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Cap products in string topology

HIROTAKA TAMANOI

Chas and Sullivan showed that the homology of the free loop space LM of an
oriented closed smooth manifold M admits the structure of a Batalin–Vilkovisky
(BV) algebra equipped with an associative product (loop product) and a Lie bracket
(loop bracket). We show that the cap product is compatible with the above two
products in the loop homology. Namely, the cap product with cohomology classes
coming from M via the circle action acts as derivations on the loop product as well
as on the loop bracket. We show that Poisson identities and Jacobi identities hold for
the cap product action, turning H�.M /˚H�.LM / into a BV algebra. Finally, we
describe cap products in terms of the BV algebra structure in the loop homology.

55P35, 55P35

1 Introduction

Let M be a closed oriented smooth d –manifold. Let

DW H�.M /
Š
�!H d��.M /

be the Poincaré duality map. Following a practice in string topology, we shift the
homology grading downward by d and let H��.M / D Hd��.M /. The Poincaré
duality now takes the form

DW H��.M /
Š
�!H�.M /:

For a homology element a, let jaj denote its H�–grading of a.

The intersection product � in homology is defined as the Poincaré dual of the cup
product. Namely, for a; b 2H�.M /, D.a �b/DD.a/[D.b/. If ˛ 2H�.M / is dual
to a, then ˛ \ b D a � b and its Poincaré dual is ˛ [D.b/. Thus, through Poincaré
duality, the intersection product, the cap product and the cup product are all the same.
In particular, the cap product and the intersection product commute:

(1-1) ˛\ .b � c/D .˛\ b/ � c D .�1/j˛jjbjb � .˛\ c/:

In fact, the direct sum H�.M /˚H�.M / can be made into a graded commutative
associative algebra with unit, given by 1 2H 0.M /, using the cap and the cup product.

Published: 13 June 2009 DOI: 10.2140/agt.2009.9.1201



1202 Hirotaka Tamanoi

For an infinite-dimensional manifold N , there is no longer Poincaré duality, and
geometric intersections of finite dimensional cycles are all trivial. However, cap products
can still be nontrivial and the homology H�.N / is a module over the cohomology ring
H�.N /.

When the infinite-dimensional manifold N is a free loop space LM of continuous maps
from the circle S1DR=Z to M , the homology H�.LM /DH�Cd .LM / has a great
deal more structure. As before, jaj denotes the H�–grading of a homology element a of
LM . Chas and Sullivan [1] showed that H�.LM / has a degree-preserving associative
graded commutative product � called the loop product, a Lie bracket f ; g of degree 1

called the loop bracket compatible with the loop product and the BV operator � of
degree 1 coming from the homology S1 action. These structures turn H�.LM / into
a Batalin–Vilkovisky (BV) algebra. The purpose of this paper is to clarify the interplay
between the cap product with cohomology elements and the BV structure in H�.LM /.

Let pW LM !M be the base point map p. /D  .0/ for  2LM . For a cohomology
class ˛ 2H�.M / in the base manifold, its pullback p�.˛/2H�.LM / is also denoted
by ˛ . Let �W S1�LM �!LM be the S1 –action map. This map induces a degree 1

map � in homology given by �aD��.ŒS
1��a/ for a2H�.LM /. For a cohomology

class ˇ 2H�.LM /, the formula ��.ˇ/D 1�ˇCfS1g ��ˇ defines a degree �1

map � in cohomology, where fS1g is the fundamental cohomology class. Although
we use the same notation � in three different but closely related situations, what is
meant by � should be clear in the context.

Theorem A Let b; c 2 H�.LM /. The cap product with ˛ 2 H�.M / graded com-
mutes with the loop product. Namely

(1-2) ˛\ .b � c/D .˛\ b/ � c D .�1/j˛jjbjb � .˛\ c/:

For ˛ 2H�.M /, the cap product with �˛ 2H�.LM / acts as a derivation on the loop
product and the loop bracket :

.�˛/\ .b � c/D .�˛\ b/ � cC .�1/.j˛j�1/jbjb � .�˛\ c/;(1-3)

.�˛/\fb; cg D f�˛\ b; cgC .�1/j˛j�1/.jbjC1/
fb; �˛\ cg:(1-4)

The operator � acts as a derivation on the cap product. Namely, for ˛ 2H�.M / and
b 2H�.LM /,

(1-5) �.˛\ b/D�˛\ bC .�1/j˛j˛\�b:
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We recall that in the BV algebra H�.LM /, the following identities are valid for
a; b; c 2H�.LM / [1]:

�.a � b/D .�a/ � bC .�1/jaja ��bC .�1/jajfa; bg(BV identity)

fa; b � cg D fa; bg � cC .�1/jbj.jajC1/b � fa; cg(Poisson identity)

a � b D .�1/jajjbjb � a; fa; bg D �.�1/.jajC1/.jbjC1/
fb; ag(Commutativity)

fa; fb; cgg D ffa; bg; cgC .�1/.jajC1/.jbjC1/
fb; fa; cgg(Jacobi identity)

Here, deg a � b D jajC jbj, deg�aD jajC 1 and degfa; bg D jajC jbjC 1.

We can extend the loop product and the loop bracket in H�.LM / to include H�.M /

in the following way. For ˛ 2H�.M / and b 2H�.LM /, we define the loop product
and the loop bracket of ˛ and b by

(1-6) ˛ � b D ˛\ b; f˛; bg D .�1/j˛j.�˛/\ b:

Furthermore, the BV structure in H�.LM / can be extended to the direct sum A� D

H�.M /˚H�.LM / by defining the BV operator � on A� to be trivial on H�.M /

and to be the usual homological S1 action � on H�.LM /. Here in A� , elements in
H k.M / are regarded as having homological degree �k .

Theorem B The direct sum H�.M /˚H�.LM / has a structure of a BV algebra. In
particular, for ˛ 2 H�.M / and b; c 2H�.LM /, the following form of the Poisson
identity and the Jacobi identity hold :

f˛ � b; cg D ˛ � fb; cgC .�1/jbj.jcjC1/
f˛; cg � b

D ˛ � fb; cgC .�1/j˛jjbjb � f˛; cg;
(1-7)

f˛; fb; cgg D ff˛; bg; cgC .�1/.j˛jC1/.jbjC1/
fb; f˛; cgg:(1-8)

All the other possible forms of Poisson and Jacobi identities are also valid, and the
above two identities are the most nontrivial ones. These identities are proved by using
standard properties of the cap product and the BV identity above in H�.LM / relating
the BV operator � and the loop bracket f ; g, but without using Poisson identities nor
Jacobi identities in the BV algebra H�.LM /.

The above identities may seem rather surprising, but they become transparent once we
prove the following result.
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Theorem C For ˛ 2H�.M /, let aD ˛\ ŒM � 2H�.M / be its Poincaré dual. Then
for b 2H�.LM /,

(1-9) ˛\ b D a � b; .�1/j˛j�˛\ b D fa; bg:

More generally, for cohomology elements ˛0; ˛1; : : : ;˛r 2H�.M /, let a0; a1; : : : ; ar 2

H�.M / be their Poincaré duals. Then for b 2H�.LM /, we have

(1-10) .˛0[�˛1[� � �[�˛r /\bD .�1/ja1jC���Cjar ja0 � fa1; fa2; : : : ; far ; bg � � � gg:

Since the cohomology H�.M / and the homology H�.M / are isomorphic through
Poincaré duality and H�.M / is a subring of H�.LM /, the first formula in (1-9) is
not surprising. However, the main difference between H�.M / and H�.M / in our
context is that the homology S1 action � is trivial on H�.M /�H�.LM /, although
cohomology S1 action � is nontrivial on H�.M / and is related to loop bracket as in
(1-9).

Theorems A and C describe the cap product action of the cohomology H�.LM / on the
BV algebra H�.LM / for most elements in H�.LM /. For example, for ˛ 2H�.M /,
the cap product with �˛ is a derivation on the loop algebra H�.LM / given by a loop
bracket, and consequently the cap product with a cup product �˛1[ � � � [�˛r acts
on the loop algebra as a composition of derivations, which is equal to a composition of
loop brackets, according to (1-10). If H�.LM / is generated by elements ˛ and �˛
for ˛ 2H�.M / (for example, this is the case when H�.M / is an exterior algebra;
see Remark 5.3), then Theorem C gives a complete description of the cap product with
arbitrary elements in H�.LM / in terms of the BV algebra structure in H�.LM /.
However, H�.LM / is in general bigger than the subalgebra generated by H�.M /

and �H�.M /.

Since H�.LM / is a BV algebra, in view of Theorem C, the validity of Theorem B may
seem obvious. However, in the proof of Theorem B, we only used standard properties
of the cap product and the BV identity. In fact, Theorem B gives an alternate elementary
and purely homotopy theoretic proof of the Poisson and Jacobi identities in H�.LM /,
when at least one of the elements a; b; c are in H�.M /. Similarly, Theorem C gives a
purely homotopy theoretic interpretation of the loop product and the loop bracket if
one of the elements is in H�.M /.

Our interest in cap products in string topology comes from an intuitive geometric
picture that cohomology classes in LM are dual to finite codimension submanifolds
of LM consisting of certain loop configurations. We can consider configurations of
loops intersecting in particular ways (for example, two loops having their base points in
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common), or we can consider a family of loops intersecting transversally with submani-
folds of M at certain points of loops. In a given family of loops, taking the cap product
with a cohomology class selects a subfamily of a certain loop configuration, which are
ready for certain loop interactions. In this context, roughly speaking, composition of
two interactions of loops correspond to the cup product of corresponding cohomology
classes.

The organization of this paper is as follows. In Section 2, we describe a geometric
problem of describing a certain family of intersection configuration of loops in terms
of cap products. This gives a geometric motivation for the remainder of the paper.
In Section 3, we review the loop product in H�.LM / in detail from the point of
view of the intersection product in H�.M /. Here we pay careful attention to signs.
In particular, we give a homotopy theoretic proof of graded commutativity in the
BV algebra H�.LM /, which turned out to be not so trivial. In Section 4, we prove
compatibility relations between the cap product and the BV algebra structure, and
prove Theorems A and B. In the last section, we prove Theorem C.

We thank the referee for numerous suggestions which lead to clarification and improve-
ment of exposition.

2 Cap products and intersections of loops

Let A1;A2; : : : ;Ar and B1;B2; : : : ;Bs be oriented closed submanifolds of M d . Let
F �LM be a compact family of loops. We consider the following question.

Question Fix r points 0� t�
1
; t�

2
; : : : ; t�r � 1 in S1 DR=Z. Describe the homology

class of the subset I of the compact family F consisting of loops  in F such that
 intersects submanifolds A1; : : : ;Ar at time t�

1
; : : : ; t�r and intersects B1; : : : ;Bs at

some unspecified time.

This subset I � F can be described as follows. We consider the following diagram of
an evaluation map and a projection map:

(2-1)

s‚ …„ ƒ
.S1
� � � � �S1/�LM

e
����!

r‚ …„ ƒ
M � � � � �M �

s‚ …„ ƒ
M � � � � �M

�2

??y
LM
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given by e
�
.t1; : : : ; ts/; 

�
D
�
 .t�

1
/; : : : ;  .t�r /;  .t1/; : : : ;  .ts/

�
. Then the pullback

set e�1.
Q

i Ai �
Q

j Bj / is a closed subset of S1 � � � � �S1 �LM . Let

zI D e�1

�Y
i

Ai �

Y
j

Bj

�
\ .S1

� � � � �S1
�F /:

The set I in question is given by I D�2.zI/. We want to understand this set I homolog-
ically, including multiplicity. Although e�1.

Q
i Ai �

Q
j Bj / is infinite dimensional,

it has finite codimension in .S1/r �LM . So we work cohomologically.

Let ˛i ; ǰ 2 H�.M / be cohomology classes dual to ŒAi �; ŒBj � for 1 � i � r and
1 � j � s . Then the subset e�1.

Q
i Ai �

Q
j Bj / is dual to the cohomology class

e�.
Q

i ˛i �
Q

j ǰ / 2 H�..S1/s �LM /. Suppose the family F is parametrized by
a closed oriented manifold K by an onto map �W K �! F and let b D ��.ŒK�/ 2

H�.LM / be the homology class of F in LM . Then the homology class of zI in
.S1/s �LM is given by

(2-2) ŒzI �D e�
�Y

i

˛i �

Y
j

ǰ

�
\ .ŒS1

� � � � �S1�� b/:

Note that the homology class .�2/�.ŒzI �/ represents the homology class of I with
multiplicity.

Proposition 2.1 With the above notation, .�2/�.ŒzI �/ is given by the following formula
in terms of the cap product or in terms of the BV structure:

(2-3)
.�2/�.ŒzI �/D .�1/

P
j j j ǰ j�s

�
˛1 � � �˛r .�ˇ1/ � � � .�ˇs/

�
\ b

D .�1/
P

j j j ǰ j�s ŒA1� � � � ŒAs � � fŒB1�; f� � � fŒBs �; bg � � �g 2H�.LM /:

Proof The evaluation map e in (2-1) is given by the following composition.

s‚ …„ ƒ
S1
� � � � �S1

�LM
1��
���! .S1

� � � � �S1/�

rCs‚ …„ ƒ
LM � � � � �LM

T
�!

r‚ …„ ƒ
LM � � � � �LM �

s‚ …„ ƒ
.S1
�LM /� � � � � .S1

�LM /

1r��s

����! .LM �� � ��LM /�.LM �� � ��LM /
pr�ps

����! .M �� � ��M /�.M �� � ��M /;

where � is a diagonal map, T moves S1 factors. Since we apply .�2/� later, we
only need terms in e�.

Q
Ai �

Q
Bj / containing the factor fS1g� � � � � fS1g. Since
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��p�. ǰ /D1�p�. ǰ /CfS
1g�� ǰ for 1�j �s , following the above decomposition

of e , we have

e�.˛1�� � ��˛r �ˇ1�� � ��ˇs/D "fS
1
g
s
�
�
˛1 � � �˛r .�ˇ1/ � � � .�ˇs/

�
C other terms;

where the sign " is given by

"D .�1/
Ps

`D1.s�`/.jˇ`j�1/Cs
Pr

`D1 j˛`j:

Thus, taking the cap product with ŒS1�s � b and applying .�2/� , we get

�2�

�
e�.˛1 � � � � �˛r �ˇ1 � � � � �ˇs/\ .ŒS

1�� � � � � ŒS1�� b/
�

D .�1/
Ps

`D1 `jˇ`j�s˛1 � � �˛r .�ˇ1/ � � � .�ˇs/\ b:

The second equality follows from the formula (1-10).

Remark 2.2 In the diagram (2-1), in terms of cohomology transfer �2
! we have

(2-4) �2
!e�.˛1 � � � � �˛r �ˇ1 � � � � �ˇs/D˙˛1 � � �˛r .�ˇ1/ � � � .�ˇs/;

where �2
!.˛/ \ b D .�1/sj˛j�2�

�
˛ \ �2!.b/

�
for any ˛ 2 H�..S1/s � LM / and

b 2H�.LM /. Here �2!.b/D ŒS
1�s � b .

3 The intersection product and the loop product

Let M be a closed oriented smooth d –manifold. The loop product in H�.LM / was
discovered by Chas and Sullivan [1], in terms of transversal chains. Later, Cohen and
Jones [2] gave a homotopy theoretic description of the loop product. The loop product
is a hybrid of the intersection product in H�.M / and the Pontrjagin product in the
homology of the based loop spaces H�.�M /. In this section, we review and prove
some properties of the loop product in preparation for the next section. Our treatment
of the loop product follows [2]. However, we will be precise with signs and give a
homotopy theoretic proof of the graded commutativity of the loop product, which
[2] did not include. For the Frobenius compatibility formula with careful discussion
of signs, see Tamanoi [9]. For homotopy theoretic deduction of the BV identity, see
Tamanoi [8].

For our purpose, the free loop space LM is the space of continuous maps from S1 D

R=Z to M . Our discussion is homotopy theoretic and does not require smoothness
of loops, although we do need smoothness of M which is enough to allows us to
have tubular neighborhoods for certain submanifolds in the space of continuous loops.
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Recall that the space LM of continuous loops can be given a structure of a smooth
manifold. See the discussion before Definition 3.2.

Let pW LM �!M be the base point map given by p. /D  .0/. Let sW M �!LM

be the constant loop map given by s.x/D cx , where cx is the constant loop at x 2M .
Since p� ı s� D 1, H�.M / is contained in H�.LM / through s� and we often regard
H�.M / as a subset of H�.LM /.

We start with a discussion on the intersection ring H�.M / and later we compare it
with the loop homology algebra H�.LM /. An exposition on intersection products in
homology of manifolds can be found on Dold’s book [4, Chapter VIII, Section 13].
Our sign convention (which follows Milnor [6]) is slightly different from Dold’s.

Those who are familiar with intersection product and loop products can skip this section
after checking Definition 3.2.

Let DW H�.M /
Š
!H d��.M / be the Poincaré duality map such that D.a/\ ŒM �D a

for a 2H�.M /. We discuss two ways to define intersection product in H�.M /. The
first method defines the intersection product as the Poincaré dual of the cohomology
cup product. Thus, D.a �b/DD.a/[D.b/ for a; b 2H�.M /. For example, we have
a � b D .�1/jajjbjb � a.

The second method uses the transfer map induced from the diagonal map �W M �!
M �M . Let � be the normal bundle to �.M / in M �M , and we orient � by
�˚��.TM /Š T .M �M /j�.M / . Let u0 2H d .�.M /�/ be the Thom class of � . Let
N be a closed tubular neighborhood of �.M / in M �M so that D.�/ŠN , where
D.�/ is the associated closed disc bundle of � . Let � W N �!M be the projection
map. Then the above Thom class can be thought of as u0 2 zH d .N=@N /, and we
have the following commutative diagram, where cW M �M �!N=@N is the Thom
collapse map, and �N and j are obvious maps.

(3-1)

H d .N;N ��.M //
Š
����! H d .N; @N / 3 u0

Š

x??��N ??yc�

u00 2H d
�
M �M;M �M ��.M /

� j�

����! H d .M �M / 3 u

Let u00 2 H d
�
M �M;M �M � �.M /

�
and u 2 H d .M �M / be the classes

corresponding to the Thom class. We have u D c�.u0/ D j �.u00/. This class u is
characterized by the property u\ ŒM �M �D ��.ŒM �/, and ��.u/D eM 2H d .M /

is the Euler class of M . See for example Section 11 of [6]. The transfer map �! is
defined as the following composition:

(3-2) �!W H�.M �M /
c�
�! zH�.N=@N /

u0\. /
����!
Š

H��d .N /
��
��!
Š

H��d .M /:
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For a homology element a, let jaj0 denote its regular homology degree of a, so that
we have a 2Hjaj.M / and jaj0 D jajC d .

Proposition 3.1 Suppose M is a connected oriented closed d –manifold with a base
point x0 . The transfer map �!W H�.M �M / �! H��d .M / satisfies the following
properties. For a; b 2H�.M /,

���!.a� b/D u\ .a� b/;(3-3)

�!��.a� b/D �.M /Œx0�:(3-4)

For ˛ 2H�.M �M / and b; c 2H�.M /, we have

(3-5) �!

�
˛\ .b � c/

�
D .�1/d j˛j��.˛/\�!.b � c/:

The intersection product and the transfer map coincide up to a sign:

(3-6) a � b D .�1/d.jaj
0�d/�!.a� b/:

Proof For the first identity, we consider the following commutative diagram, where
M 2 denotes M �M .

H�.M
2/

c�
����! H�.N; @N /

u0\. /
����!
Š

H��d .N /
��
����!
Š

H��d .M / Š

??y�N � ??y�N � ??y��
H�.M

2/
j�
����! H�

�
M 2;M 2��.M /

� u00\. /
����!
Š

H��d .M
2/ H��d .M

2/

The commutativity implies that for a; b 2H�.M /, we have ���! D u00\ j�.a� b/D

j �.u00/\ .a� b/D u\ .a� b/.

To check the second formula, we first compute ���!��.ŒM �/. By the first formula,
���!��.ŒM �/D u\��.ŒM �/D ��.�

�.u/\ ŒM �/. Since ��.u/ is the Euler class eM ,
this is equal to ��.eM \ ŒM �/D�.M /Œ.x0;x0/�. Since M is assumed to be connected,
�� is an isomorphism in H0 . Hence �!��.ŒM �/D �.M /Œx0� 2H0.M /.

For the next formula, we examine the commutative diagram

H�.M
2/

c�
����! H�.N; @N /

u0\. /
����!
Š

H��d .N /
�0�
 ����
Š

H��d .M /

˛\. /

??y ��
N
.˛/\. /

??y ��
N
.˛/\. /

??y ��.˛/

??y
H��j˛j.M

2/
c�
����! H��j˛j.N; @N /

u0\. /
����!
Š

H��d�j˛j.N /
�0�
 ����
Š

H��d�j˛j.M /
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where �0W M !N is an inclusion map and �0�D .��/
�1 . The middle square commutes

up to the factor .�1/j˛jd . The commutativity of this diagram immediately implies that
��.˛/\�!.a� b/D .�1/j˛jd�!

�
˛\ .a� b/

�
.

For the last identity, we apply �� on both sides and compare. Since the formula
a � b D ��.D.a/�D.b//\ ŒM � holds, we have

��.a � b/D
�
D.a/�D.b/

�
\��.ŒM �/

D
�
D.a/�D.b/

�
\
�
u\ ŒM �

�
D .�1/d.jaj

0�d/u\ .a� b/D .�1/d.jaj
0�d/���!.a� b/:

Since �� is injective, we have a � b D .�1/d.jaj
0�d/�!.a� b/.

These two intersection products differ only in signs. However, the formulas for graded
commutativity take different forms:

a � b D .�1/.d�jaj
0/.d�jbj0/b � a(3-7)

�!.a� b/D .�1/jaj
0jbj0Cd�!.b � a/(3-8)

The sign .�1/d in the second formula above comes from the fact that the Thom class
u 2H d .M �M / satisfies T �.u/D .�1/du, where T is the switching map of factors.

Next we turn to the loop product in H�.LM /. We consider the diagram

(3-9)

LM �LM
j

 ���� LM �M LM
�

����! LM

p�p

??y q

??y
M �M

�
 ���� M

where LM �M LM D .p �p/�1.�.M // consists of pairs of loops .; �/ with the
same base point, and �.; �/ D  � � is the product of composable loops. Let zN D
.p � p/�1.N / and let zcW LM �LM �! zN =@ zN be the Thom collapse map. Let
z� W zN �!LM �M LM be a projection map defined as follows. For .; �/ 2 zN , let
their base points be .x;y/ 2N . Let �.x;y/D .z; z/ 2 �.M /. Since N ŠD.�/ has
a bundle structure, let `.t/D .`1.t/; `2.t// be the straight ray in the fiber over .z; z/
from .z; z/ to .x;y/. Then let z�

�
.; �/

�
D .`1 �  � `

�1
1
; `2 � � � `

�1
2
/. By considering

`Œt;1� , we see that z� is a deformation retraction.

In fact, more is true. Stacey [7, Proposition 5.3] showed that when LsmoothM is
the space of smooth loops, zN has an actual structure of a tubular neighborhood of
LM �M LM inside of LM �LM equipped with a diffeomorphism p�

�
D.�/

�
Š zN .

His proof only uses the smoothness of M and exactly the same proof applies to the
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space LM of continuous loops and zN still has the structure of a tubular neighborhood
and we again have a diffeomorphism p�

�
D.�/

�
Š zN between spaces of continuous

loops.

Let zu0 D .p �p/�.u0/ 2 zH d . zN =@ zN /, and zuD .p �p/�.u/ 2H d .LM �LM / be
pullbacks of Thom classes. Define the transfer map j! by the following composition of
maps:

j!W H�.LM �LM /
zc�
�! zH�. zN =@ zN /

zu0\. /
����!
Š

H��d . zN /
z��
��!
Š

H��d .LM �M LM /:

The tubular neighborhood structure of zN implies that the middle map is a genuine
Thom isomorphism.

Definition 3.2 Let M be a closed oriented d –manifold. For a; b 2H�.LM /, their
loop product, denoted by a � b , is defined by

(3-10) a � b D .�1/d.jaj
0�d/��j!.a� b/D .�1/d jaj��j!.a� b/:

The sign .�1/d.jaj
0�d/ appears in [3] in the commutative diagram (1-7). We include

this sign explicitly in the definition of the loop product for at least three reasons. The
most trivial reason is that on the left hand side, the dot representing the loop product
is between a and b . On the right hand side, j! of degree �d representing the loop
product is in front of a. Switching a and j! gives the sign .�1/d jaj

0

. The other
part of the sign .�1/d comes from our choice of orientation of � and ensures that
s�.ŒM �/ 2H0.LM /, with the C sign, is the unit of the loop product.

The second reason is that this choice of sign for the loop product is the same sign
appearing in the formula for the intersection product defined in terms of the transfer
map (3-6). This makes the loop product compatible with the intersection product. See
Proposition 3.3 below.

The third reason of the sign for the loop product is that it gives the correct graded
commutativity, as given in [1] proved in terms of chains. We discuss a homotopy
theoretic proof of graded commutativity (Proposition 3.4 below) because [2] did not
include it, and because the homotopy theoretic proof itself is not so trivial with careful
treatment of transfers and signs. Contrast the present homotopy theoretic proof with
the simple geometric proof given in [1].

We verify the second and third reasons above.

Proposition 3.3 Both of the following maps are algebra maps preserving units between
the loop algebra H�.LM / and the intersection ring H�.M /:

(3-11) p�W H�.LM / �!H�.M /; s�W H�.M / �!H�.LM /:
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Proof The proof is more or less straightforward, but we discuss it briefly. We consider
the following diagram.

LM �LM
j

 ���� LM �M LM
�

����! LM

p�p

??y p

??y p

??y
M �M

�
 ���� M M

s�s

??y s

??y s

??y
LM �LM

j
 ���� LM �M LM

�
����! LM

Since the Thom classes for embeddings j and � are compatible via .p � p/� , the
induced homology diagram with transfers j! and �! is commutative. Then by diagram
chasing, we can easily check that p� and s� preserve products because of the same
signs appearing in (3-6) and (3-10).

Details of the homotopy proof of graded commutativity are given next.

Proposition 3.4 For a; b 2H�.LM /, the following graded commutativity relation
holds:

(3-12) a � b D .�1/.jaj
0�d/.jbj0�d/b � aD .�1/jajjbjb � a:

Proof We consider the following commutative diagram, where R1=2 is the rotation
of loops by 1=2, that is, R1=2. /.t/D  .t C 1=2/.

LM �LM
j

 ���� LM �M LM
�

����! LM

T

??y T

??y R1=2

??y
LM �LM

j
 ���� LM �M LM

�
����! LM

Since R1=2 is homotopic to the identity map, we have R1=2�
D 1. Hence

a � b D .�1/d.jaj
0�d/��j!.a� b/D .�1/d.jaj

0�d/��T�j!.a� b/:

Next we show that the induced homology square with transfer j! , we have T�j! D

.�1/dj!T� . Since the left square in the above diagram commutes on space level, we
have that T�j! and j!T� coincides up to a sign. To determine this sign, we compose
j� on the left of these maps and compare. Since the homology square with induced
homology maps commute,

j�T�j!.a� b/D T�j�j!.a� b/D T�
�
zu\ .a� b/

�
:
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On the other hand,

j�j!T�.a� b/D zu\T�.a� b/D T�
�
T �.zu/\ .a� b/

�
:

We compare T �.zu/ and zu. Since zuD .p�p/�.u/, we have T �.zu/D .p�p/�T �.u/.
Since u is characterized by the property u\ ŒM �M �D ��.ŒM �/ and T ı� D � , we
have

��.ŒM �/D T���.ŒM �/D T �.u/\T�.ŒM �M �/D T �.u/\ .�1/d ŒM �M �:

Thus T �.u/D .�1/du. Hence T �.zu/D .�1/d zu. In view of the above two identities,
this implies that j�T�j! D .�1/dj�j!T� , or T�j! D .�1/dj!T� .

Continuing our computation,

a �bD .�1/d jaj
0

��j!T�.a�b/D .�1/jaj
0jbj0Cd j˛j��j!.b�a/D .�1/.jaj

0�d/.jbj0�d/b �a:

This completes the homotopy theoretic proof of commutativity formula.

The transfer map j! enjoys the following properties similar to those satisfies by �! as
given in Proposition 3.1. The proof is similar, and we omit it.

Proposition 3.5 For a; b 2H�.LM / and ˛ 2 H�.LM �LM /, the following for-
mulas are valid:

j�j!.a� b/D zu\ .a� b/(3-13)

j!

�
˛\ .a� b/

�
D .�1/d j˛jj �.˛/\ j!.b � c/(3-14)

The second formula says that j! is a H�.LM �LM /–module map.

4 Cap products and extended BV algebra structure

We examine compatibility of the cap product with the various structures in the BV
algebra H�.LM /DH�Cd .LM /.

We recall that a BV algebra A� is an associative graded commutative algebra equipped
with a degree 1 Lie bracket f ; g and a degree 1 operator � satisfying the following
relations for a; b; c 2A� :

�.a � b/D .�a/ � bC .�1/jaja ��bC .�1/jajfa; bg(BV identity)

fa; b � cg D fa; bg � cC .�1/jbj.jajC1/b � fa; cg(Poisson identity)

a � b D .�1/jajjbjb � a; fa; bg D �.�1/.jajC1/.jbjC1/
fb; ag(Commutativity)

fa; fb; cgg D ffa; bg; cgC .�1/.jajC1/.jbjC1/
fb; fa; cgg(Jacobi identity)
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Here, degrees of elements are given by �a 2 AjajC1; a � b 2 AjajCjbj , and fa; bg 2
AjajCjbjC1 . One way to view these relations is to consider operators Da and Ma

acting on A� for each a 2 A� given by Da.b/ D fa; bg and Ma.b/ D a � b . Let
Œx;y�D xy � .�1/jxjjyjyx be the graded commutator of operators. Then the Poisson
identity and the Jacobi identity take the following forms:

(4-1) ŒDa;Mb �DMfa;bg; ŒDa;Db �DDfa;bg;

where degrees of operators are jDaj D jajC 1 and jMbj D jbj.

One nice context to understand BV identity is in the context of odd symplectic geometry
[5, Section 2], where BV operator � appears as a mixed second order odd differential
operator, and BV identity can be simply understood as Leibnitz rule in differential
calculus. This context actually arises in loop homology. In [10], we explicitly computed
the BV structure of H�.LM / for the Lie group SU.n C 1/ and complex Stiefel
manifolds. There, the BV operator � is given by second order mixed odd differential
operator as above, and H�.LM / is interpreted as the space of polynomial functions
on the odd symplectic vector space.

The fact that the loop algebra H�.LM / is a BV algebra was proved in [1]. Note that
the above BV relations are satisfied with respect to H�–grading, rather than the usual
homology grading. The same is true for compatibility relations with cap products.

First we discuss the cohomological S1 action operator � on H�.LM /. Consider the
S1 action map �W S1 �LM �!LM given by �.t;  /D t , where t .s/D  .sC t/

for s; t 2 S1 D R=Z. The degree �1 operator �W H�.LM / �! H��1.LM / is
defined by the following formula for ˛ 2H�.LM /:

(4-2) ��.˛/D 1�˛CfS1
g ��˛

where fS1g is the fundamental cohomology class of S1 . The homological S1 action �
is not a derivation with respect to the loop product and the deviation from being a
derivation is given by the loop bracket. However, the cohomology S1 –operator � is a
derivation with respect to the cup product.

Proposition 4.1 The cohomology S1 –operator � satisfies �2 D 0, and it acts as a
derivation on the cohomology ring H�.LM /. That is, for ˛; ˇ 2H�.LM /,

(4-3) �.˛[ˇ/D .�˛/[ˇC .�1/j˛j˛[�ˇ:
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Proof The property �2 D 0 is straightforward using the following diagram:

S1 �S1 �LM
1��
����! S1 �LM

��1

??y �

??y
S1 �LM

�
����! LM

Comparing both sides of .1��/���.˛/D .�� 1/���.˛/, we obtain �2.˛/D 0.

For the derivation property, we consider the following diagram.

S1 �LM
���
����! .S1 �S1/� .LM �LM /

1�T�1
�����! .S1 �LM /� .S1 �LM /

�

??y ���

??y
LM

�
����! LM �LM LM �LM

On the one hand, ����.˛�ˇ/D��.˛[ˇ/D 1� .˛[ˇ/CfS1g ��.˛[ˇ/. On
the other hand,

.���/�.1�T �1/�.���/�.˛�ˇ/D 1�.˛[ˇ/C.�1/j˛jfS1
g�
�
˛[�ˇC�˛[ˇ

�
:

Comparing the above two identities, we obtain the derivation formula.

We can regard the cohomology ring H�.LM / together with cohomological S1 action
� as a BV algebra with trivial bracket product.

Now we show that the cap product is compatible with the loop product in the BV algebra
H�.LM /. The following theorem describes the behavior of the cap product with those
elements in the subalgebra of H�.LM / generated by H�.M / and �

�
H�.M /

�
.

Theorem 4.2 Let ˛ 2 H�.M / and b; c 2 H�.LM /. The cap product with p�.˛/

behaves associatively and graded commutatively with respect to the loop product.
Namely

(4-4) p�.˛/\ .b � c/D .p�.˛/\ b/ � c D .�1/j˛jjbjb � .p�.˛/\ c/:

The cap product with �
�
p�.˛/

�
is a derivation on the loop product. Namely,

(4-5) �
�
p�.˛/

�
\ .b � c/D

�
�
�
p�.˛/

�
\ b

�
� cC .�1/.j˛j�1/jbjb �

�
�
�
p�.˛/

�
\ c
�
:
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Proof For (4-4), we consider the following diagram, where �i is the projection onto
the i –th factor for i D 1; 2.

LM
�i
 ���� LM �LM

j
 ���� LM �M LM

�
����! LM

p

??y p�p

??y q

??y p

??y
M

�i
 ���� M �M

�
 ���� M M

Since p�.˛/\.b �c/D .�1/d jbj��
�
��p�.˛/\j!.b�c/

�
, we need to understand ��p�.˛/.

From the above commutative diagram, we have ��p�.˛/D j ���i p�.˛/, which is equal
to either j �.p�.˛/�1/ or j �.1�p�.˛//. In the first case, continuing our computation
using (3-14), we have

p�.˛/\ .b � c/D .�1/d jbj��
�
j �.p�.˛/� 1/\ j!.b � c/

�
D .�1/d jbjCd j˛j��j!

�
.p�.˛/� 1/\ .b � c/

�
D .�1/d jbjCd j˛j��j!

�
.p�.˛/\ b/� c

�
D .p�.˛/\ b/ � c:

Similarly, using ��p�.˛/ D j �
�
1 � p�.˛/

�
, we get the other identity. This proves

(4-4).

For (4-5), we first note that the element �
�
p�.˛/

�
\ .b � c/ is equal to

�
�
p�.˛/

�
\ .�1/d jbj��j!.b � c/D .�1/d jbj��

�
��
�
�.p�.˛//

�
\ j!.b � c/

�
:

Thus, we need to understand the element ��
�
�.p�.˛//

�
. We need some notation. Let

I D I1 [ I2 , where I1 D Œ0;
1
2
� and I2 D Œ

1
2
; 1�, and set S1

i D Ii=@Ii for i D 1; 2.
Let r W S1 D I=@I �! I=f0; 1

2
; 1g D S1

1
_ S1

2
be an identification map, and let

�i W S
1
i �! S1

1
_S1

2
be the inclusion map into the i –th wedge summand. We examine

the diagram

S1 � .LM �
M

LM /
r�1
���! .S1

1
_S1

2
/� .LM �

M
LM /  ��� f0g � .LM �

M
LM /

1��

??y e0

??y �

??y
S1 �LM

e
���! M

p
 ��� LM

where eD p ı� is the evaluation map for S1�LM , and the other evaluation map e0

is given by

e0.t; ; �/D

(
 .2t/ 0� t � 1

2
;

�.2t � 1/ 1
2
� t � 1:
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For ˛ 2H�.M /, we let

e0
�
.˛/D 1� ��p�.˛/Cfs1

1g ��1.˛/CfS
1
2 g ��2.˛/

for some �i.˛/ 2 H�.LM �M LM / for i D 1; 2. The first term in the right hand
side is identified using the right square of the above commutative diagram. Since
r�.fS1

i g/D fS
1g for i D 1; 2,

.r � 1/�e0
�
.˛/D 1� ��p�.˛/CfS1

g �
�
�1.˛/C�2.˛/

�
:

The commutativity of the left square implies that this must be equal to

.1� �/���p�.˛/D 1� ��p�.˛/CfS1
g � ���

�
p�.˛/

�
:

��
�
�.p�.˛//

�
D�1.˛/C�2.˛/ 2H�.LM �M LM /:Hence

To understand elements �i.˛/, we consider the following commutative diagram, where
`1.t/D 2t for 0� t � 1

2
and `2.t/D 2t � 1 for 1

2
� t � 1.

S1
i � .LM �M LM /

`i�j
����! S1 � .LM �LM /

1��i
����! S1 �LM

�i�1

??y �

??y
.S1

1
_S1

2
/� .LM �M LM /

e0

����! M
p

 ���� LM

On the one hand, .�1 � 1/�e0
�
.˛/D 1� ��p�.˛/CfS1

1
g ��1.˛/. On the other hand,

.`1 � j /�.1��1/
���p�.˛/D 1� j �

�
p�.˛/� 1

�
CfS1

1 g � j �
�
�.p�.˛//� 1

�
:

By the commutativity of the diagram, we get �1.˛/D j �
�
�.p�.˛//� 1

�
. Similarly,

i D 2 case implies �2.˛/D j �
�
1��.p�.˛//

�
. Hence we finally obtain

��
�
�.p�.˛//

�
D j �

�
�.p�.˛//� 1C 1��.p�.˛//

�
:

With this identification of ��
�
�.p�.˛//

�
as j � of some other element, we can continue

our initial computation.

�
�
p�.˛/

�
\.b �c/D .�1/d jbj��

�
j �
�
�.p�.˛//�1C1��

�
p�.˛/

��
\j!.b�c/

�
D .�1/d jbjC.j˛j�1/d ��j!

��
�.p�.˛//�1C1��

�
p�.˛/

��
\.b�c/

�
D .�1/d.j˛jCjbj�1/��j!

��
�.p�.˛//\b

�
�cC.�1/.jbjCd/.j˛j�1/b�

�
�.p�.˛//\c

��
D
�
�.p�.˛//\b

�
�cC.�1/.j˛j�1/jbjb �

�
�.p�.˛//\c

�
:

This completes the proof of the derivation property of the cap product with respect to
the loop product.
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Next we describe the relation between the cap product and the BV operator in homology
and cohomology.

Proposition 4.3 For ˛ 2H�.LM / and b 2H�.LM /, the BV-operator � satisfies

(4-6) �.˛\ b/D .�˛/\ bC .�1/j˛j˛\�b:

Proof On the one hand, the S1 –action map �W S1 �LM �!LM satisfies

��
�
��.˛/\ .ŒS1�� b/

�
D ˛\��.ŒS

1�� b/D ˛\�b:

On the other hand, since ��.˛/D 1�˛CfS1g ��˛ , we have

��
�
��.˛/\ .ŒS1�� b/

�
D��

�
.�1/j˛jŒS1�� .˛\ b/C .�1/j˛j�1Œpt �� .�˛\ b/

�
D .�1/j˛j�.˛\ b/C .�1/j˛j�1�˛\ b:

Comparing the above two formulas, we obtain �.˛\b/D�˛\bC.�1/j˛j˛\�b .

Since homology BV operator � on H�.LM / acts trivially on H�.M /, the following
corollary is immediate.

Corollary 4.4 For ˛ 2H�.M /, the cap product of �˛ with H�.M /�H�.LM / is
trivial.

Proof For b 2H�.M /, the operator � acts trivially on both ˛ \ b and b . Hence
formula (4-6) implies .�˛/\ b D 0.

Next, we discuss a behavior of the cap product with respect to the loop bracket.

Theorem 4.5 The cap product with �
�
p�.˛/

�
is a derivation on the loop bracket.

Namely, for ˛ 2H�.M / and b; c 2H�.LM /,

(4-7) �
�
p�.˛/

�
\fb; cgD f�

�
p�.˛/

�
\b; cgC.�1/.j˛j�1/.jbj�1/

fb; �
�
p�.˛/

�
\cg:

Proof Our proof is computational using previous results. We use the BV identity as
the definition of the loop bracket. Thus,

fb; cg D .�1/jbj�.b � c/� .�1/jbj.�b/ � c � b ��c:

We compute the right hand side of (4-7). For simplicity, we write �˛ for �
�
p�.˛/

�
.

Each term in the right hand side of (4-7) gives

f�˛\ b; cg

D .�1/jbj�j˛jC1�
�
.�˛\ b/ � c

�
� .�1/jbj.�˛\�b/ � c � .�˛\ b/ ��c;

fb; �˛\ cg

D .�1/jbj�
�
b � .�˛\ c/

�
� .�1/jbj�b � .�˛\ c/� .�1/j˛j�1b � .�˛\�c/;
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Here we used (4-6) for the second term in the first identity and in the third term in the
second identity. Combining these formulas, we get

f�˛\ b; cgC .�1/.j˛j�1/.jbjC1/
fb; �˛\ cg

D
�
.�1/jbj�j˛jC1�

�
.�˛\ b/ � c

�
C .�1/jbjC.j˛j�1/.jbjC1/�

�
b � .�˛\ c/

��
�
�
.�1/jbj.�˛\�b/ � cC .�1/.j˛j�1/.jbjC1/Cjbj�b � .�˛\ c/

�
�
�
.�˛\ b/ ��cC .�1/.j˛j�1/.jbjC1/Cj˛j�1b � .�˛\�c/

�
:

Using the derivation formula for �˛\ . / with respect to the loop product (4-5), three
pairs of terms above become

.�1/jbj�j˛jC1�
�
�˛\ .b � c/

�
� .�1/jbj�˛\ .�b � c/��˛\ .b ��c/

D�˛\
�
.�1/jbj�.b � c/� .�1/jbj�b � c � b ��c

�
D�˛\fb; cg:

This completes the proof of the derivation formula for the loop bracket.

Recall that in the BV algebra H�.LM /, for every a 2H�.LM / the operation fa; � g
of taking the loop bracket with a is a derivation with respect to both the loop product
and the loop bracket, in view of the Poisson identity and the Jacobi identity. Since we
have proved that the cap product with �p�.˛/ for ˛ 2H�.M / is a derivation with
respect to both the loop product and the loop bracket, we wonder if we can extend the
BV structure in H�.LM / to a BV structure in H�.M /˚H�.LM /. Indeed this is
possible by extending the loop product and the loop bracket to elements in H�.M / as
follows.

Definition 4.6 For ˛; ˇ 2H�.M / and b 2H�.LM /, we define their loop product
and loop bracket by

(4-8)
˛ � b D ˛\ b; f˛; bg D .�1/j˛j.�˛/\ b;

˛ �ˇ D ˛[ˇ; f˛; ˇg D 0:

This defines an associative graded commutative loop product by (4-4), and a bracket
product on H�.M /˚H�.LM /.

Note that this loop product on H�.M /˚H�.LM / reduces to the ring structure on
H�.M /˚H�.M / mentioned in the introduction.

With this definition, the Poisson identities and the Jacobi identities are still valid in
H�.M /˚H�.LM /.
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Theorem 4.7 Let ˛; ˇ 2H�.M /, and let b; c 2H�.LM /.

(I) The following Poisson identities are valid in H�.M /˚H�.LM /:

f˛; ˇ � cg D f˛; ˇg � cC .�1/jˇj.j˛j�1/ˇ � f˛; cg(4-9)

f˛ˇ; cg D ˛ � fˇ; cgC .�1/j˛jjˇjˇ � f˛; cg(4-10)

f˛; b � cg D f˛; bg � cC .�1/.jbj�d/.j˛j�1/b � f˛; cg(4-11)

f˛ � b; cg D ˛ � fb; cgC .�1/j˛j.jbj�d/b � f˛; cg:(4-12)

(II) The following Jacobi identities are valid in H�.M /˚H�.LM /:

f˛; fˇ; cgg D ff˛; ˇg; cgC .�1/.j˛j�1/.jˇj�1/
fˇ; f˛; cgg(4-13)

f˛; fb; cgg D ff˛; bg; cgC .�1/.j˛j�1/.jbj�dC1/
fb; f˛; cgg:(4-14)

Proof If we unravel definitions, we see that (4-9) and (4-13) are really the same as
the graded commutativity of the cup product of the form

.�˛/\ .b\ c/D .�1/jˇj.j˛j�1/ˇ\ .�˛\ c/;

.�˛/\ .�ˇ\ c/D .�1/.j˛j�1/.jˇj�1/.�ˇ/\
�
.�˛/\ c

�
:

The identity (4-10) is equivalent to the derivation formula (4-3) of the cohomology S1

action operator with respect to the cup product.

�.˛[ˇ/D .�˛/[ˇC .�1/j˛j˛[ .�ˇ/:

The identity (4-11) says that �˛\ . / is a derivation with respect to the loop product,
and the identity (4-14) says that �˛\. / is a derivation with respect to the loop bracket.
We have already verified both of these cases. Thus, what remains to be checked is
formula (4-12), which says

f˛\ b; cg D ˛\fb; cgC .�1/j˛jjbjCj˛jb � .�˛\ c/:

Using the BV identity, the derivation formula (4-6) of the BV operator with respect to
the cap product, and properties of ˛\ . / and �˛\ . /, we can prove this identity:

.�1/jbj�j˛jf˛\ b; cg D�
�
.˛\ b/ � c

�
��.˛\ b/ � c � .�1/jbj�j˛j.˛\ b/ ��c

D�
�
˛\ .b � c/

�
� .�˛\ bC .�1/j˛j˛\�b/ � c � .�1/jbj�j˛j˛\ .b ��c/

D .�˛/\ .b � c/� .�˛\ b/ � cC .�1/j˛j˛\�.b � c/

� .�1/j˛j˛\ .�b � c/� .�1/jbj�j˛j˛\ .b ��c/

D .�1/.j˛j�1/jbjb � .�˛\ c/C .�1/j˛jCjbj˛\fb; cg:

Canceling some signs, we get the desired formula. This completes the proof.
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Other Poisson and Jacobi identities with cohomology elements in the second argument
formally follow from above identities by making following definitions for ˛ 2H�.M /

and b 2H�.LM /:

b �˛ D .�1/j˛jjbj˛ � b; fb; ˛g D �.�1/.j˛jC1/.jbjC1/
f˛; bg:

For ˛ 2H�.M / we showed that �˛\ . / is a derivation for both the loop product and
the loop bracket, and ˛\ . / is graded commutative and associative with respect to the
loop product. What is the behavior of ˛\. / is with respect to the loop bracket? Formula
(4-12) says that ˛\ . � / on loop bracket is not a derivation or graded commutativity: it
is a Poisson identity!

The Poisson and Jacobi identities we have just proved in A� DH�.M /˚H�.LM /

show that A� is a Gerstenhaber algebra. In fact, A� can be formally turned into a BV
algebra by defining a BV operator � on A� to be trivial on H�.M / and to be the
usual one on H�.LM / coming from the homological S1 action.

Corollary 4.8 The direct sum A� DH�.M /˚H�.LM / has the structure of a BV
algebra.

Proof Since H�.LM / is a BV algebra and since we have already verified the Poisson
identities and the Jacobi identities in A� , we only have to verify BV identities in A� .
For ˛; ˇ 2H�.M /, an identity

�.˛[ˇ/D .�˛/[ˇC .�1/j˛j˛[ .�ˇ/C .�1/j˛jf˛; ˇg

is trivially satisfied since all terms are zero by definition of BV operator � and the
loop bracket on H�.M /�A� .

Next, let ˛ 2H�.M / and b 2H�.LM /. Since the BV operator � on A� acts trivially
on H�.M /, an identity

�.˛\ b/D .�˛/\ bC .�1/j˛j˛\ .�b/C .�1/j˛jf˛; bg

is really a restatement of the derivative formula of the homology S1 action operator �
on cap product: �.˛\ b/D .�1/j˛j˛\ .�b/C .�˛/\ b in formula (4-6).

In connection with the above Corollary, we can ask whether H�.LM /˚H�.LM /

has a structure of a BV algebra. Of course, H�.LM / together with the cohomological
S1 action operator �, which is a derivation, is a BV algebra with trivial bracket
product. Thus, as a direct sum of BV algebras, H�.LM /˚H�.LM / is a BV algebra,
although products between H�.LM / and H�.LM / are trivial. More meaningful
question would be to ask whether the direct sum H�.LM /˚H�.LM / has a BV
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algebra structure extending the one on A� described in Corollary 4.8. If we want to use
the cap product as an extension of the loop product, the answer is no. This is because
the cap product with an arbitrary element ˛ 2H�.LM / does not behave associatively
with respect to the loop product in H�.LM /: if ˛ is of the form ˛ D�ˇ for some
ˇ 2H�.M /, then ˛ \ . � / acts as a derivation on loop product in H�.LM / due to
(4-5) and does not satisfy associativity.

Remark 4.9 In the course of our investigation, we noticed the following curious
identity, which is in some sense symmetric in three variables, for ˛ 2 H�.M / and
b; c 2H�.LM /.

f˛; b � cgC .�1/jbj˛ � fb; cg D f˛; bg � cC .�1/jbjf˛ � b; cg

D .�1/.j˛jC1/jbj
�
b � f˛; cgC .�1/j˛jfb; ˛ � cg

�
:

(4-15)

This identity is easily proved using the Poisson identities. But we wonder the meaning
of this symmetry.

5 Cap products in terms of BV algebra structure

In the previous section, we showed that the BV algebra structure in H�.LM / can be
extended to the BV algebra structure in H�.M /˚H�.LM / by proving the Poisson
identities and the Jacobi identities. This may be a bit surprising. But this turns out to
be very natural through Poincaré duality in the following way. For a 2H�.M /, we
denote the element s�.a/ 2H�.LM / by a, where sW M !LM is the inclusion map.

Theorem 5.1 For a 2H�.M /, let ˛ DD.a/ 2H�.M / be its Poincaré dual. Then
for any b 2H�.LM /, the following identities hold.

p�.˛/\ b D a � b; .�1/j˛j�
�
p�.˛/

�
\ b D fa; bg:

Proof Let 1D s�.ŒM �/2H0.LM / be the unit of the loop product. Since p�.˛/\bD

p�.˛/\ .1 � b/D
�
p�.˛/\ 1

�
� b by (4-4), and since

p�.˛/\ 1D p�.˛/\ s�.ŒM �/D s�
�
s�p�.˛/\ ŒM �

�
D s�.˛\ ŒM �/D a;

we have p�.˛/\ b D a � b . This proves the first identity.

For the second identity, in the BV identity

.�1/jajfa; bg D�.a � b/� .�a/ � b� .�1/jaja ��b;
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the first term in the right hand side gives

�.a � b/D�.p�.˛/\ b/D�
�
p�.˛/

�
\ bC .�1/j˛jp�.˛/\�b

in view of the first identity we just proved and the derivation property of the homological
A1 action operator on cap products. Here p�.˛/\�bD a ��b . Since a 2H�.M / is
a homology class of constant loops, we have �aD 0. Thus,

.�1/jajfa; bg D�
�
p�.˛/

�
\ bC .�1/j˛ja ��b� .�1/jaja ��b D�

�
p�.˛/

�
\ b;

since j˛j D �jaj. Thus, fa; bg D .�1/j˛j�
�
p�.˛/

�
\ b . This completes the proof.

In view of this theorem, since H�.LM / is already a BV algebra, the Poisson identities
and the Jacobi identities we proved in Section 4 may seem obvious. However, what
we did in Section 4 is that we gave a new and elementary homotopy theoretic proof of
the Poisson identities and the Jacobi identities using only basic properties of the cap
product and the BV identity, when at least one of the elements is from H�.M /.

The above theorem shows that loop products and loop brackets with elements in H�.M /

can be written as cap products with cohomology elements in LM . Thus, compositions
of loop products and loop brackets with elements in H�.M / corresponds to a cap
product with the product of corresponding cohomology classes in H�.LM /. Namely:

Corollary 5.2 Let a0; a1; : : : ; ar 2 H�.M /, and let ˛0; ˛1; : : : ; ˛r 2 H�.M / be
their Poincaré duals. Then for b 2H�.LM /,

a0 � fa1; fa2; : : : ; far ; bg � � � gg D .�1/ja1jC���Cjar j
�
˛0.�˛1/.�˛2/ � � � .�˛r /

�
\ b:

In Section 2, we considered a problem of intersections of loops with submanifolds
in certain configurations, and we saw that the homology class of the intersections of
interest can be given by a cap product with cohomology cup products of the above
form (Proposition 2.1). The above corollary computes this homology class in terms of
BV structure in H�.LM / using the homology classes of these submanifolds.

Remark 5.3 In general, elements ˛;�˛ for ˛ 2H�.M / do not generate the entire
cohomology ring H�.LM /. However, if H�.M IQ/ D ƒQ.˛1; ˛2; : : : ; ˛r / is an
exterior algebra, over Q, then using minimal models or spectral sequences, we have

H�.LM IQ/DƒQ.˛1; ˛2; : : : ; ˛r /˝QŒ�˛1; �˛2; : : : ; �˛r �;

and thus we have the complete description of the cap products with any elements in
H�.LM IQ/ in terms of the BV structure in H�.LM IQ/.
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