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Volume estimates
for equiangular hyperbolic Coxeter polyhedra

CHRISTOPHER K ATKINSON

An equiangular hyperbolic Coxeter polyhedron is a hyperbolic polyhedron where all
dihedral angles are equal to �=n for some fixed n 2Z , n� 2 . It is a consequence of
Andreev’s theorem that either nD 3 and the polyhedron has all ideal vertices or that
nD 2 . Volume estimates are given for all equiangular hyperbolic Coxeter polyhedra.

57M50; 30F40

1 Introduction

An orientable 3–orbifold, Q, is determined by an underlying 3–manifold, XQ and
a trivalent graph, †Q , labeled by integers. If Q carries a hyperbolic structure then
it is unique by Mostow rigidity, so the hyperbolic volume of Q is an invariant of Q.
Therefore, for hyperbolic orbifolds with a fixed underlying manifold, the volume is a
function of the labeled graph †. In this paper, methods for estimating the volume of
orbifolds of a restricted type in terms of this labeled graph will be described.

The orbifolds studied in this paper are quotients of H3 by reflection groups generated
by reflections in hyperbolic Coxeter polyhedra. A Coxeter polyhedron is one where
each dihedral angle is of the form �=n for some n 2 Z, n � 2. Given a hyperbolic
Coxeter polyhedron P , consider the group generated by reflections through the geodesic
planes determined by its faces, �.P/. Then �.P/ is a Kleinian group which acts on
H3 with fundamental domain P . The quotient, O DH3=�.P/, is a nonorientable
orbifold with singular locus P.2/ , the 2–skeleton of P . One may think of obtaining
O by “mirroring” the faces of P . It is a consequence of Andreev’s theorem that any
equiangular hyperbolic Coxeter polyhedron has either all dihedral angles equal to �=3
and is ideal or has all dihedral angles equal to �=2 [5; 6]. This paper gives two-sided
combinatorial volume estimates for all equiangular hyperbolic Coxeter polyhedra. Only
polyhedra with finite volume will be considered.

Lackenby gave volume estimates for hyperbolic alternating link complements in [14]
in terms of the twist number of the link. His work was part of what led to this
investigation of how geometric data arises from associated combinatorial data. Some
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of the techniques used in this paper follow methods used by Lackenby. The lower
bound given by Lackenby was improved by Agol, Storm and Thurston in [3]. In
his thesis [13], Inoue has identified the two smallest-volume, compact, right-angled
hyperbolic polyhedra. He also gave a method to order such polyhedra based on a
decomposition into Löbell polyhedra, provided that the volume of any given right-
angled polyhedron can be calculated exactly.

The results of this paper can be used to list all equiangular hyperbolic polyhedra with
volume not exceeding some fixed value. A sample application of this is to classify
all arithmetic Kleinian maximal reflection groups. Agol has shown in [2] that the
number of such groups is finite up to conjugacy. Given a maximal reflection group �
generated by reflections in a polyhedron P , he gives an upper bound, independent
of � , for the volume of P=‚ where ‚ is the group of symmetries of P which are
not reflections. One could therefore attempt to classify such groups using the results
of this paper by writing down a list of all polyhedra of sufficiently small volume and
checking arithmeticity for those for which the quotient by additional symmetries has
small enough volume.

Acknowledgments The author would like to thank his thesis advisor, Ian Agol, for
his excellent guidance and the referee for many valuable comments. The author was
partially supported by NSF grant DMS-0504975.

2 Summary of results

The results of the paper are outlined in this section. Theorems 2.2, 2.3 and 2.4 concern
the volumes of right-angled hyperbolic polyhedra. Theorem 2.6 concerns hyperbolic
polyhedra with all angles �=3. Before stating any results, some terminology will be
introduced.

An abstract polyhedron is a cell complex on S2 which can be realized by a convex Eu-
clidean polyhedron. A theorem of Steinitz says that realizability as a convex Euclidean
polyhedron is equivalent to the 1–skeleton of the cell complex being 3–connected [18].
A graph is 3–connected if the removal of any 2 vertices along with their incident edges
leaves the complement connected. A labeling of an abstract polyhedron P is a map

‚W Edges.P /! .0; �=2�:

For an abstract polyhedron, P , and a labeling, ‚, the pair .P; ‚/ is a labeled abstract
polyhedron. A labeled abstract polyhedron is said to be realizable as a hyperbolic
polyhedron if there exists a hyperbolic polyhedron, P , such that there is a label-
preserving graph isomorphism between P.1/ with edges labeled by dihedral angles
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and P with edges labeled by ‚. A defining plane for a hyperbolic polyhedron P is a
hyperbolic plane … such that …\P is a face of P . A labeling ‚ which is constantly
equal to �=n is �=n–equiangular. Suppose G is a graph and G� is its dual graph. A
k –circuit is a simple closed curve composed of k edges in G� . A prismatic k –circuit
is a k –circuit  so that no two edges of G which correspond to edges traversed
by  share a vertex. The following theorem is a special case of Andreev’s Theorem,
which gives necessary and sufficient conditions for a labeled abstract polyhedron to be
realizable as a hyperbolic polyhedron.

Theorem 2.1 (Andreev’s theorem for �=2–equiangular polyhedra) A �=2–equian-
gular labeled abstract polyhedron .P; ‚/ is realizable as a hyperbolic polyhedron, P ,
if and only if the following conditions hold:

(1) P has at least 6 faces.

(2) P each vertex has degree 3 or degree 4.

(3) For any triple of faces of P , .Fi ; Fj ; Fk/, such that Fi \Fj and Fj \Fk are
edges of P with distinct endpoints, Fi \Fk D∅.

(4) P� has no prismatic 4 circuits.

Furthermore, each degree 3 vertex in P corresponds to a finite vertex in P , each
degree 4 vertex in P corresponds to an ideal vertex in P , and the realization is unique
up to isometry.

The first result gives two-sided volume estimates for ideal, �=2–equiangular hyperbolic
polyhedra.

Theorem 2.2 If P is an ideal �=2–equiangular polyhedron with N vertices, then

.N � 2/ �
V8

4
� vol.P/� .N � 4/ �

V8

2
;

where V8 is the volume of a regular ideal hyperbolic octahedron. Both inequalities are
equality when P is the regular ideal hyperbolic octahedron. There is a sequence of ideal
�=2–equiangular polyhedra Pi with Ni vertices such that vol.Pi/=Ni approaches
V8=2 as i goes to infinity.

The constant V8 is the volume of a regular ideal hyperbolic octahedron. In terms of
the Lobachevsky function,

ƒ.�/D�

Z �

0

log j2 sin t j dt;
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V8 D 8ƒ.�=4/. This volume can also be expressed in terms of Catalan’s constant, K ,
as V8 D 4K , where

K D

1X
nD0

.�1/n

.2nC 1/2
:

The value of V8 to five decimal places is 3:66386.

The proof is spread throughout the paper. The lower bound will be shown in Section 3
to be a consequence of the stronger Theorem 3.2, which depends also on information
about the number of faces. The upper bound in Theorem 2.2 will be proved in Section 5
and will be shown to be asymptotically sharp in Section 6.

Using similar techniques, the following theorem giving volume estimates for compact
�=2–equiangular polyhedra will be proved:

Theorem 2.3 If P is a compact �=2–equiangular hyperbolic polyhedron with N

vertices, then

.N � 8/ �
V8

32
� vol.P/ < .N � 10/ �

5V3

8
;

where V3 is the volume of a regular ideal hyperbolic tetrahedron. There is a sequence
of compact polyhedra, Pi , with Ni vertices such that vol.Pi/=Ni approaches 5V3=8

as i goes to infinity.

In terms of the Lobachevsky function, V3 D 2ƒ.�=6/. To five decimal places, V3 is
1:01494.

Combining the methods of Theorem 2.2 and Theorem 2.3, estimates will be given for
�=2–equiangular polyhedra with both finite and ideal vertices:

Theorem 2.4 If P is a �=2–equiangular hyperbolic polyhedron, N1 � 1 ideal
vertices and NF finite vertices, then

8N1CNF � 8

32
�V8 � vol.P/ < .N1� 1/ �

V8

2
CNF �

5V3

8
:

The proofs of the lower bounds in Theorem 2.3 and Theorem 2.4 appear in Section 3.
The upper bounds will be proved in Section 5.

Two-sided volume estimates for �=3–equiangular polyhedra are also given. First, the
special case of Andreev’s Theorem for �=3–equiangular polyhedra is stated.

Theorem 2.5 (Andreev’s theorem for �=3–equiangular polyhedra) A �=3–equian-
gular abstract polyhedron, .P; ‚/, is realizable as a hyperbolic polyhedron, P if each
vertex of P has degree 3 and P� has no prismatic 3–circuits. Furthermore, each vertex
of P is ideal and P is unique up to isometry.

Algebraic & Geometric Topology, Volume 9 (2009)



Volume estimates for equiangular hyperbolic Coxeter polyhedra 1229

The next theorem gives analogous results to that of Theorem 2.2 for ideal �=3–
equiangular polyhedra.

Theorem 2.6 If P is an ideal �=3–equiangular polyhedron with N > 4 vertices, then

N �
V3

3
� vol.P/� .3N � 14/ �

V3

2
;

where V3 is the volume of a regular ideal hyperbolic tetrahedron. The upper bound
is sharp for the regular ideal hyperbolic cube. There is a sequence of ideal �=3–
equiangular polyhedra Pi with Ni vertices such that vol.Pi/=Ni approaches 3V3=2

as Ni increases to infinity.

The lower bound in this theorem will be proved in Section 4 by packing horoballs
around the vertices. The upper bound will be proved in Section 5 and will be shown
to be asymptotically sharp in Section 6, mirroring the proofs in the �=2 case. In
a personal communication, Rivin has indicated how to improve the lower bound to
N � .3V3=8/. His argument will be briefly described at the end of Section 4.

3 Lower volume bound for ideal �=2–equiangular polyhe-
dra

The key result used in proving the lower volume bound in Theorem 2.2 and Theorem
3.2 is a theorem of Miyamoto which says that the volume of a complete hyperbolic 3–
manifold with totally geodesic boundary is greater than or equal to a constant multiple
of the area of the boundary [15]:

Theorem 3.1 (Miyamoto) If O is a complete hyperbolic 3–orbifold with nonempty
totally geodesic boundary, then

vol.O/� area.@O/ �
V8

4�

with equality only if M can be decomposed into regular ideal hyperbolic octahedra.

Miyamoto actually only stated this theorem for manifolds. The orbifold version follows
immediately, however. Given a complete hyperbolic 3–orbifold, O , with nonempty
totally geodesic boundary, Selberg’s lemma implies the existence of an integer m such
that an m–fold cover of O is a manifold M [17]. Then since M is a finite cover,
vol.M /Dm � vol.O/ and area.@M /Dm � area.@O/.

Theorem 2.2 is a consequence of the following stronger theorem which also takes
into account information about the faces of the polyhedron. Andreev’s theorem for
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�=2–equiangular polyhedra implies that the 1–skeleton of an ideal �=2–equiangular
polyhedron is a four-valent graph on S2 . The faces, therefore, can be partitioned into
a collection of black faces, B , and a collection of white faces, W , so that no two faces
of the same color share an edge. Denote by jBj and jWj the number of black and
white faces, respectively.

Theorem 3.2 Suppose P is an ideal �=2–equiangular polyhedron with N vertices.
If P is 2–colored with jBj � jWj, then

.N � jWj/ �
V8

2
� vol .P/:

This inequality is sharp for an infinite family of polyhedra obtained by gluing together
regular ideal hyperbolic octahedra.

Proof Let P be an ideal �=2–equiangular polyhedron, and consider the orbifold
H3=�.P/, where �.P/ is the reflection group generated by P , as described in the
introduction. Denote the generators of �.P/ by the same symbol denoting the face
of P through which it is a reflection. If A is a face of P , let �A.P/ be the group
obtained from �.P/ by removing the generator A and all relations involving A. This
may be thought of as “un-mirroring” the face A. Then CC.H3=�A.P//, the convex
core of H3=�A.P/, is an orbifold with totally geodesic boundary and the same volume
as P . Note that the face A is a suborbifold of H3=�.P/ because all dihedral angles
of P are �=2. In general, a face of a polyhedron meeting a dihedral angle not equal to
�=2 will not be a suborbifold and removing the generators and relations corresponding
to that face from the reflection group will not give a totally geodesic boundary because
the preimage of that face in H3 will not be a collection of disjoint geodesic planes.

To get the best lower bound on volume from Theorem 3.1, the boundary should be
chosen to have the greatest possible area. Given a collection of faces AD

SM
iD1 Ai ,

denote the group obtained by removing all generators and relations involving the
Ai by �A.P/. If no two faces in such a collection A share an edge, the orbifold
CC.H3=�A.P// has totally geodesic boundary.

As described before the statement of the theorem, 2–color the faces of P black and
white so that no two faces of the same color share an edge. Suppose that coloring is
chosen so that the number of black faces, jBj, is at least the number of white faces, jWj.
This choice will ensure that the sum of the areas of the faces in W is at least the sum of
the areas of the black faces, as will be seen in Lemma 3.3. Then, CC.H3=�W.P// is
an orbifold with totally geodesic boundary consisting of the Wi . Theorem 3.1 applied
to this orbifold gives

vol.P/� area.W/ � �3.0/:
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The following lemma gives the area of W and completes the proof of the lower bound.

Lemma 3.3 With W as above,

area.W/D 2�.N � jWj/:

Proof Consider DW , the double of W along its boundary. Recall that the orbifold
Euler characteristic of a 2–orbifold Q is

�.Q/D �.XQ/�
X

i

.1� 1=mi/;

where XQ is the underlying topological space and Q has cone points of orders mi [9].
The faces in W meet each of the N vertices and each of the E edges of P . The
orbifold DW is a union over all faces of W of doubled ideal polygons. Each of these
doubled ideal polygons is a 2–sphere with a cone point of order 1 for each vertex
of the polygon. Each vertex of P contributes a cone point to two of these doubled
polygons. Therefore

�.DW/D jWj ��.S2/� 2N D 2.jWj �N /:

The punctured surface DW is hyperbolic, being a union of hyperbolic 2–orbifolds.
Therefore, the Gauss–Bonnet theorem for orbifolds implies that

area.DW/D�2��.DW/D 4�.N � jWj/;

so that area.W/D 2�.N � jWj/.

The polyhedra which realize the lower bound as claimed in Theorem 3.2 are constructed
by gluing together octahedra. Consider a regular ideal hyperbolic octahedron with
faces colored white and black, so that no two faces of the same color share an edge.
For a single octahedron, N D 6 and jWj D 4, so the lower bound is equal to the
volume. To obtain an infinite number of polyhedra which satisfy the claim, glue a
finite collection of 2–colored regular ideal hyperbolic octahedra together, only gluing
black faces to black faces. Each successive gluing results in a polyhedron with 3 more
vertices and 1 more white face. Therefore by induction, for each example constructed
in this fashion, the lower inequality in Theorem 3.2 will be equality. See Figure 1.
Note that gluing octahedra in a different pattern than described yields examples which
do not satisfy the claim. This completes the proof of Theorem 3.2.

The argument giving the lower bound in Theorem 2.2 as a consequence of Theorem 3.2
is similar to the proof of Theorem 5 in [14]. The idea is to average the estimate coming
from the black faces with the estimate coming from the white faces. Consider a sort of
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Figure 1: An example of the gluing

dual polyhedron, G , to P . The vertices of G are the white faces in the specified coloring
of P . For any two faces of P which share a vertex, the corresponding two vertices
in G are connected by an edge. The 2–skeleton is homeomorphic to S2 , so the Euler
characteristic of G.2/ is 2. The number of vertices, edges and faces of G.2/ respectively
are jWj, N and jBj, where N is the number of vertices of P . Hence jBjD2�jWjCN .
An application of Lemma 3.3 yields area.B/D 2�.N � jBj/D 2�.jWj � 2/. Hence

vol.P/� .jWj � 2/ �
V8

2
:

Therefore, combining this inequality with the inequality from Theorem 3.2,

vol.P/� .N � 2/ �
V8

4
;

proving the lower bound of Theorem 2.2.

The lower bound in Theorem 2.4, where P is a �=2–equiangular polyhedron with
vertices which are either finite or ideal, is proved similarly.

Proposition 3.4 Suppose P is a �=2–equiangular hyperbolic polyhedron with N1
ideal vertices, NF finite vertices and jF j faces. Then

8N1C 3NF � 4jF j
32

�V8 � vol.P/:

Proof By the four color theorem, a 4–coloring of the faces of P may be found [7; 10].
One of the collections of faces of the same color, say B , has area at least area.@P/=4,
where area.@P/ should be interpreted as the sum of the areas of all the faces of P .
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The area of a hyperbolic k –gon with interior angles summing to S is .k � 2/� �S .
The sum of the interior angles of a face of P is nF ��=2, where nF is the number of
finite vertices of the face. Hence the area of a single face is

�
�
n1C

nF

2
� 2

�
;

where n1 is the number of ideal vertices of the face. Summing over all faces and
using the fact that each finite vertex is a vertex of three faces and each ideal vertex is a
vertex of four faces gives

area.@P/D � �
8N1C 3NF � 4jF j

2
:

Then since area.B/ � area.@P/=4, applying Miyamoto’s theorem to B finishes the
proof of the proposition.

The lower bound in Theorem 2.3 follows by setting N1 D 0.

4 Lower volume bound for ideal �=3–equiangular polyhe-
dra

In this section the lower bound given in Theorem 2.6 will be proved:

Proposition 4.1 If P is an ideal �=3–equiangular polyhedron with N > 4 vertices,
then

vol.P/ >N �
V3

3
:

Before proving this proposition, a few preliminary results about ideal �=3–equiangular
polyhedra with more than 4 vertices are needed. Consider a �=3–equiangular poly-
hedron, P , in the upper half-space model for H3 with one vertex placed at the point
at infinity. The link of each vertex is Euclidean, so must be an equilateral Euclidean
triangle since all dihedral angles are �=3. Thus the image of P under the orthogonal
projection to the bounding plane of H3 is an equilateral triangle. This triangle will be
referred to as the base triangle. The three vertices adjacent to the vertex at infinity will
be called corner vertices.

The following is a corollary of Andreev’s theorem for �=3–equiangular polyhedra.

Corollary 4.2 If P is a �=3–equiangular polyhedron which has more than 4 vertices,
then each face of P has at least 4 edges.
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Proof Suppose for contradiction that P has a triangular face, �1 . Andreev’s theorem
for �=3–equiangular polyhedra (Theorem 2.5) says that the dual graph of P.1/ has no
prismatic 3–circuits, so at least two of the edges emanating from �1 share a vertex.
Hence P contains two adjacent triangular faces, �1 and �2 . Let v1 be the vertex
of �1 which is not contained in �2 and v2 the vertex of �2 which is not contained
in �1 . Let e1 and e2 be the edges emanating from v1 and v2 respectively which are
not contained in �1 or �2 . The edges e1 and e2 are both contained in two common
faces. See Figure 2. Therefore by convexity, e1 and e2 must actually be the same edge,
which contradicts the fact that P has more than 4 vertices.

e1 e2
v1 v2

�1 �2

Figure 2: Note that e1 and e2 are both part of the “front" face and the “back" face.

Lemma 4.3 Suppose that P is an ideal �=3–equiangular polyhedron with N > 4

vertices. If coordinates for the upper half-space model of H3 are chosen so that a vertex
of P is at the point at infinity, then the Euclidean distance from a corner vertex to each
of the adjacent vertices in the base triangle are equal.

Proof The fact that all dihedral angles are equal to �=3 implies that the arrangement
of defining planes for the corner vertex is left invariant under reflection through a
geodesic plane through infinity bisecting the angle between the two vertical planes
defining the vertex. This proves the lemma.

The following lemma shows that if P is a nonobtuse polyhedron, then intersections of
faces of P correspond to intersections of the defining planes of P .

Lemma 4.4 If P is a nonobtuse hyperbolic polyhedron, then the closures of two faces
F1 and F2 of P intersect if and only if S…1 and S…2 intersect in SH3 where …i is the
defining plane for Fi .

Proof Sufficiency is clear.

For necessity, the contrapositive will be proved. Suppose that F1 and F2 are two
faces of P such that their closures do not intersect. A geodesic orthogonal to both F1
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and F2 will be constructed. This geodesic is also orthogonal to both …1 and …2 , and
such a geodesic exists only if the closures of the …i are disjoint.

Choose any x0 2 F1 and y0 2 F2 and let 0 be the geodesic between them. The set

K.0/D f.x;y/ 2 F1 �F2 j d.x;y/� l.0/g

is a closed subset of F1�F2 . There exists open subsets Ni of Fi containing all of the
ideal vertices of Fi such that for any z1 2N1 and z2 2N2 , d.z1; z2/ > l.0/. Hence
K.0/ is also a bounded subset of F1 �F2 , therefore compact.

It follows from compactness of K.0/ that

dmin Dminfd.x;y/ j .x;y/ 2K.0/g

is achieved for some .x;y/ 2 K.0/. The geodesic segment,  , between x and y

must be orthogonal to both F1 and F2 . If not, suppose  is not orthogonal to F1 .
Since P is nonobtuse, the orthogonal projection of y to …1 is contained in F1 . By
the hyperbolic Pythagorean theorem, the geodesic between y and its projection has
length less than that of  . This contradicts the construction of  . The argument is
identical if  is not orthogonal to F2 .

There is actually a simpler argument for the previous lemma in the case that P is a
Coxeter polyhedron. The development of P into H3 gives a tessellation of H3 by
copies of P , so any intersection of defining planes must correspond to an edge of P .

Corollary 4.5 Suppose P is an ideal �=3–equiangular polyhedron with N > 4

vertices. Choose coordinates for the upper half-space model of H3 so that a vertex,
v0 , of P is at the point at infinity. Then if the distance in Lemma 4.3 from the corner
vertex, u, to the two adjacent vertices in the base triangle is r and the edge length of
the base triangle is a, then 0< r < 3a

4
.

Proof Suppose that the three defining planes which contain v0 are …1 , …2 and …3

and that the three defining planes containing u are …1 , …2 and …4 . If 3a
4
� r < a,

then …3 intersects …4 with interior dihedral angle less than �=3. By Lemma 4.4,
the corresponding faces, F3 and F4 , also have intersecting closures, and the interior
dihedral angle between F3 and F4 will be less than �=3. If r D a, then P would be
a tetrahedron and for r > a, P would have finite vertices at the points …1\…3\…4

and …2\…3\…4 .

In what follows, the intersection with P of a closed horoball centered at a vertex u of P
which intersects only faces and edges containing u will be called a vertex neighborhood.
The next lemma is the main observation which leads to the lower volume bound. This
lemma follows the approach of Adams in [1].
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Lemma 4.6 Let P be an ideal �=3–equiangular polyhedron with more than 4 vertices.
Suppose two vertex neighborhoods of equal volume intersect with disjoint interiors.
Then the volume of each of the vertex neighborhoods is at least

p
3=6.

Proof Let B1 and B2 about vertices u1 and u2 , respectively, be vertex neighborhoods
which intersect with disjoint interiors. Choose coordinates for the upper half-space
model of H3 so that u1 is the point at infinity and B1 intersects B2 at Euclidean
height 1 above the bounding plane. Let �.P/ be the reflection group generated by P
and G1 the subgroup fixing the point at infinity:

G1 D f 2 �.P/ j  .f1g/D f1gg:

Let H1 D G1 �B1 be the horoball centered at infinity covering B1 and let H2 be one
of the height 1 horoballs contained in �.P/ �B2 . The projection of P to the bounding
plane of H3 is an equilateral triangle and the orbit of this triangle under the action of
G1 tiles the plane. Let � be a triangle in this tiling containing the point of SH3 about
which H2 is centered.

The collection of height 1 horoballs covering B2 is equal to G1 �H2 and, for each
pair g ¤ h 2 G1 , either gH2 \ hH2 is empty, a single point, or gH2 D hH2 . The
proof breaks up into three cases. Either u2 2 int�, u2 is contained in the interior of
an edge of �, or u2 is a vertex of �.

If u2 2 int�, then the projection of H2 to the bounding plane must be a closed disk
contained in �. The minimum possible value of vol.B1/D vol.B2/ occurs when the
projection of H2 to the bounding plane is inscribed in � and � has edge length

p
3,

as shown in the left of Figure 3. Hence the area of � is 3
p

3=4 and

vol.Bi/D
3
p

3

4

Z 1
1

dz

z3
D

3
p

3

8
:

If u2 is contained in the interior of an edge of �, then the minimum possible value of
the vertex neighborhood volume occurs when � has edge length 2

p
3=3 and u2 is at

the midpoint of an edge of �, as in the right of Figure 3. Calculating as above,

vol.Bi/D

p
3

6
:

Now suppose that u2 is a vertex of �. If the edge length of � is a, then

vol.B1/D
a2
p

3

4

Z 1
1

dz

z3
D

a2
p

3

8
:
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Figure 3: On the left is the projection of H2 inscribed in � . On the right is
the projection of H2 in the case where u2 is contained in the interior of an
edge of � .

If r is as in Corollary 4.5, then

vol.B2/D

p
3

8r2
:

By Corollary 4.5, 0< r < 3a
4

, so

vol.B2/ >
2
p

3

9a2
:

Equating this lower bound with vol.B1/ yields a D 2
p

3=3. Therefore we may
conclude that

vol.Bi/ >

p
3

6
:

To complete the proof of Proposition 4.1, start with disjoint, equal volume vertex
neighborhoods at each vertex. Expand the vertex neighborhoods so that the volumes
remain equal at all time until two of the vertex neighborhoods intersect with disjoint
interior intersection. Lemma 4.6 then says that there is a vertex neighborhood at each
vertex of volume at least

p
3=6. Böröczky and Florian in [8] show that the maximal

density of a horoball packing in H3 is
p

3=.2V3/. Applying this result gives

vol.P/ >N �
V3

3
:

In a personal communication, Rivin has indicated how to improve the lower bound
to N � .3V3=8/. The idea of the argument is that for any given vertex v in a �=3–
equiangular polyhedron P , v along with the three vertices of P with which v shares
an edge are the vertices of a regular ideal hyperbolic tetrahedron contained in P . A
collection of such tetrahedra with disjoint interiors may be constructed by taking any
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independent set of vertices of P . By a result of Heckman and Thomas, a trivalent
graph with N vertices contains an independent set of cardinality at least 3N=8 [12].

5 The upper volume bounds

In this section, the upper volume bounds in Theorems 2.2, 2.3, 2.4 and 2.6 will be
proved using arguments inspired by an argument of Agol and D Thurston for an upper
bound on the volume of an alternating link complement [14]. First, a decomposition of
an arbitrary nonobtuse hyperbolic polyhedron into tetrahedra will be described. In each
case, the volume contributed by the tetrahedra meeting at each vertex will be analyzed
to obtain the volume bounds.

Let P be a nonobtuse hyperbolic polyhedron and v0 a vertex of P . For each face, Ai ,
not containing v0 , let i be the unique geodesic orthogonal to Ai which passes through
or limits to v0 , where v0 is a finite or ideal vertex respectively. Define the nearest point
projection, ui , of v0 to Ai to be the intersection of i with Ai . The projection ui will
lie on the interior of Ai unless Ai meets one of the faces containing v0 orthogonally,
in which case, ui will lie in the interior of an edge of Ai or will coincide with a
vertex of Ai if Ai meets two faces containing v0 orthogonally. Cyclically label the
vertices of Ai by vi;j where j 2 f1; 2; : : : ; deg.Ai/g is taken modulo deg.Ai/. Let
wi;j be the nearest point projection of ui onto the edge of Ai with endpoints vi;j

and vi;jC1 , where the nearest point projection is defined as above. Each face of a
nonobtuse polyhedron is a nonobtuse polygon, so the nearest point projection of any
point in Ai to an edge Ai actually lies in Ai . See Figure 4.

ui

vi;1

vi;2

vi;3

vi;4

vi;5

vi;6

wi;1

wi;2

wi;3

wi;4

wi;5

wi;6

ui

vi;1

vi;2

vi;3

vi;4

vi;5

wi;1 wi;2

wi;3
wi;4

Figure 4: The figure on the left shows the case where ui is in the interior of
a face. The figure on the right is the case where ui is in the interior of an
edge.
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Define �.i; j / to be the tetrahedron with vertices v0 , ui , wi;j and vi;j and �0.i; j / to
be the tetrahedron with vertices v0 , ui , wi;j and vi;jC1 . In the case where ui coincides
with wi;j , both �.i; j / and �0.i; j / will be degenerate tetrahedra. Let I be the set of
.i; j / such that �.i; j / and �0.i; j / are nondegenerate. For each .i; j /¤ .i 0; j 0/ 2 I ,
Int.�.i; j //\ Int.�.i 0; j 0// D ∅ and Int.�0.i; j //\ Int.�0.i 0; j 0// D ∅. Also, the
interior of each � is disjoint from the interior of each �0 . Then

P D
[

.i;j/2I

�
�.i; j /[�0.i; j /

�
:

This decomposition of P into tetrahedra will be analyzed to prove each of the upper
bounds in Theorems 2.2, 2.3, 2.4 and 2.6. The following technical lemma is needed. It
follows directly from the fact that the Lobachevsky function is concave down on the
interval Œ0; �=2�.

Lemma 5.1 Suppose �!˛ D .˛1; : : : ; ˛M / where ˛i 2 Œ0; �=2�. Let

f .�!˛ /D
1

2

MX
iD1

ƒ.�=2�˛i/

and g.�!˛ /D˛1C� � �C˛M . Then the maximum value of f .�!˛ / subject to the constraint
g.�!˛ /D C for some constant C 2 Œ0;M�=2� occurs for �!˛ D .C=M; : : : ;C=M /.

The next proposition gives the upper bound in Theorem 2.2.

Proposition 5.2 If P is an ideal �=2–equiangular polyhedron with N vertices, then

vol.P/� .N � 4/ �
V8

2
;

where V8 is the volume of the regular ideal hyperbolic octahedron. Equality is achieved
when P is the regular ideal hyperbolic octahedron.

Proof Decompose P as above. Suppose that v D vi;j is a vertex of P which is not
contained in a face containing v0 . Then v is contained in exactly eight tetrahedra of
the decomposition, say T1; : : : ;T8 . Suppose that Tl coincides with �.m; n/ in the
decomposition. Then Tl is a tetrahedron with 2 ideal vertices, v0 and v , and two
finite vertices, um and wm;n . The dihedral angles along the edges between v and
um , between um and wm;n and between wm;n and v0 are all �=2. Suppose that the
dihedral angle along the edge between v and v0 is ˛l . Then the dihedral angles along
the remaining two edges are �=2�˛l . See Figure 5.
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um

wm;n

˛l
�
2

�
2
�˛l

v

Figure 5: One of the Tl

The volume of Tl is given by ƒ.�=2�˛l/=2, where the Lobachevsky function, ƒ, is
defined as

ƒ.�/D�

Z �

0

log j2 sin.t/j dt:

Therefore, the volume contributed by the tetrahedra adjacent to the vertex v is a function
of �!˛ D .˛1; ˛2; : : : ; ˛8/:

f .�!˛ /D
1

2

8X
lD1

ƒ.�=2�˛l/:

The ˛l must sum to 2� . The maximum of f .�!˛ /, subject to this constraint, oc-
curs when �!˛ D .�=4; �=4; : : : ; �=4/, by Lemma 5.1. Gluing 16 copies of Tl with
˛l D �=4 together appropriately yields a regular ideal hyperbolic octahedron. Hence
f .�=4; �=4; : : : ; �=4/D V8=2.

Only two tetrahedra in the decomposition meet each of the four vertices which share
an edge with v0 . A similar analysis as above shows that the volume contributed by the
tetrahedra at each of these four vertices is no more than V8=8.

Therefore, accounting for the vertex, v0 , at infinity and the fact that only V8=8 is
contributed by each of the tetrahedra at the vertices adjacent to v0 ,

vol.P/� .N � 1/ �
V8

2
� 4 � 3

V8

8
D .N � 4/ �

V8

2
:

Equality is clearly achieved when P is the regular ideal hyperbolic octahedron.

Algebraic & Geometric Topology, Volume 9 (2009)



Volume estimates for equiangular hyperbolic Coxeter polyhedra 1241

The proof of the upper bound in Theorem 2.6 is similar to the previous argument.

Proposition 5.3 If P is an ideal �=3–equiangular polyhedron with N vertices, then

vol.P/� .3N � 14/ �
V3

2
;

where V3 is the volume of the regular ideal hyperbolic tetrahedron. Equality is achieved
when P is the regular ideal hyperbolic cube.

Proof Decompose P as described at the beginning of this section. Each vertex of P
which is not contained in a face containing v0 is a vertex of exactly six tetrahedra of the
decomposition. Lemma 5.1 implies that the sum of the volumes of the six tetrahedra
around such a vertex is no more than 3V3=2.

If v1 is one of the three vertices adjacent to v0 , then v is a vertex of two tetrahedra,
T1 and T2 , say. The sum of the volumes of T1 and T2 is at most V3=3 when
˛1 D ˛2 D �=6, again by Lemma 5.1.

By Corollary 4.2 each face containing v0 has degree at least 4. If v2 is a vertex of
such a face which does not share an edge with v0 , then v2 is a vertex of four tetrahedra
of the decomposition of P . See Figure 6.

v2
T3

T4

T5

T6

Figure 6: A view of v2 as seen from v0 . The solid lines are edges of P , and
the dashed lines are edges of tetrahedra which are not also edges of P .

The link of v2 intersected with each of Ti , i D 3; 4 is a Euclidean triangle with
angles �=2, �=3 and ˛i . Hence ˛3 D ˛4 D �=6. Using Lemma 5.1 and the fact that
˛5C ˛6 D 2�=3, the sum of the volumes of these four tetrahedra is seen to have a
maximum value of 5V3=6.

The upper bound is computed by assuming that the volume contributed by the tetrahedra
containing each vertex other than v0 is 3V3=2 and subtracting the excess for each of
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the three vertices which share an edge with v0 and for the three vertices described in
the previous paragraph:

Vol.P/�
�
.N � 1/

3

2
� 3

�
7

6

�
� 3

�
2

3

��
�V3 D

�
3N � 14

3

�
�
3V3

2
:

The regular ideal hyperbolic cube has N D 8 and volume 5V3 .

The proofs of Theorem 2.3 and Theorem 2.4 require different methods than the previous
two theorems because Lemma 5.1 does not apply. The volume of the tetrahedra into
which P is decomposed is given by the sum of three Lobachevsky functions, so the
simple Lagrange multiplier analysis fails. The next lemma will play the role of Lemma
5.1 in what follows.

Lemma 5.4 The regular ideal hyperbolic cube has largest volume among all ideal
polyhedra with the same combinatorial type.

Proof Any ideal polyhedron, Q, with the combinatorial type of the cube can be
decomposed into five ideal tetrahedra as follows: Let v1; v2; v3; v4 be a collection
of vertices of Q so that no two share an edge. The five ideal tetrahedra consist of
the tetrahedron with vertices v1; v2; v3 and v4 , and the four tetrahedra with vertices
consisting of vi along with the three adjacent vertices, for i D 1; 2; 3; 4.

Then since the regular ideal tetrahedron is the ideal tetrahedron of maximal volume,
vol.Q/ � 5V3 . The regular ideal hyperbolic cube is decomposed into five copies
of the regular ideal tetrahedron when the above decomposition is applied, so has
volume 5V3 .

The next proposition proves the upper bound in Theorem 2.3.

Proposition 5.5 If P is a �=2–equiangular compact hyperbolic polyhedron with N

vertices, then

vol.P/ < .N � 10/ �
5V3

8
:

Proof Decompose P into tetrahedra as described at the beginning of this section for
some choice of v0 . The volume of P will be bounded above by considering tetrahedra
with one ideal vertex. The reason for using tetrahedra with an ideal vertex to estimate
the volume of a compact polyhedron is that

max
v2Vert.P/

d.v0; v/
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can be made arbitrarily large by choosing polyhedra P with a large enough number of
vertices.

Suppose that v D vi;j is a vertex of P which is not contained in a face containing v0 .
The vertex v is contained in six tetrahedra of the decomposition. Consider S , the
union of the six triangular faces of these tetrahedra which are contained in the faces
of the polyhedron which contain v . Let yv be the point at infinity determined by the
geodesic ray emanating from v and passing through v0 . Define T to be the cone of S

to yv .

The cone, T , is an octant of an ideal cube, Q. By Lemma 5.4, vol.Q/� 5V3 . Then
since vol.Q/D 8 vol.T /, vol.T /� 5V3=8.

By Andreev’s theorem, each face of P must be of degree at least 5. Hence, the three
faces of P containing v0 contain at least 10 distinct vertices of P , so there are at most
N � 10 vertices that do not share a face with v0 . Therefore the volume of P satisfies

vol.P/ < .N � 10/ �
5V3

8
:

Proposition 5.6 combines the techniques of Proposition 5.2 and Proposition 5.5 and
gives the upper bound in Theorem 2.4.

Proposition 5.6 If P is a �=2–equiangular hyperbolic polyhedron with N1� 1 ideal
vertices and NF finite vertices, then

vol.P/ < .N1� 1/ �
V8

2
CNF �

5V3

8
:

Proof Assign to one of the ideal vertices the role of v0 in the decomposition described
at the beginning of this section. Then each ideal vertex of P which is not contained in
a face of P containing v0 will be a vertex of eight tetrahedra in the decomposition.
These tetrahedra contribute no more than V8=2 to the volume of P , by Proposition
5.2. Each finite vertex which is not contained in a face containing v0 is a vertex of six
tetrahedra. The volume contributed by these is no more than 5V3=8 by Lemma 5.4
and the proof of Proposition 5.5. Putting this all together completes the proof.

6 Sequences of polyhedra that realize the upper bound esti-
mates

In this section, it is proved that the upper bounds in Theorems 2.2, 2.3 and 2.6 are asymp-
totically sharp. Results will first be established about the convergence of sequences of
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circle patterns in the plane and about the convergence of volumes of polyhedra which
correspond to these circle patterns.

Define a disk pattern to be a collection of closed round disks in the plane such that no
disk is the Hausdorff limit of a sequence of distinct disks and so that the boundary of
any disk is not contained in the union of two other disks. Define the angle between two
disks to be the angle between a clockwise tangent vector to the boundary of one disk
at an intersection point of their boundaries and a counterclockwise tangent vector to
the boundary of the other disk at the same point. Suppose that D is a disk pattern such
that for any two intersecting disks, the angle between them is in the interval Œ0; �=2�.
Define G.D/ to be the graph with a vertex for each disk and an edge between any two
vertices whose corresponding disks have nonempty interior intersection. The graph
G.D/ inherits an embedding in the plane from the disk pattern. Identify G.D/ with its
embedding. A face of G.D/ is a component of the complement of G.D/. Label the
edges of G.D/ with the angles between the intersecting disks. The graph G.D/ along
with its edge labels will be referred to as the labeled 1–skeleton for the disk pattern D .
A disk pattern D is said to be rigid if G.D/ has only triangular and quadrilateral faces
and each quadrilateral face has the property that the four corresponding disks of the
disk pattern intersect in exactly one point. See He [11] for more details on disk patterns.

Consider the path metric on G.D/ obtained by giving each edge of G.D/ length 1.
Given a disk d in a disk pattern D , the set of disks corresponding to the ball of radius n

in G.D/ centered at the vertex corresponding to d will be referred to as n generations
of the pattern about d . Given disk patterns D and D0 and disks d 2D and d 0 2D0 ,
then .D; d/ and .D0; d 0/ agree to generation n if there is a label preserving graph
isomorphism between the balls of radius n centered at the vertices corresponding to d

and d 0 . The following proposition is a slight generalization of the Hexagonal Packing
Lemma in [16].

Proposition 6.1 Let c1 be a disk in an infinite rigid disk pattern D1 . For each
positive integer n, let Dn be a rigid finite disk pattern containing a disk cn so that
.D1; c1/ and .Dn; cn/ agree to generation n. Then there exists a sequence sn de-
creasing to 0 such that the ratios of the radii of any two disks adjacent to cn differ
from 1 by less than sn .

Proof With Lemma 7.1 from [11] playing the role of the ring lemma in [16], the proof
runs exactly the same. The length–area lemma generalizes to this case with no change
and any reference to the uniqueness of the hexagonal packing in the plane should be
replaced with Rigidity Theorem 1.1 from [11].

Algebraic & Geometric Topology, Volume 9 (2009)



Volume estimates for equiangular hyperbolic Coxeter polyhedra 1245

A simply connected disk pattern is a disk pattern so that the union of the disks is
simply connected. Disk patterns arising from finite volume hyperbolic polyhedra will
all be simply connected, so all disk patterns will be implicitly assumed to be simply
connected. If for a simply connected disk pattern D , all labels on G.D/ are in the
interval .0; �=2�, Andreev’s theorem implies that each face of G.D/ will be a triangle
or quadrilateral. An ideal disk pattern, D , is one where the labels of G.D/ are in
the interval .0; �=2� and the labels around each triangle or quadrilateral in G.D/ sum
to � or 2� respectively. Ideal disk patterns correspond to ideal polyhedra. A nonideal
disk pattern, D , is one where G.D/ has only triangular faces and the sum of the
labels around each face is greater than � . These disk patterns correspond to compact
polyhedra.

Ideal disk patterns and their associated polyhedra will be dealt with first. The analysis
for nonideal disk patterns is slightly different and will be deferred until after the proofs
of the remaining claims in Theorem 2.2 and Theorem 2.6. The upper half-space model
for H3 will be used here. For each disk d in the circle pattern, let S.d/ be the geodesic
hyperbolic plane in H3 bounded by the boundary of d .

Suppose c is a disk in D which intersects l neighboring disks, d1; : : : ; dl . In the case
of an ideal disk pattern, the intersection of S.c/ with each of the S.di/ is a hyperbolic
geodesic. These l geodesics bound an ideal polygon, p.c/�H3 . If necessary, choose
coordinates so that the point at infinity is not contained in c . Cone p.c/ to the point at
infinity and denote the ideal polyhedron thus obtained by C.p.c//.

Lemma 6.2 Suppose that Dn and D1 are simply connected, ideal, rigid, disk patterns
such that .Dn; cn/ and .D1; c1/ satisfy Proposition 6.1. Then

lim
n!1

vol.C.p.cn///D vol.C.p.c1///

where C.p.c1// is the cone on the polygon determined by the disk c1 . Moreover,
there exists a bounded sequence 0 � �n � K < 1 converging to zero such that
jvol.C.p.cn///� vol.C.p.c1///j � �n .

Proof Suppose the dihedral angle between S.cn/ and the vertical face which is a cone
on the intersection of S.cn/ and S.di;n/ is ˛n

i and that the corresponding dihedral
angles in C.p.c1// are ˛1i . Then by Chapter 7 of [19],

vol.C.p.cn///D

lX
iD1

ƒ.˛n
i /;

where p.cn/ has degree l . For each i , ˛n
i converges to ˛1i because ˛n

i is a continuous
function of the angle between cn and di;n and the radii of the two disks, which converge
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to the radii of the corresponding disks in the infinite packing by Proposition 6.1. The
function ƒ is continuous, so convergence of the ˛ ’s implies the first statement of
the lemma. The second statement is a consequence of the first and the fact that
vol.C.p.cn/// is finite for all n including 1.

The remaining claims in Theorem 2.2 and Theorem 2.6 can now be proved. First the
following proposition is proved:

Proposition 6.3 There exists a sequence of ideal �=2–equiangular polyhedra Pi with
Ni vertices such that

lim
i!1

vol.Pi/

Ni
D

V8

2
:

Proof Let D1 be the infinite disk pattern defined as

D1 D
[

d.p;q/;

where the union ranges over all .p; q/ 2Z2 such that both p and q are even or both p

and q are odd, and d.p;q/ is the disk of radius 1 centered at the point .p; q/. Consider
the ideal hyperbolic polyhedron with infinitely many vertices, P1 , corresponding to
D1 . This polyhedron has all dihedral angles equal to �=2. Applying the decomposition
into tetrahedra described in the proof of Proposition 5.2, it is seen that the sum of
the volumes of the tetrahedra meeting each vertex is exactly V8=2. A sequence of
polyhedra, P2k , which have volume-to-vertex ratio converging to that of P1 will be
constructed.

For each even natural number 2k , k � 3, consider the set of lines in the plane
L2k D f.x;y/ 2 R2 j y D 0; y D 2k, or y D˙xC z; z 2 Zg. Now let P2k be the
hyperbolic polyhedron with 1–skeleton given by

P.1/
2k
D f.x;y/ 2L2k j 0� y � 2kg=f.x;y/� .xC 2k;y/g

and all right angles. See Figure 7 for an illustration of P6 . The existence of such a
hyperbolic polyhedron is guaranteed by Andreev’s theorem. Equivalently, there is a
simply connected rigid disk pattern, D2k , in the plane with each disk corresponding
to a face and right angles between disks which correspond to intersecting faces. The
vertices and faces of P2k will be referred to in terms of the .x;y/ coordinates of the
corresponding vertices and faces of L2k .

The polyhedra P2k will prove the proposition. The volume of P2k is expressed as
the sum of volumes of cones on faces and Lemma 6.2 is used to analyze the limiting
volume-to-vertex ratio.
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Choose coordinates for the upper half-space model of H3 so that the vertex .0; 0/ of
P2k is located at infinity. Then the volume of P2k may be written

vol.P2k/D
X

d

vol.C.p.d///;

where the sum is taken over all faces d which do not meet the vertex .0; 0/. Using
Lemma 6.2, the volume of each C.p.d// can be estimated in terms of the number of
generations of disks surrounding d which agree with D1 .

Fix a disk d1 2 D1 . For each m 2 Z, m � 0, define Fm to be the set of disks
d 2D2k for which .D2k ; d/ and .D1; d1/ agree to generation m, but do not agree
to generation m C 1. The 2k faces of P2k centered at the points .i C 1=2; k/,
0� i � 2k � 1 as well as the 4k faces which share an edge with them except for the
face centered at .0; k � 1=2/ make up Fk�1 . Thus

jFk�1j D 6k � 1:

The set Fk�2 consists of the face centered at .0; k�1=2/ along with the faces centered
at the 8k�1 points with coordinates .iC1=2; k˙1/ and .i; k˙3=2/ for 0� i �2k�1,
excluding the face centered at .0; k�3=2/. In general, for 2� l � k�1, Fk�l consists
of the face centered at .0; k�.2.l�1/�1/=2/ along with the faces centered at the 8k�1

points with coordinates .iC1=2; k˙.l�1// and .i; k˙.2l�1/=2/ for 0� i � 2k�1,
excluding the face centered at .0; k � .2l � 1/=2/. Hence for 2� l � k � 1,

jFk�l j D 8k:

See Figure 7 for an example.

The polyhedron P2k has 8k2C 2kC 2 faces. In the previous paragraph, it was found
that ˇ̌̌̌ k�1[

lD1

Fl

ˇ̌̌̌
D 8k2

� 10k � 1:

The remaining 12kC 3 faces consist of the following: 4 vertical faces which do not
contribute to the volume, one 2k –gon, 4k � 2 triangular faces and 8k rectangular
faces in F0 . The maximum value of the Lobachevsky function, ƒ.�/, is attained for
� D �=6 [19]. Hence, the formula for the volume of a cone on an ideal polygon given
in the proof of Lemma 6.2 implies that the volume of the cone on the 2k –gon is less
than or equal to 2kƒ.�=6/. Similarly, each of the remaining triangular and rectangular
faces have volume less than or equal to 4ƒ.�=6/. This implies that the leftover faces
have cone volume summing to a value L� 14kƒ.�=6/.

Algebraic & Geometric Topology, Volume 9 (2009)



1248 Christopher K Atkinson

.0; 0/

1 1 1 1 1 1

2 2 2 2 2 2

1 2 2 2 2 2

1 1 1 1 1

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

Figure 7: Identify the two vertical sides to obtain P6 . A face labeled by
an integer n has n generations of disks about it. Unlabeled faces have 0

generations about them.

The volume of the cone to infinity of any face in D1 is 4ƒ.�=4/D V8=2. By Lemma
6.2, there exists a real-valued, positive function, ım , on Fm such that for each face
f 2 Fm , 0 � ım.f / � �m and vol.C.f //D V8=2˙ ım.f /. Therefore, the volume
of P2k can written as

vol.P2k/D

k�1X
lD1

X
f 2Fl

�
V8

2
˙ ıl.f /

�
CL:

Using the analysis of the Fm from above, expand the sums and collect terms to get

vol.P2k/D .8k2
� 10k � 1/

V8

2
C

k�1X
lD1

X
f 2Fl

.˙ıl.f //CL:

The polyhedron P2k has N2k D 8k2C 2k vertices. Therefore

lim
k!1

8k2� 10k � 1

N2k

V8

2
D

V8

2
:

It remains to show that the ratio of the last two summands to the number of vertices
converges to zero. Set xıl Dmaxf 2Fl

ıl.f /. Then

lim
k!1

ˇ̌Pk�1
lD1

P
f 2Fl

.˙ıl.f //
ˇ̌

N2k

� lim
k!1

�
.6k � 1/xık�1

N2k

C
8k
Pk�2

lD1
xıl

N2k

�
D 0
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because xıl ! 0 as l!1. Also since L< 14kƒ.�=6/,

lim
k!1

L

N2k

D 0:

Therefore, lim
k!1

vol.P2k/

N2k

D
V8

2
:

The argument to prove Proposition 6.3 easily adapts to prove the following:

Proposition 6.4 There exists a sequence of ideal �=3–equiangular polyhedra Pi with
Ni vertices such that

lim
i!1

vol.Pi/

Ni
D

3V3

2
:

Proof Consider the regular hexagon H in the plane formed by the vertices .0; 0/,
.1; 0/, .3=2;

p
3=2/, .1;

p
3/, .0;

p
3/ and .�1=2;

p
3=2/. Let G be the lattice of

translations generated by f.x;y/ 7! .xC 3;y/g and f.x;y/ 7! .xC 3=2;yC
p

3=2/.
Now define T to be the orbit of the hexagon H under the action of G on the plane.
This orbit is a tiling of the plane by regular hexagons. As in the previous construction,
define

L2k D f.x;y/ 2R2
j y D 0; y D 2k

p
3, or .x;y/ lies on a vertex or edge of T g:

Let Q2k be the hyperbolic polyhedron with 1–skeleton

Q.1/
2k
D f.x;y/ 2L2k j 0� y � 2k

p
3g=f.x;y/� .xC 3k;y/g

and all dihedral angles �=3. This is a polyhedron with 4k2 C k C 2 faces and
N2k D 8k2 C 2k vertices. Let D2k be the associated simply connected rigid disk
pattern and D1 to be the infinite circle pattern with G.D1/ equal to a tiling of the
plane by equilateral triangles with each edge labeled �=3.

As in the proof of Proposition 6.3, choose coordinates so that the vertex at .0; 0/ is
at infinity. Recall that for a fixed choice of d1 2D1 , Fm is defined to be the set of
disks d 2D2k for which .D2k ; d/ and .D1; d1/ agree to generation m, but do not
agree to generation mC1. The set Fk�1 consists of 3k�1 faces, while the remaining
Fk�l for 2� l � k�1 consist of 4k faces. Again, the faces not contained in Fk�l for
1� l � k � 1 have cone volume summing to a value L bounded above by a constant
multiple of k where the bound is independent of k . The volume of the cone to infinity
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.0; 0/ .1; 0/

1 1 1

2 2 2

1 2 2

1 1

1 1 1

2 2 2

1 1 1

Figure 8: Identify the left and right sides to get Q6 . The labeling is as in the
previous figure.

of any face in the regular hexagonal circle pattern is 6ƒ.�=6/D 3V3 . There exists a
function, ıl , with the same properties as above. The volume of Q2k is

vol.Q2k/D

k�1X
lD1

X
f 2Fl

.3V3˙ ıl.f //CL:

The argument finishes exactly as the all right-angled case to give

lim
k!1

vol.Q2k/

N2k

D
3V3

2
:

To finish the proof of Theorem 2.3, a minor modification to Lemma 6.2 is made.

Recall that for a disk pattern D , G.D/ is the graph with a vertex for each disk and an
edge connecting two vertices which have corresponding disks with nonempty interior
intersection. Suppose that D is a nonideal disk pattern and that c is a disk which
intersects l neighboring disks, d1; : : : ; dl . The intersection of S.c/ with each of
the S.di/ is a finite length geodesic segment. The union of the l geodesic segments
along with the disk bounded by them in S.c/ is a polygon p.c/. Let x0 2H3 be a
point which is not contained in S.c/. Denote by C.p.c/;x0/ the cone of p.c/ to the
point x0 . The cone to the point at infinity in the upper half-space model of H3 will be
denoted by C.p.c/; f1g/.

Let c be a disk in a simply connected, nonideal, finite disk pattern, D , with associated
polyhedron P . Suppose cmax realizes the quantity

max
c0

dG.D/.c; c
0/:
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Define a cut point for c to be any vertex of p.cmax/.

Lemma 6.5 Suppose that Dn and D1 are simply connected, nonideal, rigid, disk
patterns, such that .Dn; cn/ and .D1; c1/ satisfy Proposition 6.1 and D1 fills the
entire plane. Suppose also that xn is a cut point for cn in Dn . Then

lim
n!1

vol.C.p.cn/;xn//D vol.C.p.c1/; f1g//:

Moreover, there exists a bounded sequence 0� �n �K <1 converging to zero such
that jvol.C.p.cn/;xn//� vol.C.p.c1/; f1g//j � �n .

Proof Note that for any choice of points yn 2 S.cn/, d.xn;yn/!1 as n!1.
Also, since D1 fills the entire plane, the distance measured in G.Dn/ from cn to
a disk c0n such that S.c0n/ contains xn goes to infinity. Hence as n goes to infinity,
xn approaches the point at infinity, so the compact cone C.p.cn/;xn/ approaches the
infinite cone C.p.c1/; f1g/. Therefore it suffices to show that the volume of the
compact cones approaches that of the infinite cone.

A 3–dimensional hyperbolic orthoscheme is a hyperbolic tetrahedron with a sequence of
three edges v0v1 , v1v2 and v2v3 such that v0v1?v1v2?v2v3 . See Figure 9. Suppose
that the degree of p.cn/ is an . The cone, C.p.cn/;xn/, can be decomposed into 2an

orthoschemes by the procedure described at the beginning of Section 5.

˛nˇn

n

v0

v1

v2

v3

Figure 9: A compact orthoscheme, T .˛n; ˇn; n/ . The unlabeled edges have
dihedral angle �=2 .
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The volume of one of the compact orthoschemes, T .˛n; ˇn; n/ determined by angles
˛n , ˇn and n , as shown in Figure 9, is given by

vol.T .˛n; ˇn; n/D
1

4

�
ƒ.˛nC ın/�ƒ.˛n� ın/Cƒ.nC ın/�ƒ.n� ın/

�ƒ

�
�

2
�ˇnC ın

�
Cƒ

�
�

2
�ˇn� ın

�
C 2ƒ

�
�

2
� ın

��
;

0� ın D arctan
p
��n

cos˛n cos n
<
�

2
;where

�n D sin2 ˛n sin2 n� cos2 ˇn:and

This is due to Lobachevsky. See, for example, page 125 of [4].

Similarly, the cone C.p.c1/; f1g/ can be decomposed into orthoschemes of the form
T .˛1; �=2�˛1; 1/ with one ideal vertex. The volume of this orthoscheme is given
by

vol.T .˛1; �=2�˛1; 1/D
1

4

�
ƒ.˛1C 1/Cƒ.˛1� 1/C 2ƒ.�=2�˛1/

�
:

As n!1, �n!� sin2 ˛n cos2 n , so ın! ˛n . Therefore the sequence of volumes
of the compact orthoschemes converges to that of the orthoscheme with one ideal
vertex. Summing over all orthoschemes in the decomposition proves the lemma.

The next proposition will complete the proof of Theorem 2.3.

Proposition 6.6 There exists a sequence of compact �=2–equiangular polyhedra Pi

with Ni vertices such that

lim
i!1

vol.Pi/

Ni
D

5V3

8
:

Proof Define L0
2k

to be L2k as in the proof of Proposition 6.4 along with the tripods
as shown in Figure 10. The tripods must be added to remove the degree 4 faces. Let
R2k be the polyhedron with 1–skeleton

R.1/
2k
D f.x;y/ 2L02k j 0� y � 2k

p
3g=f.x;y/� .xC 3k;y/g

and all dihedral angles equal to �=2. For each k > 2, this can be realized as a compact
hyperbolic polyhedron by Andreev’s theorem. The rest of the proof of this proposition
mirrors the proof of Proposition 6.4 exactly, using Lemma 6.5 in place of Lemma
6.2.
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.0; 0/ .1; 0/

1 1 1

2 2 2

1 1 1

2 2 2

1 2 2

Figure 10: Identify the left and right sides to get R6 . The labeling is as in
the previous figures.
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