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A local calculus for nullhomotopic filling Dehn spheres

GENNARO AMENDOLA

We provide a local calculus for the presentation of closed 3–manifolds via nullhomo-
topic filling Dehn spheres. We use it to define an invariant of closed 3–manifolds by
applying the state-sum machinery, and we show how to potentially get lower bounds
for the Matveev complexity of P 2 –irreducible closed 3–manifolds. We also describe
an efficient and simple algorithm for constructing a nullhomotopic filling Dehn sphere
of each closed 3–manifold from any of its one-vertex triangulations.

57M27; 57R42

Introduction

A presentation of a class of topological objects (in our case closed 3–manifolds) is a
class of combinatorial objects (in our case nullhomotopic filling Dehn spheres), such
that each combinatorial object defines (say “presents”) a unique topological object and
each topological object is presented by at least one combinatorial object. A (finite)
calculus for a presentation is a (finite) set of moves on the combinatorial objects, such
that two combinatorial objects present the same topological object if and only if they
are related to each other by a finite sequence of moves in the given set.

Presentations and calculuses are fundamental tools for studying 3–manifolds and for
constructing invariants, in fact they translate a topological problem into a combinatorial
and perhaps simpler one. For instance, an invariant on the class of topological objects
can be defined on the class of combinatorial objects, by checking that it is preserved
by the moves of the calculus.

For closed 3–manifolds, there are several different types of presentations, eg trian-
gulations, Heegaard diagrams, surgery (on links) and spines. In the present work we
concentrate on nullhomotopic filling Dehn spheres, which dually can be thought of as
a particular class of cubulations (see, for instance, Aitchison, Matsumoto and Rubin-
stein [1], Funar [5], Babson and Chan [2]). The fact that nullhomotopic filling Dehn
spheres present closed 3–manifolds is already known (see, for instance, Montesinos-
Amilibia [12] and Vigara [17]). We will provide here a proof of this result by using
a very simple and efficient construction which works for every closed 3–manifold.
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Such a construction is already known and studied (see, for instance, Shtan 0ko and
Shtogrin [15], Dolbilin and Shtan 0ko and Shtogrin [4] and Funar [5]), but we have not
found any application to nullhomotopic filling Dehn spheres in the literature.

The main result of this paper is a finite calculus for this presentation. We deduce it from
another one, described by Vigara [19], which has been derived from the more general
Homma–Nagase calculus [7; 8] (see also Hass and Hughes [6] and Roseman [14]).
The most important feature of our calculus is that it is local (ie in order to apply a
move, it is enough to look only at the portion of the nullhomotopic filling Dehn sphere
involved in the move). In contrast, Vigara’s calculus is very interesting and natural, but
it has the drawback of not being local; hence, it is not useful for applying the state-sum
machinery to define an invariant analogous to the Turaev–Viro one [16].

We will apply the state-sum machinery to our calculus and define an invariant of
closed 3–manifolds. Specifically, we will first define the state sum (a polynomial) for
a nullhomotopic filling Dehn sphere. Then, we will study how it changes when a move
of our calculus is applied and prove that the difference between the state sums of two
nullhomotopic filling Dehn spheres of the same closed 3–manifold is an element of
a particular ideal of the polynomial ring. (It is at this point that we will use the fact
that our calculus is local, because in such a case the alteration due to the moves can
be understood and computed explicitly.) Finally, we will get an invariant by taking
the coset (with respect to the ideal) represented by the state sum. Some other similar
invariants will be also outlined.

As a potential application of this invariant, we will show how to get lower bounds for
the Matveev complexity [10] of P2 –irreducible closed 3–manifolds in terms of the
invariant. The Matveev complexity is usually difficult to compute. Only upper bounds
are easy to find (and, typically, they are very precise), while lower bounds are much
more difficult to achieve.

1 Nullhomotopic filling Dehn spheres

Throughout this paper, all 3–manifolds are assumed to be connected. We will mainly
deal with closed 3–manifolds; so M will always denote such a (connected) closed
3–manifold. Using the Hauptvermutung, we will freely intermingle the differentiable,
piecewise linear and topological viewpoints.

Dehn surfaces A subset † of M is a Dehn surface of M [13] if there exists an
abstract closed surface S and a transverse immersion f W S!M such that †D f .S/.
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If f W S !M is a transverse immersion, the number of preimages of a point of the
Dehn surface †D f .S/ is 1, 2 or 3; so there are three types of points in †, depending
on this number; they are called simple, double or triple, respectively. Note that the
definition of the type of a point of † does not depend on the particular transverse
immersion f we have chosen. In fact, the type of a point can be also defined by
looking at a regular neighbourhood (in M ) of the point, as shown in Figure 1. The set

Simple point Double point Triple point

Figure 1: Neighbourhoods of points (marked by thick dots) of a Dehn surface

of triple points is denoted by T .†/; nonsimple points are called singular and their set
is denoted by S.†/. From now on, in all figures, triple points are always marked by
thick dots and the singular set is also drawn thick.

Remark 1 If f W S ! M and f 0W S 0 ! M are transverse immersions such that
f .S/D f 0.S 0/D†, then the abstract surfaces S and S 0 are homeomorphic.

Filling Dehn surfaces and cubulations A Dehn surface † of M is called filling [12]
if its singularities induce a cell-decomposition of M ; more precisely,

� T .†/¤∅,

� S.†/ nT .†/ consists of intervals (called edges),

� † nS.†/ consists of discs (called regions),

� M n† consists of balls.

A cubulation of M is a cell-decomposition of M such that

� each 2–cell (called a face) is glued along 4 edges,

� each 3–cell (called a cube) is glued along 6 faces arranged like the boundary of
a cube.

Note that self-adjacencies and multiple adjacencies are allowed.

Algebraic & Geometric Topology, Volume 9 (2009)
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The following construction is well-known (see Aitchison, Matsumoto and Rubinstein [1],
Funar [5] and Babson and Chan [2], for instance). Let C be a cubulation of a closed
3–manifold. Consider, for each cube of C , the three squares shown in Figure 2. Then,
the subset of M obtained by gluing together all these squares is a filling Dehn surface †
of M . Conversely, a cubulation C can be constructed from a filling Dehn surface †

Figure 2: Local behaviour of duality

of M by considering an abstract cube for each triple point of † and by gluing the cubes
together along the faces (the identification of each pair of faces is chosen by following
the four germs of regions adjacent to the respective edge of †). The cubulation and
the filling Dehn surface constructed in such a way are said to be dual to each other.

Nullhomotopic filling Dehn spheres Let † be a Dehn surface such that †D f .S/,
where f W S !M is a transverse immersion. If S is a sphere, we will call † a Dehn
sphere (this definition makes sense by Remark 1). A Dehn sphere † is said to be
nullhomotopic if f is homotopic to a constant map (also this definition makes sense,
because it does not depend on the particular map f chosen).

In what follows, we will only deal with nullhomotopic filling Dehn spheres. They are
enough to study closed 3–manifolds, since they present closed 3–manifolds.

Proposition 2 � Each closed 3–manifold has a nullhomotopic filling Dehn sphere.

� If †1 and †2 are homeomorphic nullhomotopic filling Dehn spheres of closed 3–
manifolds M1 and M2 respectively, then M1 and M2 are also homeomorphic.

Proof We start by proving the first point. Let T be a one-vertex triangulation of
a closed 3–manifold M (all closed 3–manifolds have one-vertex triangulations, as
shown in [11], for instance). Consider, for each tetrahedron of T , the four triangles
shown in Figure 3. The subset of M obtained by gluing together all these triangles is
a filling Dehn surface of M ; it is actually a nullhomotopic filling Dehn sphere of M ,

Algebraic & Geometric Topology, Volume 9 (2009)
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Figure 3: Construction of a nullhomotopic filling Dehn sphere from a one-
vertex triangulation of a closed 3–manifold

because it can be obtained by starting with a small sphere whose centre is the only
vertex of T and then inflating it.

We do not give a complete proof of the second point because it is essentially the same
as that of Casler for standard spines [3]. The idea of the proof is the following. Let
Ci be the cubulation of Mi dual to †i , for i D 1; 2. The cubulations Ci are defined
unambiguously, because the cubes dual to the triple points and the face identifications of
them are defined unambiguously (up to homeomorphism) from the Dehn surfaces †i .
Since †1 and †2 are homeomorphic, the cubulations C1 and C2 turn out to be
isomorphic and hence M1 and M2 are homeomorphic.

The construction described in the first part of the proof above is the dual counterpart of
the well-known construction consisting of dividing a tetrahedron into four cubes [15;
4; 5].

2 The calculus

Throughout this section, † will always denote a nullhomotopic filling Dehn sphere of
a closed 3–manifold M .

2.1 Vigara’s calculus

In [19] Vigara described a finite calculus with three moves (the complete proof was
given in [18]).

Theorem 3 (Vigara) Let †1 and †2 be nullhomotopic filling Dehn spheres of closed
3–manifolds M1 and M2 , respectively. Then, M1 and M2 are homeomorphic if and
only if †1 and †2 can be obtained from each other via a sequence of Vig1 –, Vig2 –
and Vig3 –moves.

Algebraic & Geometric Topology, Volume 9 (2009)
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Let us describe Vigara’s moves in detail.

Vig1 –move The first move is shown in Figure 4 and is called a Vig1 –move (in [19] it
is called a finger move 2). It will be called positive if it increases (by four) the number

Vig1

T1

Figure 4: Vig1 –move, also called T1 –move

of triple points of †, and negative otherwise. Note that, if we apply a Vig1 –move
to †, the result will be another nullhomotopic filling Dehn sphere of M .

Vig2 –move The second move is shown in Figure 5 and is called a Vig2 –move (in [19]
it is called a finger move 1). As above, we have positive and negative Vig2 –moves,

Vig2

R



R1

R2
R3

R1 R2

e1 e2

Figure 5: Vig2 –move

depending on whether they increase or decrease (by two) the number of triple points
of †. In contrast to the Vig1 –move, this move is not local, so it must be described
with some care. A positive Vig2 –move is determined by an arc  properly embedded
in a region R of †. The move acts on † as in Figure 5, but, to define its effect
unambiguously, we must specify which pairs of regions (out of the four “vertical” ones
incident to R at the endpoints of  ) will become adjacent to each other after the move.
This is achieved by noting that R is a disc, so its regular neighbourhood in M is a
product and hence we can choose for R a transverse orientation. Using it, at each
endpoint of  we can tell from each other the two “vertical” regions incident to R as

Algebraic & Geometric Topology, Volume 9 (2009)
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being an upper and a lower one, and we can stipulate that the two upper regions will
become incident after the move (and similarly for the lower ones).

Obviously, a positive Vig2 –move leads to a nullhomotopic filling Dehn sphere of M .
For the negative case the situation is more complicated. A negative Vig2 –move may
lead to a nullhomotopic Dehn sphere that is not filling. For instance, if R1 and R2 are
contained in the same region, after the negative Vig2 –move the “region” R would not
be a disc. In order to avoid this loss of fillingness, we will call negative Vig2 –moves
only those preserving fillingness, so a negative Vig2 –move is the inverse of a positive
Vig2 –move. With this convention, if we apply a negative Vig2 –move to †, the result
will be another nullhomotopic filling Dehn sphere of M .

Vig3 –move The third move is shown in Figure 6 and is called a Vig3 –move (in [19] it
is called a saddle move). In contrast to the other two moves, here we cannot distinguish

Vig3

D

Figure 6: Vig3 –move

between positive and negative Vig3 –moves. In fact this move is symmetric. As for
the Vig2 –move, this move is not local, so it must be described with some care. A
Vig3 –move is determined by a disc (say �) properly embedded in a component (a
ball) of M n†, as shown in Figure 6. The move acts on † as in Figure 6, but, to
define its effect unambiguously, we must specify which pairs of regions will unite after
the move. This is achieved by the same technique as above, after noting that every
region of † is a disc.

A further restriction is necessary, because a Vig3 –move defined in such a way, when
applied to †, leads to a nullhomotopic Dehn sphere, which may not be filling. In
order to avoid this loss of fillingness, we will call Vig3 –moves only those preserving
fillingness. With this convention, if we apply a Vig3 –move to †, the result will be
another nullhomotopic filling Dehn sphere of M .

2.2 The local calculus

The Vig2 – and Vig3 –moves of the calculus described above are not useful in defining
the invariant, because these moves are not local. In this section we will provide another
calculus in which all moves are local. Let us start with the description of the moves.

Algebraic & Geometric Topology, Volume 9 (2009)
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T1 –move The first move is the Vig1 –move described above (see Figure 4). In order
to establish a uniform notation, we call it a T1 –move.

T2 –move The second move is shown in Figure 7 and is called a T2 –move. In contrast

T2

Figure 7: T2 –move

to the T1 –move, we cannot distinguish between positive and negative T2 –moves; in
fact this move is symmetric.

T3 –move The third move is shown in Figure 8 and is called a T3 –move. It will be

T3

Figure 8: T3 –move

called positive if it increases (by two) the number of triple points of †, and negative
otherwise.

T4 –move The fourth move is shown in Figure 9 and is called a T4 –move. As in the
case of the T2 –move, we cannot distinguish between positive and negative T4 –moves.

B–move The next move is slightly unnatural. It is shown in Figure 10 and is called a
B–move. It will be called positive if it increases (by six) the number of triple points of
†, and negative otherwise. The configuration shown in Figure 10-right will be called a
spiral piping and will be denoted as shown in Figure 10-centre.
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T4

Figure 9: T4 –move

B

f .D1/

f .D2/

Figure 10: B–move and spiral piping

S–move The last move is also slightly unnatural. It is shown in Figure 11 and is called
an S–move. It is a specialization of the Vig3 –move; in fact, it is a Vig3 –move applied

S

Figure 11: S–move

to a nullhomotopic filling Dehn sphere having a particular shape near the portion
involved in the Vig3 –move. The S–move is symmetric, so we cannot distinguish
between positive and negative S–moves.

Properties of the moves We leave the proof of the following remark to the reader
because it is very easy, even if not obvious for the negative B-move case.
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Remark 4 If we apply a T�–, a B– or an S–move to a nullhomotopic filling Dehn
sphere of a closed 3–manifold M , the result will be another nullhomotopic filling
Dehn sphere of M .

We are now able to state the local calculus.

Theorem 5 Let †1 and †2 be nullhomotopic filling Dehn spheres of closed 3–
manifolds M1 and M2 , respectively. Then, M1 and M2 are homeomorphic if and
only if †1 and †2 can be obtained from each other via a sequence of T�–, B– and
S–moves.

2.3 Proof of the calculus

This section is devoted to the proof of Theorem 5.

By virtue of Remark 4, we need only prove the “only if” part of Theorem 5. By
Theorem 3, we have that each pair of nullhomotopic filling Dehn spheres of the same
closed 3–manifold can be related by a sequence of Vig�–moves. Hence it is enough
to prove that each Vig�–move is a composition of T�–, B– and S–moves. For the
Vig1 –move there is nothing to prove, because each Vig1 –move is already a T1 –move.
With the following lemma we analyse the Vig2 –move.

Lemma 6 Each Vig2 –move is a composition of T�– and B–moves.

Proof Obviously, it is enough to prove the statement only for positive Vig2 –moves.
Therefore, we consider a positive Vig2 –move between two nullhomotopic filling Dehn
spheres (say † and †0 ); see Figure 5. Let us first suppose that the closure in †0 of one
of the two regions R1 and R2 is a closed disc incident to at least three triple points;
see Figure 12 for example. In such a case the sequence of T�–moves shown in Figure
13 is equivalent to the Vig2 –move. For the sake of simplicity, we have shown only the
singular set contained in the “horizontal plane” of Figure 12, but we invite the reader
to figure out the 3–dimensional picture. We have shown the moves for a particular
case only; in the general one, we have a positive T1 –move, a negative T3 –move, and
then pairs of a positive and a negative T1 –move (depending on the number of triple
points adjacent to the region).

Suppose now that the closure of both R1 and R2 is not a disc, but at least one of them,
say R1 (the case of R2 being symmetric), is incident to not less than three triple points.
We can repeat the procedure above unless R1 is incident to the edge e1 more than
once (see Figure 5). In such a case, however, we can repeat the procedure, but, when
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Vig2

R1

Figure 12: A positive Vig2 –move when the closure in †0 of R1 is a closed
disc incident to at least three triple points (the case of R2 being symmetric).

Vig2

T1 T�1
1

T�1
3 T1

Figure 13: The sequence of T�–moves equivalent to the positive Vig2 –move
shown in Figure 12

we need to pass along the edge e1 , we should add two Vig2 –moves (a positive and a
negative one). More precisely, R1 may be equal to Ri for i D 1; 2; 3 (see Figure 5).
We have shown in Figure 14 the moves that are performed if R1 DR2 , the other two
cases being analogous. Note that the two Vig2 –moves we have added are compositions
of T�–moves because the closure of the region R0 is a closed disc incident to three
triple points (see Figure 14).

Finally, suppose both R1 and R2 are incident to at most two triple points. In such
a case, we can suitably apply a positive B–move near the boundary of R1 so that it
comes to be incident to at least three triple points. Then, we can apply the T�–moves
described above and conclude by applying a negative B–move. Therefore, we have
proved that each Vig2 –move is a composition of T�– and B–moves.
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Vig2

R0

T1CT�1
1

R0

Vig2

Figure 14: If R1 is incident more than once to the edge e1 , we must slightly
modify the procedure.

Before analysing the Vig3 –move, we introduce some notation and state two technical
lemmas.

Passing through spiral pipings The move shown in Figure 15 is called a spiral piping
passing move. It will be called positive if it increases (by four) the number of triple

SPP

Figure 15: Spiral piping passing move

points of the Dehn sphere, and negative otherwise. It is worth noting that this move is
only a particular case of the piping passing move of [19].

Lemma 7 Each spiral piping passing move is a composition of T�–moves.
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Proof Obviously, it is enough to prove the statement only for positive spiral piping
passing moves. The sequence of T�–moves shown in Figure 16 is equivalent to the
positive spiral piping passing move. For the sake of simplicity, we have shown only the

T1 T2

T�1
3 T2

T3

Figure 16: The sequence of T�–moves equivalent to the positive spiral piping
passing move

singular set contained in the “horizontal plane” of Figure 15, but we invite the reader
to figure out the 3–dimensional picture.

The wall In the proof we will need a nonlocal move; however, it will turn out to be a
composition of T�– and B–moves.

Let † be a nullhomotopic filling Dehn sphere of a closed 3–manifold M . Let D be a
closed disc embedded in M such that

� @D �†,

� int.D/\†D∅,

� @D\T .†/D∅,

� #.@D t S.†//> 2.

Let B be a small regular neighbourhood of D in M . Obviously, B is a ball whose
boundary @B is a sphere intersecting some edges of †. Let †D;p be the Dehn surface
obtained from †[ @B by replacing a small neighbourhood of a triple point p (of
†[ @B ) contained in @B with a spiral piping as shown in Figure 17. Note that the
choice of the triple point p is arbitrary, but the orientation of the spiral piping is not.
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p

Figure 17: A wall with #.@D\S.†//D 4

Note also that we can think of p both as a (double) point of † and as a (triple) point
of †D;p . Moreover, †D;p is a nullhomotopic filling Dehn sphere of M .

The configuration shown in Figure 17 is said to be a wall of †D;p with respect to the
triple .†;D;p/, and the move between † and †D;p is said to be a positive W–move.
Note that this move is similar to the B–move, but it is not local, and actually there are
infinitely many different W–moves depending on the number of singular points in @D .
A negative W–move is the inverse of a positive W–move. Note that, in order to apply
a negative W–move to a nullhomotopic filling Dehn sphere of M , we should only
check that the result (which is anyway a nullhomotopic Dehn sphere of M ) is filling.

We have the following lemma, whose (long and technical) proof will be postponed for
a while.

Lemma 8 Each W–move is a composition of T�– and B–moves.

Proof of the calculus After stating Lemma 8, we conclude the proof of the calculus.

Proof of Theorem 5 By virtue of the discussion above, we need only prove that each
Vig3 –move is a composition of T�–, B– and S–moves. Let us consider a Vig3 –move
between two nullhomotopic filling Dehn spheres (say † and †0 ); see Figure 6. The
idea is to modify the portion of † involved in the move (shown in Figure 6-left) via
some T�– and W–moves in order to apply an S–move, and then to reconstruct the
portion of †0 involved in the move (shown in Figure 6-right). Therefore, we start by
applying two positive W–moves and two positive T�–moves, as shown in Figure 18
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W

W

T1CT3

Figure 18: T�–, W– and S–moves equivalent to the Vig3 –move (first part)

(see also Figure 19-left). Then, we can apply an S–move as shown in Figure 19 (where
only the singular set contained in the “horizontal plane” of Figure 18-bottom and
Figure 20-top is shown). Finally, we apply two negative T�–moves and two negative
W–moves, as shown in Figure 20 (see also Figure 19-right). Note that indeed the
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S

Figure 19: T�–, W– and S–moves equivalent to the Vig3 –move (second part)

T�1
3 CT�1

1

W�1

W�1

Figure 20: T�–, W– and S–moves equivalent to the Vig3 –move (third part)
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negative W–moves preserve fillingness because the Vig3 –move does. We have proved
that each Vig3 –move is a composition of T�–, W– and S–moves; so, in order to
conclude the proof, it is enough to note that each W–move is a composition of T�– and
B–moves by virtue of Lemma 8.

The very technical proof We conclude this section with the proof of the fact that
each W–move is a composition of T�– and B–moves. We warn the reader that this
proof is quite long and technical, so it can be skipped at first reading.

Proof of Lemma 8 Obviously, it is enough to prove that each positive W–move is
a composition of T�– and B–moves. As a matter of fact, it is enough to prove that
each positive W–move is a composition of T�–, B– and Vig2 –moves, because each
Vig2 –move is a composition of T�– and B–moves by virtue of Lemma 6. Hence, let
us consider a positive W–move between two nullhomotopic filling Dehn spheres †
and †D;p of a closed 3–manifold M , where D is a closed disc embedded in M such
that @D �†, int.D/\†D∅, @D\T .†/D∅, #.@D t S.†// > 2. In the figures
below we will draw the case where #.@D\S.†//D 4 as in Figure 17, the other cases
being analogous. Let us consider a small disc D0 near p as shown in Figure 21-left.
We choose D0 so that D\D0 is the small triangle shown in Figure 21-left. Let C be

p

D

D0

p

D

D0

e0

p0

Figure 21: A small disc D0 near p (left) and the choice of the triple point p0 (right)

the connected component of M n† containing int.D/. Since † is filling, we have
that C is a ball and that it is divided by the two discs D and D0 into three balls, one
of which, say C 0 , is not incident to the triangle D \D0 . The idea of the proof is to
create a small wall with respect to the triple .†;D0;p/ and then to move it through
the ball C 0 .
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Let us start by creating the small wall. Let us call e the edge of † containing the triple
point p . It is divided into two parts by the closure of the triangle D\D0 ; let us call
e0 the one intersecting twice the closure of D0 , and p0 the triple point at the end of e0 ;
see Figure 21-right. (Note that e0 may intersect more than once the closure of D , but
this does not affect the procedure). In order to get †D0;p from †, we apply the moves
shown in Figure 22.

p
p0

B

T1

T4

T3

T�1
1

Figure 22: The creation of the small wall

We have created the small wall; we now need to move it through the ball C 0 . Note that,
if the two Dehn spheres †D;p and †D0;p are isotopic, we have done; so we suppose
they are not isotopic.

Initially, let us suppose that the closure of C 0 is a closed ball. We can move the
disc D0 through the ball C 0 via an isotopy keeping fixed the triangle D \D0 (see
Figure 23 for an example). If we consider also the trivalent graph S.†/\@C 0 , a simple
general position argument tells us that the isotopy can be substituted by 1to2–moves
and 0to2–moves; see Figure 24. (The disc we are moving is drawn in grey.)
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D

D0

Figure 23: Moving the disc D0 through C 0

1to2 0to2
R



Figure 24: 1to2–move (left) and 0to2–move (right)

We now prove that each 0to2–move is a composition of 1to2– and Vig2 –moves.
Consider a 0to2–move (see Figure 24-right). Let R be the connected component of
† n

�
S.†/[ @D0

�
that is divided in two after the 0to2–move, and  the arc of @D0

that is moved after the 0to2–move. Note that the boundary of C 0 appears near the
portion of it involved in the move as in Figure 25-left, because R is a disc and the
endpoints of  are double points of †. The 1to2– and Vig2 –moves shown in Figure
25 are equivalent to the 0to2–move.

We have proved that the isotopy of D0 above can be substituted by 1to2– and Vig2 –
moves. We now consider the small wall. If we substitute each 1to2–move with a
T1 – and a T3 –move as shown in Figure 26, we obtain a sequence of T�– and Vig2 –
moves moving the wall and transforming †D0;p into †D;p . (Note that indeed the
negative Vig2 –move preserves fillingness.) Hence, we have proved the statement if the
closure of C 0 is a closed ball.

Consider now the general case; namely, we no longer suppose that the closure of C 0 is
a closed ball. We need to prove that †D;p can be obtained from †D0;p via T�–, B–
and Vig2 –moves. The technique is analogous to that used in the case already analysed
when the closure of C 0 is a closed ball, but here we must prepare the Dehn sphere
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Vig2
1to2

1to2
Vig�1

2

R



Figure 25: Each 0to2–move is a composition of 1to2– and Vig2 –moves.

T1 T3

Figure 26: Each 1to2–move is substituted with two T�–moves.

†D0;p before moving the small wall. For the sake of simplicity, we continue calling
†D0;p all Dehn spheres obtained throughout the procedure. For the sake of clarity, in
Figures Figure 29, 30, 32 and 33, the wall has been substituted with the disc D00 : in
order to obtain the complete picture, the reader should replace D00 with the boundary
of a small regular neighbourhood of D00 and add a spiral piping at p .

First of all, we apply a positive B–move, a positive spiral piping passing move (which
is a composition of T�–moves by virtue of Lemma 7) and a T4 –move; see Figure 27.
Then, we apply positive B–moves and positive Vig2 –moves near the boundary of D ,
as shown in Figure 28. Afterwards, we apply two positive T1 – and two T4 –moves (the
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p

B

SPP

T4

Figure 27: Preparation before moving the small wall (first part)

result is shown in Figure 29). Finally, we apply three pairs of a T1 – and a T3 –move,
as when we have substituted the 1to2–moves (the result is shown in Figure 30). Note
that here we have used the hypothesis that #.@D\S.†//> 2.

Now, we look at the closure of C 0 . It can be thought of as an abstract closed ball with
some self-identifications on the boundary. In order to simplify such identifications, we
apply a B–move and a positive T1 –move for each triple point of †D0;p where we have
a self-adjacency of the closure of C 0 ; then, we apply a positive spiral piping passing
move or a positive T1 –move for each edge of †D0;p where we have a self-adjacency of
the closure of C 0 ; see Figure 31. Note that we must avoid the situation where two spiral
pipings are on the same edge, for otherwise we can apply neither the positive spiral
piping passing move nor the positive T1 –move; this can be achieved by considering
that, since S.†D0;p/ is a hexavalent graph, we can choose for each triple point an edge
adjacent to it so that each edge is chosen for at most one triple point (this holds for
each graph containing no connected component that is a tree). Note also that the small
wall is not affected by these moves. Now, the self-identifications are along discs, each
of which is contained in a region of † and can be thought of as being as small as we
want (with respect to C 0 ).

We can finally move the small wall through the ball C 0 , as we have done above in the
case when the closure of C 0 is a ball. We must be careful now because the closure
of C 0 is not a ball; however, the isotopy of D0 can be chosen so that D0 is always
incident to one side of each self-adjacency disc at most. With such an isotopy we can
repeat the procedure above for the case when the closure of C 0 is a ball. The result is
shown in Figure 32.

To conclude, we firstly apply, in reverse order, the moves implemented above to simplify
the self-adjacency of the closure of C 0 (see Figure 31). Afterwards, we apply some
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D

3�B

3�Vig2

Figure 28: Preparation before moving the small wall (second part)

T�–moves to put the wall in the right position; the result is shown in Figure 33. Note
that there are many possibilities for accomplishing this task; for instance, one can apply

� a positive and a negative T3 –move, twice,

� a positive T1 – and a negative T3 –move, twice,

� a positive T3 – and a negative T1 –move, thrice.
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p

D00

Figure 29: Preparation before moving the small wall (third part)

p

D00

Figure 30: Preparation before moving the small wall (fourth part)

(If we have #.@D\S.†//¤ 4, the situation is analogous; in fact, only the number of
pairs of moves changes.) Finally, we apply the moves shown in Figures 27 and 28 in
reverse order. The result is †D;p , which has been obtained from † via T�–, B– and
Vig2 –moves. The proof is complete.
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B T1

T1=SPP

Figure 31: Moves to simplify the self-adjacency of the closure of C 0 near
each triple point (above) and edge (below) of †D0;p where we have a self-
adjacency of the closure of C 0 . (For the edge case, one of the triple points of
each sphere constructed above is replaced by a spiral piping.)

p

D00

Figure 32: Configuration after moving the small wall through C 0
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p

D00

Figure 33: The wall is in the right position

3 The state-sum invariant

Theorem 5 allows us to define a state-sum invariant of closed 3–manifolds.

Let † be a nullhomotopic filling Dehn sphere of a closed 3–manifold M . Recall that
T .†/ is the set of triple points of † and that † nS.†/ (ie the set of simple points)
consists of disjoint discs. Let us call C.†/ the class of these discs.

Moreover, let F be a finite set consisting of m> 1 elements (called colours). An F –
colouring of † is a map 'W C.†/! F . The set of all F –colourings of † is denoted
by ˆF .†/. If zC � C.†/, we denote by ˆF . zC / the set of maps 'W zC ! F . Note
that ˆF .†/ can be identified with ˆF .C.†/ n zC /�ˆF . zC /. If ' is an F –colouring
of †, we can associate a symbol

p' WD

ˇ̌̌̌
ˇ̌̌̌a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

ˇ̌̌̌
ˇ̌̌̌

to each p 2T .†/, where the a� ’s, the b� ’s and the c� ’s are shown in Figure 34. Since
this definition involves some choices about the identification of the neighbourhood
of p with the abstract picture above, we assume that each symbol is invariant under a
change of this identification. More precisely, we assume that the identitiesˇ̌̌̌

ˇ̌̌̌a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

ˇ̌̌̌
ˇ̌̌̌D

ˇ̌̌̌
ˇ̌̌̌c1 a1 b1

c2 a2 b2

c3 a3 b3

c4 a4 b4

ˇ̌̌̌
ˇ̌̌̌D

ˇ̌̌̌
ˇ̌̌̌a4 c1 b2

a1 c4 b3

a2 c3 b4

a3 c2 b1

ˇ̌̌̌
ˇ̌̌̌D

ˇ̌̌̌
ˇ̌̌̌a1 b4 c2

a2 b3 c1

a3 b2 c4

a4 b1 c3

ˇ̌̌̌
ˇ̌̌̌
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p

a1

a2

a3

a4

b1

b2 b3

b4

c1
c2

c3c4

Figure 34: Colours near a triple point p

hold for all a�; b�; c� 2 F . To be precise, we should distinguish a symbol from its
equivalence class; nevertheless, to avoid proliferation of notation, we use the same
notation for both the symbol and its equivalence class.

Let us consider now the polynomial ring R WD F Œs1; : : : ; sN �, where F is a field and
the s� ’s are (the equivalence classes of) the symbols. The polynomial

SSm.†/ WD
X

'2ˆF .†/

 Y
p2T .†/

p'

!

of R is called state sum of † of type m. Note that SSm.†/ is an invariant of †, but
it is not an invariant of M ; in fact, it depends on the particular nullhomotopic filling
Dehn sphere † of M .

By virtue of Theorem 5, any nullhomotopic filling Dehn sphere †0 of M can be
obtained from † via T�–, B– and S–moves. Since the moves are local, one can
compute the difference SSm.†/�SSm.†

0/, and prove that it belongs to the ideal Im

generated by the following polynomials:ˇ̌̌̌
ˇ̌̌̌˛6 a2 A1

˛3 a3 A2

˛4 a4 A3

˛5 a5 A4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛1 a1 B1

˛2 a2 B2

˛3 a5 B3

˛6 a6 B4

ˇ̌̌̌
ˇ̌̌̌�

X
X?;Y?;z?;�?2F

ˇ̌̌̌
ˇ̌̌̌˛1 a1 X1

˛2 z1 X2

�2 z2 X3

�1 a6 X4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌�1 z1 Y1

�2 a3 Y2

˛4 a4 Y3

˛5 z2 Y4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛6 B1 A1

˛1 Y1 A2

�1 Y2 X2

˛5 B2 X1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌B2 a6 X2

B3 z2 A2

Y3 a4 A3

Y2 a5 X3

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛2 B4 X4

˛3 Y4 X3

˛4 Y3 A3

�2 B3 A4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌B1 a2 A1

B4 a3 X1

Y4 z1 X4

Y1 a1 A4

ˇ̌̌̌
ˇ̌̌̌;
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X
x?2F

ˇ̌̌̌
ˇ̌̌̌˛8 x1 A2

˛3 x2 A3

˛4 a4 A4

˛7 a5 A5

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛1 a1 ˇ8

˛2 x1 ˇ1

˛3 a5 ˇ2

˛8 a6 ˇ3

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ˇ8 a1 A1

ˇ3 a2 A2

ˇ4 x2 A5

ˇ7 x1 A6

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛7 x2 ˇ7

˛4 a2 ˇ6

˛5 a3 ˇ5

˛6 a4 ˇ4

ˇ̌̌̌
ˇ̌̌̌�

X
Y?2F

ˇ̌̌̌
ˇ̌̌̌˛1 a1 A1

˛2 a2 Y1

˛5 a3 Y2

˛6 a6 A6

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛8 ˇ8 A2

˛1 ˇ7 A3

˛6 ˇ6 Y1

˛7 ˇ1 A1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ˇ1 a6 Y1

ˇ2 a3 A3

ˇ5 a4 A4

ˇ6 a5 Y2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛2 ˇ3 A6

˛3 ˇ4 Y2

˛4 ˇ5 A4

˛5 ˇ2 A5

ˇ̌̌̌
ˇ̌̌̌;

X
x2F

ˇ̌̌̌
ˇ̌̌̌˛6 x A2

˛3 a3 A3

˛4 a4 A4

˛5 a5 A5

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛1 a1 ˇ6

˛2 x ˇ1

˛3 a5 ˇ2

˛6 a6 ˇ3

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ˇ6 a1 A1

ˇ3 a2 A2

ˇ4 a3 A5

ˇ5 x A6

ˇ̌̌̌
ˇ̌̌̌�

X
Y?;v;�?;�?2F

ˇ̌̌̌
ˇ̌̌̌˛1 a1 A1

˛2 a2 Y1

�2 v Y2

�1 a6 A6

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌�1 a2 ˇ5

�2 a3 �1

˛4 a4 �2

˛5 v ˇ4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛6 ˇ6 A2

˛1 ˇ5 A3

�1 �1 Y1

˛5 ˇ1 A1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ˇ1 a6 Y1

ˇ2 v A3

�2 a4 A4

�1 a5 Y2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛2 ˇ3 A6

˛3 ˇ4 Y2

˛4 �2 A4

�2 ˇ2 A5

ˇ̌̌̌
ˇ̌̌̌;

X
x;Y;�;�2F

ˇ̌̌̌
ˇ̌̌̌˛6 x A2

� a3 A3

˛4 a4 A4

˛5 a5 Y

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛1 a1 ˇ6

˛2 x ˇ1

� a5 ˇ2

˛6 a6 �

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ˇ6 a1 A1

� a2 A2

ˇ4 a3 Y

ˇ5 x A6

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ � � Y

˛2 ˇ4 A4

˛3 ˇ3 A5

˛4 ˇ2 A6

ˇ̌̌̌
ˇ̌̌̌�

X
x0;Y 0;�0;�02F

ˇ̌̌̌
ˇ̌̌̌˛1 a1 A1

˛2 a2 Y 0

˛3 x0 A5

�0 a6 A6

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ �
0 a2 ˇ5

˛3 a3 �0

˛4 a4 ˇ3

˛5 x0 ˇ4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛6 ˇ6 A2

˛1 ˇ5 A3

�0 �0 Y 0

˛5 ˇ1 A1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ˇ1 a6 Y 0

ˇ2 x0 A3

ˇ3 a4 A4

�0 a5 A5

ˇ̌̌̌
ˇ̌̌̌;

X
v?;x?;Y?;�?;�?2F

ˇ̌̌̌
ˇ̌̌̌�1 a1 A1

�2 a2 Y1

�3 x2 Y6

�4 x1 A2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ �1 x1 Y1

�1 x2 A1

�2 x3 Y5

�4 x4 Y6

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ �1 x4 A1

�1 x3 Y2

�2 x2 Y4

�4 x1 Y5

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌�1 x1 Y2

�2 x2 A1

�3 a2 Y3

�4 a1 Y4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌�1 v1 Y5

a1 v2 Y4

a2 �3 Y3

�2 �2 A1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌�1 �2 Y6

a1 �3 Y5

a2 v2 A1

�2 v1 A2

ˇ̌̌̌
ˇ̌̌̌;

X
x;Y 2F

ˇ̌̌̌
ˇ̌̌̌˛1 a1 A1

˛2 a2 A2

˛6 x Y

˛5 a6 A6

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛2 a3 A6

˛3 a2 Y

˛5 x A2

˛6 a6 A5

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛3 a3 A5

˛2 a4 A2

˛4 a5 A3

˛5 a6 A4

ˇ̌̌̌
ˇ̌̌̌� X

X ;y2F

ˇ̌̌̌
ˇ̌̌̌˛1 a1 A1

˛2 a2 A2

˛6 a5 A3

˛5 a6 A6

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛2 a3 A6

˛3 a2 A3

˛5 a5 X

˛6 y A5

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌˛3 a3 A5

˛2 a4 X

˛4 a5 A3

˛5 y A4

ˇ̌̌̌
ˇ̌̌̌;

for all a1; : : : ; a6;A1; : : : ;A6;B1; : : : ;B4; ˛1; : : : ; ˛8; ˇ1; : : : ; ˇ8 2 F . Therefore,
we obtain the following.
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Corollary 9 The coset

invm.M /D SSm.†/C Im 2R=Im

does not depend on the particular nullhomotopic filling Dehn sphere † presenting the
closed 3–manifold M , and thus it is an invariant of M .

Other invariants From the invariant invm , a number of other invariants can be con-
structed (see King [9] for the Turaev–Viro version of these modifications): for instance,

� by colouring also the edges of the nullhomotopic filling Dehn sphere †,

� by giving weights to the regions of †,

� by assuming that some simplifying identities hold,

� by considering the coset with respect to the radical
p

Im of Im or with respect
to any other ideal I containing Im .

Computation of the invariant After the definition of the invariant invm.M /, the
issue of computing it naturally arises. We have not made any computation as yet, but
our plan is to use two techniques to compute invm.M /.

� If we find an element of the zero variety associated to Im , we can evaluate the
state sum SSm.†/ at it, getting an element of F which is obviously an invariant
of M .

� If we find a Gröbner basis of R=Im , we can find the normal form of invm.M /

and hence check whether two closed 3–manifolds share the same invariant or
not.

Relationship with the Turaev–Viro invariant The framework we have used to define
the invariant invm is analogous to that used to define the Turaev–Viro invariant [16].
However, the two calculuses (and their proofs) used in the definition of the invariants
are different. Hence, the following question naturally arises.

Question 10 Are the invariant invm and the Turaev–Viro invariant related (in some
sense) to each other?
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Lower bounds for the Matveev complexity We conclude with a potential application
of the invariant invm .

A 3–manifold is P2 –irreducible if every sphere embedded in it bounds a ball and
every projective plane embedded in it (if any) is one-sided. Let M be the class of
P2 –irreducible closed 3–manifolds different from the 3–sphere S3 , the projective
space RP3 or the lens space L.3; 1/. The Matveev complexity is defined for any
compact 3–manifold using spines [10]. However, as shown in [11], if the 3–manifold
M is P2 –irreducible and closed, the Matveev complexity c.M / can be defined to be

� zero, if M is S3 , RP3 or L.3; 1/,

� the minimal number of tetrahedra among all one-vertex triangulations of M , if
M 2M.

It is quite easy to find good estimates for the Matveev complexity, but an exact calcula-
tion of it is very difficult. For instance, precise upper bounds can be easily found by
exhibiting suitable triangulations, but lower bounds are usually rough. Here “precise”
means that the Matveev complexity is a posteriori usually very close (if not equal) to
the upper bound.

By using nullhomotopic filling Dehn spheres, a first lower bound for the Matveev
complexity can be easily found. Let us denote by cs.M / the minimal number of triple
points among all nullhomotopic filling Dehn spheres of M (in [19] the invariant cs.M /

is called nullhomotopic genus 0 triple point number). By means of the construction of
nullhomotopic filling Dehn spheres made in the proof of Proposition 2 (see Figure 3),
we obtain the inequality c.M /> cs.M /=4 for each M 2M.

In practice, this result seems to be useless for finding a lower bound for the Matveev
complexity directly. We describe a potential application of the invariant invm to
overcome this problem. If P is a polynomial in R, let deg.P / be its total degree.
Moreover, for any subset P � R, let deg.P/ D minfdeg.P / W P 2 Pg. For each
m > 1, the inequality cs.M / > deg.invm.M // holds, and hence the lower bound
c.M /> deg.invm.M //=4 holds for each M 2M.

It is worth noting that such a framework can be equally applied to the Turaev–Viro
setting, leading to non-sharp lower bounds on complexity, as shown by King [9]. Hence,
the following question naturally arises.

Question 11 Are the lower bounds obtained via invm sharp, at least for some closed
3–manifolds?
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