GK D F2 , GL DZ2 , and the
map induced by inclusion i�W F2 ! Z2 is clearly not injective. However, with L0

the barycentric subdivision of L, we get GL0 D F2 �Z, and we have an injection
i�W GK !GL0 .

Lemma 6.3 Let f W K! L be an injective simplicial map between finite flag com-
plexes. Then f is a full embedding if and only if the following holds: two vertices
v0; v1 in K span a 1–simplex if and only if f .v0/ and f .v1/ span a 1–simplex in L.

In this case, GK is a retract of GL .

Proof The “if and only if” statement is clear since flag complexes are determined
by their 1–skeleton. The retraction for the induced homomorphism i�W GK ! GL

is defined as follows: if ti is a generator corresponding to the vertex ui 2 L.0/ , we
set r.ti/ D tj 2 GK , if there is a vertex vj 2 K.0/ with f .vj / D ui , and we set
r.ti/D 1 2GK , if ui is not in the image. From the full embedding condition it follows
that r respects all relations in GL , and we have r i� D idGK

.

Lemma 6.4 Let K;L be finite flag complexes and f W K!L a simplicial map. Then
there exists a finite flag complex M containing L as a deformation retract, and a full
simplicial embedding gW K!M homotopic to f .

Proof We first want to replace f by a simplicial map g0W K!M 0 which is injective
on vertices. Let v0; v1 be vertices with f .v0/Df .v1/Du2L. Form a new simplicial
complex L1 by forming the cone over the star of u, that is, we add one vertex u0 , and
whenever there is a k –simplex � involving u, we add the .kC1/–simplex � [fu0g to
L1 . Then L1 is still a flag complex and it contains L as a deformation retract. If we
define f1W K! L1 by f1.v/D f .v/ for v 6D v1 , f1.v1/D u0 , we get a simplicial
map homotopic to i ıf W K!L1 , which is slightly less noninjective than f . If f1 is
not injective, we repeat this process finitely many times.
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So assume that g0W K!M 0 is injective on vertices, M 0 contains L as a deformation
retract and i ıf is homotopic to g0 . Let v0; v1 be two vertices of K which do not form
a 1–simplex, but such that f .v0/ and f .v1/ form a 1–simplex in M 0 . Let u0Dg0.v0/

and u1 D g0.v1/, and let M � be the full subcomplex of M 0 containing u1 and all
vertices u adjacent to u1 , except u0 . Now form M1 by coning off M � , that is, we add
a vertex u0

1
, and for every k –simplex � in M � we add the .kC1/–simplex � [fu0

1
g.

Again M1 deformation retracts to M 0 , and defining g1W K!M1 by g1.v/D g0.v/

for v 6D v1 and g1.v1/D u0
1

gives an injective simplicial map homotopic to i ıg0 .

Also, if v2; v3 are vertices in K not forming a 1–simplex, then g1.v2/;g1.v3/ form
a 1–simplex in M1 if and only if fv2; v3g 6D fv0; v1g and g0.v2/;g

0.v3/ form a 1–
simplex. As there are only finitely many such pairs, we can repeat the argument finitely
many times to end up with the desired full embedding.

Let K be a finite flag complex and f W K!K a continuous map. By the simplicial
approximation theorem, there is r � 0 and a simplicial map f 0W KŒr �!K homotopic
to f , where KŒr � is the r –th barycentric subdivision of K , which is also a flag complex.
By Lemma 6.4 we can find a full embedding gW KŒr �!M with M a flag complex
containing K as a deformation retract.

Lemma 6.5 There exists a finite flag complex L with the following properties:

(1) KŒr � and M are full subcomplexes of L with inclusions i W KŒr � ! L and
j W M !L.

(2) The set of vertices is the disjoint union of the vertices of KŒr � and M .

(3) The full embedding i W KŒr �!L is a homotopy equivalence.

(4) The full embedding j ıgW KŒr �!L is homotopic to i ıf W K!L.

Proof If r D 0, let L D K � Œ0; 1� [K�f1g M with the standard subdivision of
K � Œ0; 1�.

If r > 0, let sW KŒr�1�!K be a simplicial approximation of the identity, and M.s/

the simplicial analogue of a mapping cylinder as constructed in [12, page 183]. By
checking the construction there, one sees that M.s/ is a flag complex, as KŒr�1� and K

are. Furthermore, the set of vertices is the disjoint union of the vertices of KŒr � and K ,
so KŒr � and K are fully embedded in M.s/. Also, there is a deformation retraction
rt W M.s/!K with r1ı i D sW KŒr �!K . In particular, the inclusion i W KŒr �!M.s/

is a homotopy equivalence. Now let L D M.s/[K M . It is clear that L has the
desired properties.
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Definition 6.6 Let yN be the set of all nonnegative integers together with an element1.
We order this set by the usual order of integers together with p<1 for all nonnegative
integers p .

For the next theorem, we set

†1.GIZ/D
\

p�1

†p.GIZ/

†1C1.GIZ/D∅:

Theorem 6.7 Let p; q 2 yN . Then there exists a group G of type F and a homomor-
phism �W G!R with

� 2†p.GIZ/�†pC1.GIZ/

�� 2†q.GIZ/�†qC1.GIZ/:

The homomorphism can be chosen to have image in Z.

Proof We can assume p 6D q for otherwise we can find a right-angled Artin group
and � with that property. Without loss of generality let p > q .

If q � 1, let K be a flag complex realizing Sq , and f W Sq! Sq a map of degree 2.
Let L be the flag complex arising from Lemma 6.5 and M the one-point union of L

and a flag complex realizing Sp (in case p D1 we set M DL). Then let G be the
HNN–extension of GM along GK Œr � using the two full embeddings from Lemma 6.5.
To define �W G!R, let �.ti/D 1 for every generator ti 2GM and let �.t/D 1. Then
˛WbZG�˝Z

zH�.S
q/!bZG�˝Z

zH�.S
q _Sp/ is by Lemma 6.5 and (9) the map

˛.1˝ z/D t ˝f�.z/� 1˝ i�.z/:

In degree q this is the map ˛.x/D x.2t � 1/ for x 2bZG� , which is an isomorphism
since �.t/ > 0. If we look at ��, we still get the formula for ˛ , but this time
it is a map bZG�� ! bZG�� and ˛ is injective but not surjective. It follows that
�� 2 †q.GIZ/ � †qC1.GIZ/ from Lemma 2.4 and (2), while � 2 †qC1.GIZ/.
If p < 1, note that HpC1.GIbZG�/ 6D 0, since zHp.M / 6D 0 while zHp.K/ D 0.
Therefore � 2†p.GIZ/�†pC1.GIZ/.

If qD 0 we have to use a slightly different technique. We assume p<1, for otherwise
the Baumslag–Solitar group G D hs; t j t�1st D s2i will do.

Let L be a finite flag complex subdividing Sp , and M the union of L with two vertices
v;w with v being adjacent to exactly one vertex of L; see Figure 3. Furthermore, let
K be the two vertices v;w .
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v w

Figure 3

We denote the generators of GK DF2 by r; s where r corresponds to v . Let � W GK!

GM be given by �.r/ D r and �.s/ D s2 . Then let G D GM�� and �W G ! R is
given by sending every generator other than s to 1, and �.s/D 0.

In Theorem 4.1 we get E1
1 0
D E1

0 pC1
DbZG� as the only nonzero terms, therefore

Hi.GM I
bZG�/ŠbZG� for i D 1;pC 1 and Hi.GM I

bZG�/D 0 otherwise. Similarly
H�.GK I

bZG�/ŠbZG�˝Z
zH��2.∅/ as E1

u v D 0 for u 6D 1. Note that ∅DK�.w/

and zH�1.∅/D Z. The long exact sequence (2) contains

� � � �!H2.GIbZG�/ �!bZG�
˛
�!bZG� �!H1.GIbZG�/ �! 0

where ˛ D .t; �/�� i� . First note that i� is an isomorphism. To see this, look at the
short exact sequence of chain complexes

0 �!bZG�˝ZGK
C�.GK / �!bZG�˝ZGM

C�.GM / �!Q� �! 0

where Q� is the free bZG�–chain complex with Qi D
bZG�˝ZGL

Ci.GL/ for i 6D 0; 2,
Q0 D 0 and Q2 D

bZG� ˚bZG� ˝ZGL
C2.GL/, where the extra summand in Q2

comes from the edge between v and L. Without the extra summand in Q2 we would
get H1.Q�/ DbZG� and Hi.Q�/ D Hi.GLI

bZG�/ for i 6D 1. The boundary of the
extra summand is @.x/ D x.1� r/ and as .1� r/ is invertible, we get H�.Q�/ D

H�.GLI
bZG�/DbZG�˝Z

zH��1.S
p/.

From the long exact sequence it follows that i�W H1.GK I
bZG�/!H1.GM I

bZG�/ is
surjective. As we know that these are free bZG�–modules of rank one, it is injective
as well by [2; 16] (note that injectivity is clear for p > 1). Now .t; �/� increases
the value of �, so ˛ is an isomorphism in degree 1. Therefore Hi.GIbZG�/ D 0

for i � p . Also HpC1.GIbZG�/ŠHpC1.GM I
bZG�/ 6D 0 as follows again from the

long exact sequence for HNN–extensions. Therefore � 2†p.GIZ/�†pC1.GIZ/ by
Lemma 2.4.

We need to show that �� 62 †1.GIZ/. For this we need to analyze ˛ closer in the
case when t is send to a negative value. Define a chain map ��W C�.GK /! C�.GM /
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with ��.gx/ D �.g/��.x/ for g 2 GK . To do this, note that � extends naturally to
� W ZGK!ZGM with this property. So let �0W C0.GK /DZGK!ZGM DC0.GM /

be given by �0 D � .

Also C1.GK / D ZGK ˚ZGK and C1.GM / D ZGM ˚ZGM ˚ .ZGM /k and we
define

�1.x;y/D .�.x/; �.y/.sC 1/; 0/:(10)

As �0.@.x;y//D �.x/.r�1/C�.y/.s2�1/, we see that this induces the required chain
map �� . We want to show that H1.GI yN��/ 6D 0. Observe that yN�� can be identified
with the Laurent series ring Z..t�1// whose elements are of the form

Pu
nD�1mntn ,

and the bZG��–module structure is given by the ring homomorphism sending all
generators except s to t , and s being send to 1. The map .t; �/�W H1.GK I

yN��/!

H1.GLI
yN��/ is easily seen by using (10) to be

.t; �/�

� uX
nD�1

mntn

�
D 2

uX
nD�1

mntnC1:

Therefore ˛W yN��! yN�� is given by ˛.x/ D x.2t � 1/ which is not surjective.
Therefore H1.GI yN��/ 6D 0 which implies �� …†1.GIZ/ by Corollary 2.5.

We can define †1.G/ and †1C1.G/ analogously. We will see in the next section
that the examples constructed above in fact satisfy � 2 †p.G/�†pC1.GIZ/ and
�� 2†q.G/�†qC1.GIZ/.

7 The homotopy type of halfspaces II

To study the homotopical invariant †k.G/, we consider the following situation. We
have a finite flag complex L and a finite flag complex K together with two full
simplicial embeddings i0W K! L and i1W K! L. As before this gives rise to the
HNN–extension G along the injections GK !GL induced by i0 and i1 .

Note that G admits a finite K.G; 1/ given by

QDQL[QK � Œ0; 1�=�

where .x; 0/� i0.x/ and .x; 1/� i1.x/.

If X denotes the universal cover of Q, we get

X DG �GL
XL[G �GK

XK � Œ0; 1�=�
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with the usual identifications. Furthermore, for �W G ! R as in Section 6, we get
a height function hW X ! R by h.Œg;x�/ D �.g/C hL.x/ for g 2 G , x 2 XL and
h.Œg;y; s�/D �.g/ChK .y/C�.t/ � s for g 2G , y 2XK and s 2 Œ0; 1�. Here hL and
hK are the height functions from Lemma 5.1.

Let us assume that � is nonzero on all the generators of G . Let us also assume that
�.t/ D 1 for the extra generator t 2 G . The case �.t/ D �1 is then handled by
interchanging the role of i0 and i1 . Let N be the maximal subcomplex of X contained
in h�1.Œ0;1//. With GC D fg 2G j�.g/� 0g, we get

N DGC �
G
C

L

NL[GC �
G
C

K

NK � Œ0; 1�=�

with the usual identifications.

Lemma 7.1 Let K , L be finite connected flag complexes and i0; i1W K!L full sim-
plicial embeddings, and �W G!R a homomorphism with �.ti/ 6D 0 for all generators
ti 2GL corresponding to vertices of L, and �.t/D 1 for the extra generator of G .

(1) If i0#W �1.K/! �1.L/ is an isomorphism, then � 2†2.G/.

(2) If i1#W �1.K/! �1.L/ is injective and the normal closure of �1.K/ in �1.L/

is not the whole group, then �� …†2.G/.

Proof To see (1), we want to show that N is simply connected. By Proposition 5.8
we get that N is homotopy equivalent to�

GC �
G
C

L

_
g2G�

L

L

�
[

�
GC �

G
C

K

_
g2G�

K

K � Œ0; 1�

�.
�

where the identifications of Œg;x; 0� and Œg;x; 1� are induced by the inclusions i0W K!

L and i1W K ! L respectively, and G�
L
D fg 2 GL j�.g/ < 0g. Let � be the

subcomplex given by

� DGC �
G
C

L

f�g[GC �
G
C

K

f�g� Œ0; 1�=� :

Then � is a tree by an argument similar to the proof of Lemma 5.4. By collapsing this
tree, we get

N '
_

g2G�

L[
_

g2G�

K ^ Œ0; 1�C=�

with the following identifications. Let gx be an element of the copy of K corresponding
to g 2 G� D fg 2 G j�.g/ < 0g. Then .gx; 0/ � gj0.x/, where j0W K! L sends
the basepoint of K to the basepoint of L and is homotopic to i0W K ! L, and
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gj0.x/ means we consider j0.x/ as an element of the copy of L corresponding to
g 2 G� . Similarly .gx; 1/ � gtj1.x/, provided that �.gt/ < 0. If �.gt/ � 0, we
identify .gx; 1/ with the basepoint �. Recall that K and L are considered based
spaces as in Section 5; also Œ0; 1�C is the interval with a disjoint base point, and
K ^ Œ0; 1�C DK � Œ0; 1�C=K _ Œ0; 1�C .

Now let F be a finite subset of G� with the following property: if g 2 F , then
�.gt/� 0 or gt 2 F . Such sets can be ordered by inclusion, and we define

NF D
_
g2F

L[
_
g2F

K ^ Œ0; 1�C=�

as a subcomplex of N . Then �1.N / Š lim
�!

�1.NF / where the direct limit is taken
over all such finite sets F .

For g 2G��F with gt 2 F or �.gt/� 0, we can write

NF[fgg D .NF [K ^ Œ0; 1�C/[ .NF _L/

NF _K D .NF [K ^ Œ0; 1�C/\ .NF _L/:with

Note that NF [K ^ Œ0; 1�C ' NF . By the Seifert-van Kampen theorem we have a
push-out diagram:

(11) �1.NF /��1.K/
id#�i0#

//

��

�1.NF /��1.L/

��

�1.NF / // �1.NF[fgg/

So if i0# is an isomorphism, we get that �1.NF /! �1.NF[fgg/ is an isomorphism.
Since �1.N∅/D 1, this shows that N is simply connected, which proves (1).

Instead of studying ��, we keep the discussion above, but interchange the role of
i0 and i1 . So let us assume that i0#W �1.K/! �1.L/ is injective, and if H is the
quotient of �1.L/ by the normal closure of i0#.�1.K// in �1.L/, we get that H is
nontrivial. We want to show that in this situation � …†2.G/.

From (11) we get that �1.NF /!�1.NF[fgg/ is injective. Also, we get that �1.NF /!

�1.NF[fgg/ surjects onto H , by letting �1.L/!H be the quotient map and sending
�1.NF / to 1, and using the push-out property of (11). This shows that �1.N / is
nontrivial.

To get � … †2.G/, we have to show that the image of i#W �1.N / ! �1.gN / is
nontrivial for all g 2 G� , where i W N ! gN is inclusion. For all s 2 im� we can
define N s

F by using wedges for g with �.g/ < s . For s < 0, it is easy to see that there
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is an obvious projection NF !N s
F which induces a surjection on �1 by using (11)

and the analogous diagram for N s
F . Therefore i#W �1.N /! �1.gN / is surjective for

all g 2G� , which proves (2).

Remark 7.2 If both i0 and i1 induce isomorphisms on fundamental group, we get of
course ˙� 2†2.G/. Note that Lemma 7.1 applies to the examples used for Theorem
6.7 with q � 1. Therefore the homological Sigma invariant can be replaced by the
homotopical Sigma invariant in these examples.

To get examples with

� 2†p.GIZ/� .†pC1.GIZ/[†2.G//

�� 2†q.GIZ/� .†qC1.GIZ/[†2.G//

for p; q � 1, one can choose L0 DL_A with L as in the proof of Theorem 6.7 and
A a finite flag complex with vanishing reduced homology and nontrivial fundamental
group. Then condition (2) of Lemma 7.1 applies to both inclusions of K into L0 ,
ensuring that ˙� …†2.G/.

Theorem 7.3 There exists a group G of type F and a homomorphism �W G ! R
such that

� 2†1.G/

�� 2†1.GIZ/�†2.G/:

The homomorphism can be chosen to have image in Z.

Proof The binary icosahedral group has a presentation

I D hx;y jx2
D y3

D .xy/5i

and is nontrivial and perfect (see Kervaire [14]), so we can find a CW–complex with
one 0–cell, two 1–cells and two 2–cells. From the Euler characteristic, we see that
this CW–complex has vanishing reduced homology, so let A be a subdivision which is
a flag complex. Pick a vertex � 2A as a basepoint and let KDA_A. We claim there
is a map f W K! K inducing an injection on �1 and such that the normal closure
of the image is not the whole group. Note that �1.K/Š I � I , and a presentation is
given by

�1.K/Š hx;y; xx; xy jx
2
D y3

D .xy/5; xx2
D xy3

D .xx xy/5i:

Now define 'W �1.K/ ! �1.K/ by '.x/ D x , '.y/ D y , '.xx/ D xx�1xxx and
'.xy/ D xx�1yxx . It is clear that ' is injective, and if pW �1.K/ ! I denotes the
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projection to the second factor I of I � I , we get that the image of ' is contained in
the kernel of p , which is clearly not the whole group.

Since K is a 2–dimensional complex, we can realize ' by a continuous function
f W K!K . Now let L be the finite flag complex from Lemma 6.5, and G the HNN–
extension of GL along GK Œr � and the two full simplicial embeddings KŒr �!L. We
define �W G! R by sending every generator to 1, so � 2 †2.G/ and �� … †2.G/

by Lemma 7.1. Since zH�.L/D zH�.K/D 0 we get H�.GIbZG˙�/D 0 from (2) and
Theorem 4.1. Therefore ˙� 2†1.GIZ/ and the result follows from Lemma 2.4 and
the fact that †k.G/D†k.GIZ/\†2.G/ for k � 2.

We can combine the examples for Theorem 6.7 and Theorem 7.3 to get

Theorem 7.4 For every pair p; q 2 yN there exists a group of type F and a homomor-
phism �W G!R such that

� 2†p.G/�†pC1.G/

�� 2†q.GIZ/� .†qC1.GIZ/�†2.G//:

The homomorphism can be chosen to have image in Z.

Proof We will sketch the proof as the techniques are very similar to previous argu-
ments.

We consider various cases. If p; q � 2 let K , L and f be as in the proof of Theorem
7.3. If p � q let K1 D K _Sq . Also let f1W K1! K1 be the wedge of f with a
map of degree 2 on Sq . Let L1 be the result from Lemma 6.5 and let L2 DL1_Sp ,
provided p <1. It is easy to see that the standard construction gives G and � with
the desired properties.

If q >p , let xKDSp , gW Sp!Sp a map of degree 2 and xL the flag complex arising
from Lemma 6.5. Note that xL has the homotopy type of Sp . We set L1DL_ xL_Sq .
Now let xG be the HNN–extension of GL1

along the two full embeddings of KŒr � in
L1 and � as usual. Then � 2†2. xG/, �� 2†2. xGIZ/�†2. xG/ and the only nonzero
Novikov homology groups are

Hq. xGI
bZ xG˙�/DbZ xG˙� DHp. xGI

bZ xG˙�/:
We still have two injections G xK Œs� ! xG arising from the full embeddings xKŒs� !

xL so we can form another HNN–extension G along these injections and the usual
�W G!R by sending the extra generator to 1. As before it follows from (2) that � 2
†p.GIZ/�†pC1.GIZ/ and ��2†q.GIZ/�†qC1.GIZ/. Furthermore, it follows
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from [19, Theorem 5.2] that � 2 †2.G/, while it follows from [10, Proposition 10]
that �� …†2.G/, since the example from Theorem 7.3 is a retract of G and �.

If q � 1, we can use the examples from Theorem 6.7, except that for q D 0 and p � 2

we did not actually show that � 2 †2.G/. To see this note that NL is homotopy
equivalent to a disjoint union of wedges of Sp , in particular its components are simply
connected. Also NK is a forest. One easily sees that the halfspace N is connected
(recall � 2†1.G/), and with an argument similar to the proof of Lemma 5.4 we see
that it is simply connected. We omit the details.

If p � 1, use the examples from Theorem 6.7, but take the one point union of L

with A, where A is a non–simply connected flag complex with zH�.A/ D 0. The
resulting �W G!R will satisfy �� …†2.G/ by [10, Proposition 10], since GA with
�W GA!R sending every generator to 1 is a retract of this.

8 Closed 1–forms without singularities

Even though we cannot expect a lot of symmetry in the Sigma invariants with respect
to the antipodal map, we obtain the following rather peculiar symmetry condition for
†k.GIZ/.

Proposition 8.1 Let G be a group of type Fk with k � 2, and let �W G ! R be a
nonzero homomorphism. Assume there exists a smooth closed connected manifold M

with G D �1.M / whose universal cover �M is .k � 1/–connected, and such that

C�.M IbZG�/DbZG�˝ZG C�. �M /

is chain-contractible, where C�. �M / is the simplicial chain complex over ZG obtained
from a smooth triangulation of M . Then ˙� 2†k.GIZ/.

Notice that �M is certainly 1–connected, so we get ˙� 2 †2.GIZ/ provided that
C�.M IbZG�/ is chain-contractible.

Proof We have the universal coefficient spectral sequence with

E2
p q D TorZG

p .bZG�;Hq. �M //

converging to HpCq.M IbZG�/. Since �M is .k � 1/–connected, we have E2
p q D 0

for q D 1; : : : ; k � 1, so

E1p 0 D TorZG
p .bZG�;H0. �M // D Hp.GIbZG�/
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for p � k . As our assumption is H�.M IbZG�/ D 0, we get Hp.GIbZG�/ D 0 for
p � k , which means � 2†k.GIZ/ by Lemma 2.4.

Let C �. �M / D HomZG.C�. �M /;ZG/. As C�. �M / is viewed as a left ZG–chain
complex, this is a right ZG–chain complex, but we can view it as a left complex by
using the orientation-involution on ZG . Then Poincaré duality gives a chain homotopy
equivalence C�. �M /' C n��. �M / of free left ZG –chain complexes, where n denotes
the dimension of M . Therefore bZG��˝ZG C�. �M /'bZG��˝ZG C n��. �M /, and
the latter is isomorphic to HomcZG�.

bZG�˝ZG Cn��. �M /;bZG�/ via

ˆWbZG��˝ZG C n��. �M / �! HomcZG�.
bZG�˝ZG Cn��. �M /;bZG�/

�˝' 7! ˆ.�˝'/W 1˝x 7! '.x/x�:

Note that the involution on ZG extends to an anti-ring-homomorphism x� WbZG��!
bZG� , so that both complexes are indeed free left bZG��–chain complexes. A chain
contraction for bZG�˝ZG C�. �M / therefore induces a chain contraction for bZG��˝ZG

C�. �M /. Thus the spectral sequence argument above also applies to bZG�� and we get
�� 2†k.GIZ/.

The condition that C�.M IbZG�/ is chain-contractible is a necessary condition for
the existence of a nonsingular closed 1–form ! representing � 2 H 1.M IR/ Š
Hom.�1.M /;R/. Here nonsingular means that !x 6D 0 for all x 2M .

In [17], Latour gives various conditions which are necessary and sufficient for the
existence of a nonsingular closed 1–form ! on a closed smooth manifold M within
a given cohomology class � 2H 1.M IR/, provided that dim M � 6. Let us quickly
recall these conditions.

If ! is any closed 1–form representing �, the pullback of ! to �M is exact and gives
a height function hW �M ! R with respect to �. A map  W Œ0;1/! �M is called a
path to infinity with respect to �, if limt!1 h ı  .t/D1. Pick a basepoint x0 2

�M .
We then let

M� D f W Œ0;1/! �M j  .0/D x0;  is a path to infinity w.r.t. �g:

This set is topologized with the compact-open topology together with a “control at
infinity”, that is, a subbasis for the topology is given by the following open sets: For
a; b 2 Œ0;1/ and U open in �M let

W .a; bIU /D f 2M� j  .Œa; b�/� U g

and for a;A 2 Œ0;1/ let

W .a;A/D f 2M� j 8t � a h. .t//� h. .0// >Ag:
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If there exists a nonsingular closed 1–form ! representing �, it is easy to see that �M
is diffeomorphic to N �R with N a smooth manifold, and a height function is given
by projection to R. It is then easy to see that both M� and M�� are contractible.

On the other hand, if M� is contractible, it can be shown that

C�.M IbZG�/DbZG�˝ZG C�. �M /

is chain-contractible [17], where G D �1.M /. As this is a finitely generated free chain
complex over bZG� , one can look at its Whitehead torsion �.M I�/ in an appropriate
quotient of K1.bZG�/. We will not define this quotient, but remark that it is a quotient
of the ordinary Whitehead group Wh.�/ and in fact vanishes if and only if Wh.�/
vanishes [22; 23].

The main result of Latour is then:

Theorem 8.2 [17] Let M be a smooth closed connected manifold of dimension at
least 6, and � 2H 1.M IR/. Then � can be realized by a nonsingular closed 1–form
if and only if M� and M�� are contractible and �.M I�/ vanishes.

The condition that M� is contractible is known to be equivalent to the following two
conditions [17; 10].

(1) � 2†2.G/.

(2) C�.M IbZG�/ is chain-contractible.

Since C�.M IbZG�/ is chain contractible if and only if C�.M IbZG��/ is chain con-
tractible one can ask whether M� is contractible if and only if M�� is contractible.
In other words, one can ask whether the analogue of Proposition 8.1 also holds for the
homotopical Sigma invariant.

Based on the work of Bestvina and Brady [1], Damian [8] has constructed an example
of a manifold where C�.M IbZG�/ is chain-contractible, but neither M� nor M��
are contractible. We now give an example of a manifold M where only one of M�

and M�� is contractible. The construction is in fact completely analogous to the
construction in [8], replacing [1] with Theorem 7.3. For the convenience of the reader,
we will repeat the construction.

Theorem 8.3 There exists a closed connected smooth manifold M of dimension at
least 6 and a nonzero � 2H 1.M IR/ such that M� is contractible, but M�� is not
contractible.
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Proof Let G be the group from Theorem 7.3, which has a finite K.G; 1/ denoted Q,
say of dimension n. Embed this K.G; 1/ into R2nC3 and let W be a regular neigh-
borhood of Q, which we can think of as a smooth compact manifold with boundary.
Let M D @W , which is of dimension 2nC 2 and homotopy equivalent to W �Q

by the properties of regular neighborhoods. By transversality we get that every pair
of maps .DiC1;S i/! .W;M / factors through .W �Q;M / up to homotopy for
i � nC 1, since DnC2 can avoid the n–dimensional Q in .2nC 3/–space. Therefore
�i.M / Š �i.W / Š �i.Q/ for i � nC 1. In particular, the universal cover �M is
.nC1/–connected, and �1.M /DG . The universal coefficient spectral sequence with
E2

p q D TorZG
p .bZG�;Hq. �M // converging to HpCq.M IbZG�/ satisfies E2

p q D 0 for
pCq�nC1 by Theorem 7.3 and the fact that the space �M is .nC1/–connected. There-
fore Hi.M IbZG�/D 0 for i � nC 1. The same argument gives Hi.M IbZG��/D 0

for i � nC1. Using Poincaré duality we get H�.M IbZG˙�/D 0, and C�.M IbZG˙�/

is chain-contractible as this is a free complex. Now M� is contractible as we have
� 2†2.G/, but M�� is not contractible, as �� …†2.G/.

Remark 8.4 The dimension of M is in fact much bigger than 6. The dimension
of K used in Lemma 6.5 is 2 and dim LDmaxfdim KC 1; dim M g. The simplicial
approximation gW KŒr �!K used in Theorem 7.3 is far from injective which increases
dim M . In any case dim L � 3. Since n D dim LC 2, we get that M is at least
12–dimensional.

Remark 8.5 Since C�.M IbZG�/ is chain contractible in the previous theorem, one
can ask about the Whitehead torsion arising this way. Now G is an HNN–extension
of a right-angled Artin group via two isomorphic right-angled Artin subgroups. If we
look at the universal cover X of Q, we see that X is a nonpositively curved space by
the same argument that each XL is a nonpositively curved space; compare Bestvina
and Brady [1] (the link of each vertex is a flag complex). Therefore the Whitehead
group Wh.G/ vanishes by [13] and the torsion is trivial.
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