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Intrinsically linked graphs in projective space
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We examine graphs that contain a nontrivial link in every embedding into real pro-
jective space, using a weaker notion of unlink than was used in Flapan, et al [5].
We call such graphs intrinsically linked in RP 3 . We fully characterize such graphs
with connectivity 0 , 1 and 2 . We also show that only one Petersen-family graph is
intrinsically linked in RP 3 and prove that K7 minus any two edges is also minor-
minimal intrinsically linked. In all, 597 graphs are shown to be minor-minimal
intrinsically linked in RP 3 .

05C10; 57M15

1 Introduction

We can represent knots in RP3 as closed curves or unions of arcs in the closed 3–ball,
D3 , such that the endpoints of the arcs lie on @D3 . Because RP3 can be obtained
from D3 by identifying antipodal points of @D3 , the set of endpoints of the arcs must
be symmetric over the origin. Fix an arbitrary great circle as the equator. Using ambient
isotopy, we can move the arcs so that all of the endpoints lie on the equator in general
position. Then, the arcs can be projected onto the disc bounded by the equator with
over- and under-crossings, as described by Drobotukhina [4] and Manturov [7].

Projective space has a nontrivial first homology group, H1.RP3/ Š Z=2Z. The
generator for the group, g , is the cycle originating from the line in D3 that runs
between the north and south poles. Mroczkowski [9] has shown that every knot in
RP3 can be transformed into either the trivial cycle or g by crossing changes and
Reidemeister moves on an RP2 projection of the knot. This suggests that there exist
two nonequivalent unknots in RP3 . For the rest of the paper, we will refer to cycles
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that can be “unknotted” into a cycle homologous to g as 1–homologous cycles and
cycles that can be “unknotted” into a null-homologous cycle as 0–homologous cycles.

In R3 , a two component link L1 [L2 is the unlink if and only if L1 and L2 are
both the unknot and there exist A;B � R3 , both homeomorphic to B3 , such that
A\B D∅, L1 � A and L2 � B . Because g cannot be contained within a sphere,
using this definition in RP3 gives us a unique unlink consisting of two 0–homologous
unknots. However, a 0–homologous unknot and a 1–homologous unknot in RP3 may
be drawn in a projection onto RP2 with no crossings. On the other hand, two disjoint
1–homologous unknots will always cross. Consequently, two reasonable definitions
for unlinks in RP3 exist.

Let M be a 3–manifold.

Definition 1 Let L1 [L2 be a two-component link in M . If L1 and L2 are both
unknots and there exist A;B �M , both homeomorphic to B3 , such that A\B D∅,
L1 �A and L2 � B , then L1 and L2 are strongly unlinked, and L1[L2 is called
the two-component unlink.

Definition 2 Let L1 [L2 be a two-component link in M . If L1 and L2 are both
unknots and there exists A�M homeomorphic to B3 such that L1�A and L2�AC ,
then L1 and L2 are unlinked, and L1[L2 is a two-component unlink.

A two-component unlink will also be referred to as the trivial link, and a two-component
link is nontrivial if it is not the two-component unlink.

Notice that Definition 1 and Definition 2 are equivalent when M Š R3 . Similarly,
we can define strongly splittable and splittable by removing the condition that both
components are unknots.

Definition 3 Let G be a graph. If every embedding of G into M contains a pair of
cycles that form a nontrivial two-component link, then G is intrinsically linked in M .

Graphs that are intrinsically linked in R3 have been completely classified through the
work of Conway and Gordon [3], Sachs [15] and Roberston, Seymour and Thomas [14].
They have shown that a graph is intrinsically linked in R3 if and only if it contains
one of the Petersen-family graphs (the 7 graphs obtained from K6 by a sequence of
4�Y and Y �4 exchanges) as a minor.

Flapan, et al [5] classifies the set of all graphs that are intrinsically linked when
using Definition 1. The complete minor-minimal set for intrinsic linking in any 3–
manifold, M , is the same as in R3 —namely, the Petersen-family graphs—when the
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two-component unlink is defined to be the union of cycles which bound discs that do
not intersect. In RP3 , their definition coincides with Definition 1.

However, K6 embeds in the projective plane, as shown in Figure 1, so there exists
an embedding of K6 into projective space for which every two-component link is an
unlink, as given by Definition 2. Thus, with this definition, K6 is not intrinsically
linked. For the remainder of this paper, unless otherwise noted, trivial and nontrivial
links will be defined using Definition 2.

v1

v2

v3
v4

v4

v5

v5

v6

v6

Figure 1: An embedding of K6 into RP 2 . The bounding circle is identified
using the antipodal map to obtain RP 3 .

In this paper, we will prove the following theorems.

Theorem 4 Let P be the set of all Petersen-family graphs excluding the graph ob-
tained from K4;4 by removing an edge. Let A;B;G be graphs such that G has k –
connectivity with vertex cut set fv1; : : : ; vkg, GDA[B and V .A\B/Dfv1; : : : ; vkg.

(1) If k D 0 or 1, then G is minor-minimal intrinsically linked in RP3 if and only
if A;B 2 P .

(2) If k D 2, then G is minor-minimal intrinsically linked in RP3 if and only if
A0;B0 2 P , E.A/DE.A0/ n f.v1; v2/g and E.B/DE.B0/ n f.v1; v2/g.

The theorem classifies intrinsically linked graphs with low connectivity. The first
statement says that a graph that is disconnected (or with 1–connectivity) is intrinsically
linked if and only if it is the disjoint union (or union along a vertex) of two Petersen-
family graphs. The second statement is analogous for graphs with 2–connectivity, but
the edge between the two vertices along which the Petersen-family graphs are joined is
removed.
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Theorem 5 The graph obtained by removing an edge from K4;4 is minor-minimal
intrinsically linked in RP3 .

Theorem 6 The graphs obtained from K7 by removing any two edges are minor-
minimal intrinsically linked in RP3 .

2 Definitions and notation

Before proceeding to our results, we begin with some elementary notation and defini-
tions.

Definition 7 A graph G D .V;E/ is a set of vertices V .G/ and edges E.G/, where
an edge is an unordered pair .v1; v2/ with v1; v2 2 V .

Definition 8 Let G be a graph and v1; v2; : : : ; vn 2 V .G/ and

.v1; v2/; .v2; v3/; : : : ; .vn�1; vn/; .vn; v1/ 2E.G/

such that vi ¤ vj for i ¤ j . Then, the sequences of vertices v1; v2; : : : ; vn and
edges .v1; v2/; .v2; v3/; : : : ; .vn�1; vn/; .vn; v1/ is an n–cycle in the graph G , denoted
v1v2 : : : vn .

In an abuse of notation, we will also refer to the image of a cycle v1v2 : : : vn in an
embedding of the graph G as the cycle v1v2 : : : vn , when the distinction is clear.

The following notion of a graph minor allows us to specify when one graph contains
another graph within it.

Definition 9 Let G be a graph. Suppose H is a graph such that H can be obtained
from G by a sequence of the following three operations:

(1) removal of an edge

(2) removal of a vertex

(3) contraction along an edge.

Then H is called a minor of G , written H � G . If H � G but H ¤ G , then H is
called a proper minor of G , written H <G .

If H �G , we also call G an expansion of H .
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Nešetřil and Thomas [10] provide the following result for graph minors in R3 , and
the general result in arbitrary 3–manifolds can be proved by noticing that expansions
preserve isotopy classes of cycles and links.

Proposition 10 (J Nešetřil and R Thomas [10]) Let H be a graph that is intrinsically
linked in a 3–manifold M . If G is a graph such that H �G , then G is also intrinsically
linked in M .

Definition 11 A graph G is minor-minimal intrinsically linked in M if G is intrinsi-
cally linked in M and no proper minor of G is also intrinsically linked in M .

In R3 , the set of all minor-minimally intrinsically linked graphs is given by the seven
Petersen-family graphs. These graphs are obtained from K6 by 4� Y and Y �4

exchanges, where a 4�Y exchange is the removal of three edges .v1; v2/, .v1; v3/,
.v2; v3/ and the addition of a vertex v along with the edges .v; v1/, .v; v2/, .v; v3/.
A Y �4 exchange is the reverse operation.

As a result of Robertson and Seymour’s proof of the Minor Theorem [13], the set
of all minor-minimally intrinsically linked graphs in M is finite. This means that a
full classification of minor-minimally intrinsically linked graphs in RP3 is possible.
Because projective space has a simple first homology group, it may not be unrealistic
to find a complete characterization for intrinsic linking.

3 Linked graphs with low connectivity

Exactly six of the seven Petersen-family graphs have embeddings into RP2 , as shown
by Glover, et al [6] and Archdeacon [1], and thus have linkless embeddings into RP3 .
We later show that the graph obtained by removing an edge from K4;4 , which does
not have a projective planar embedding, is in fact intrinsically linked in RP3 .

Although not all Petersen-family graphs are intrinsically linked in RP3 , we can use
their intrinsic linking in R3 to deduce some facts about embeddings with no nontrivial
two-component links.

Lemma 12 Let P be a Petersen-family graph and v be a vertex of P . If every cycle
of Pnfvg is 0–homologous in an embedding f W P ! RP3 , then f .P / contains a
nontrivial link.

Proof Let L1[L2 be a link with a projection onto a disc representing RP2 such that
L1 is affine and does not cross the boundary of the projection and L2 is 1–homologous.
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Take a point p of L2 that intersects the boundary of the projection (the line at infinity).
Let U be a sufficiently small neighborhood of p in the projection such that L1 does
not intersect U and L2 intersects @U in exactly two points, p0 and q0 . Connect p0

and q0 with a line segment s such that in the projection, s crosses over every strand,
and s does not intersect the line at infinity. Define L0

2
as the cycle consisting of s

and the segment of L2 that is not in U . Then, L0
2

is a 0–homologous cycle such that
the linking number of L1 [L2 is the same as the linking number of L1 [L0

2
(see

Figure 2).

p p0

N
L2

L1

q0 p

(a) p0 and q0 in a small neigh-
borhood of p

p p0

N s

L1

q0 pL2

(b) s crosses over all other arcs

p0

L0
2

L1

q0

(c) L0
2

constructed from L2

Figure 2: Conversion of a link consisting of an affine knot and 1–homologous
knot into one consisting of two 0–homologous knots

Consider f .P /. Using crossing changes and ambient isotopy, we may assume that the
embedding for the subgraph Pnfvg is affine so that f .Pnfvg/ does not intersect the
boundary of the projection (in other words, it does not pass through the line at infinity),
v lies on the boundary of the projection, and no point besides v lies on the line at
infinity.

Define ��
X

L1[L2 is a
two-component
link in f .P/

lk.L1;L2/ (mod 2);

where lk.L1;L2/ is the linking number of L1[L2 . The previous observation shows
that there exists an affine embedding of P for which � is unchanged. Because crossing
changes do not affect �, the results of Conway and Gordon [3] and Sachs [15] for K6

and Petersen graphs in R3 , respectively, imply that ��1 (mod 2) for the embedding f
into RP3 . Hence, the embedding must contain a two-component link with nonzero
linking number, proving the lemma.

Lemma 12 allows us to completely classify intrinsically linked graphs in RP3 with
connectivity 0, 1 and 2, assuming that K4;4 n feg is intrinsically linked in RP3 .
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Proposition 13 Let GDA[B be a 2–connected graph with vertex cut set V .A\B/D

fv1; v2g. Let xA D A[ f.v1; v2/g and xB D B [ f.v1; v2/g. If G is minor-minimal
intrinsically linked in RP3 , then xA and xB are intrinsically linked in R3 .

Proof Suppose xA is not intrinsically linked in R3 . Since G is minor-minimal, xB <G

has a linkless embedding, f , in RP3 . Let g be an embedding of a closed 3–ball
with interior D into RP3 such that f ..v1; v2//� g. xD/, only the vertices v1 and v2

intersect @D . and f . xB n f.v1; v2/g/ is in the complement of g.D/. Take a linkless
embedding, h, of xA in R3 Š D . Then, g ı h is a linkless embedding of xA. Using
ambient isotopy on g ıh, we may assume that the arcs f ..v1; v2// and g ıh..v1; v2//

coincide. The union of these two embeddings produces a linkless embedding of
G [ .v1; v2/ into RP3 .

Proposition 14 Let G D .P1 [P2/ n f.v1; v2/g be a graph, where P1;P2 2 P and
V .P1\P2/D fv1; v2g. Then G is intrinsically linked in RP3 .

Proof Notice that both P1 and P2 are minors of G . Embed G in RP3 . By Lemma 12,
if Pi does not contain any nontrivial links, then Pinfvig must contain a 1–homologous
cycle, for i D 1; 2. This results in two disjoint 1–homologous cycles. Hence, G is
linked.

The previous two propositions prove Theorem 4 for k D 2, assuming Theorem 5. The
results for k D 0 and k D 1 are proved similarly, and Theorem 5 is proved in the
following section.

For the case k D 0, it is easy to see that there are
�
6
2

�
D 21 minor-minimal intrinsically

linked graphs in RP3 . When k D 1, it is necessary to count the different number of
vertex classes in each graph to determine the number of ways a pair of Petersen-family
graphs may be glued along a vertex. From Table 1, the number of minor-minimal
intrinsically linked graphs with 1–connectivity in RP3 is determined to be 91.

Define the vertex flipping number (VFN) for some vertex pair fx1;x2g as

VFN.x1;x2/D

(
0 if x1 x2;

1 otherwise;

where x1 x2 is equivalence under a graph isomorphism. Counting the number of minor-
minimal intrinsically linked graphs in Theorem 4 when k D 2 requires attention to the
VFN of vertex pair classes, where two pairs of vertices are equivalent if there is a graph
isomorphism taking one pair to the other. For each pair fx1;x2g �E.G1/; fy1;y2g �

E.G2/ of vertex pair classes for two graphs G1;G2 , the number of ways to glue G1
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Graph Vertex Classes
K6 1

K3;3;1 2
P7 3
P8 4
P9 2

Petersen 1

Table 1: Petersen-family graphs and the number of vertices, up to equivalence
under graph isomorphism

and G2 along the specified vertex pairs is VFN.x1;x2/VFN.y1;y2/C 1. Table 2
lists the number of vertex pair classes of each type, and the number of minor-minimal
intrinsically linked graphs in RP3 is 469.

Vertex Pair Classes
Graph Total VFND 0 VFND 1

K6 1 1 0
K3;3;1 3 2 1

P7 5 2 3
P8 10 3 7
P9 6 4 2

Petersen 2 2 0

Table 2: Petersen-family graphs and the number of vertex pairs, up to equiva-
lence under graph isomorphism

4 K4;4 with an edge removed

In this section, we prove that the graph obtained by removing an edge from K4;4 is
intrinsically linked in RP3 .

We will need the following observation.

Proposition 15 For every embedding into RP3 , K3;2 has an even number of 1–
homologous 4–cycles.

Proof Whenever two cycles C1 and C2 intersect along an arc, D , we can define the
sum of C1 and C2 to be C1[C2 nD . Then, the result can be obtained by noting that

Algebraic & Geometric Topology, Volume 9 (2009)



Intrinsically linked graphs in projective space 1263

the sum of two 0–homologous cycles and the sum of two 1–homologous cycles are
0–homologous cycles, and the sum of a 0–homologous cycle with a 1–homologous
cycle is 1–homologous.

The combinatorial observation in Proposition 15 is used to prove the following charac-
terization of homology classes of cycles in K3;3 , similar to one given by O’Donnol [11]
for embeddings of K3;3 into R3 and a simple closed curve in its complement.

Lemma 16 If a graph G isomorphic to K3;3 is embedded in RP3 such that at least
one of its cycles is 1–homologous, then the homology classes of all of the 4–cycles in
the embedding of G have one of two possibilities:

(1) A cycle is 1–homologous if and only if it passes through a specified edge, .u; v/,
of the graph. We call .u; v/ the including edge and the homology pattern of the
embedding a 4–pattern.

(2) A cycle is 1–homologous if and only if it does not pass through two of the edges
in F �E.G/, where F is a specified set of three mutually disjoint edges of G .
We call F the set of excluding edges and the homology pattern of the embedding
a 6–pattern.

Proof Let fa1; a2; a3g � V .G/ and fb1; b2; b3g � V .G/ be the partition sets of G .
Suppose G contains a 1–homologous cycle. Then, it must contain a 1–homologous
4–cycle C1 . Let H be a subgraph of G isomorphic to K3;2 that contains C1 . By
Proposition 15, H must contain two 1–homologous 4–cycles. Without loss of gen-
erality, they are the cycles a1b1a2b2 and a1b1a2b3 . It also must be the case that the
cycle a1b2a2b3 is 0–homologous.

Now, consider the subgraph induced by fa1; a2; a3; b1; b2g. By Proposition 15, one
of the two cycles a1b1a3b2 and a2b1a3b2 is 1–homologous, and the other is 0–
homologous. Since interchanging a1 and a2 does not affect the choices made up to
this point, without loss of generality, the cycle a1b1a3b2 is 1–homologous and the
cycle a2b1a3b2 is 0–homologous.

Next, consider the subgraph induced by fa1; a3; b1; b2; b3g. Since the cycle a1b1a3b2

is 1–homologous, then either the cycle a1b1a3b3 is also 1–homologous and the cycle
a1b2a3b3 is 0–homologous, or the cycle a1b1a3b3 is 0–homologous and the cycle
a1b2a3b3 is 1–homologous.

Case 1 Cycle a1b1a3b3 is 1–homologous and cycle a1b2a3b3 is 0–homologous.
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Applying Proposition 15 to all of the other subgraphs of G isomorphic to K3;2 forces
the last two cycles, a2b1a3b3 and a2b2a3b3 , to be 0–homologous. Observe that a
cycle in G is 1–homologous if and only if it includes the edge .a1; b1/. Hence, this
embedding of G has a 4–pattern, with .a1; b1/ as its including edge.

Case 2 The cycle a1b1a3b3 is 0–homologous and the cycle a1b2a3b3 is 1–homolo-
gous.

Again, by using Proposition 15 on the remaining K3;2 subgraphs of G , the cycles
a2b1a3b3 and a2b2a3b3 must be 1–homologous. A 4–cycle of G is 0–homologous
if and only if it contains two edges from the set F D f.a1; b3/; .a2; b2/; .a3; b1/g. The
set F is the set of excluding edges, and the embedding is a 6–pattern.

Theorem 5 The graph G obtained by removing an edge from K4;4 is minor-minimal
intrinsically linked in RP3 .

Proof Consider an embedding of G DK4;4nf.a1; b1/g, where

fa1; a2; a3; a4g; fb1; b2; b3; b4g � V .G/

are the partition sets.

Let A be the subgraph induced by fa2; a3; a4; b2; b3; b4g, B be the subgraph induced
by fa1; a2; a3; b2; b3; b4g and C be the subgraph induced by fa2; a3; a4; b1; b2; b3g.
By Lemma 16, A contains no 1–homologous cycles, is a 4–pattern or is a 6–pattern.

Case 1 The subgraph A contains no 1–homologous cycles.

By Lemma 12, if the embedding is linkless, the subgraph induced by fa1; a2; a3; a4;

b2; b3; b4g must contain a 1–homologous cycle. Because A does not contain any
1–homologous cycles, all such cycles must pass through a1 . Consider the subgraph
induced by fa1; a2; a3; b2; b3; b4g. This K3;3 subgraph must then have a 4–pattern.
Without loss of generality, the including edge is .a1; b2/.

Similarly, the subgraph induced by fa2; a3; a4; b1; b2; b3g contains a 4–pattern with
including edge .a2; b1/. Then, a1b2a2b3 and b1a2b2a3 are disjoint 1–homologous
cycles.

Case 2 The subgraph A contains a 4–pattern.

Without loss of generality, A has .a4; b4/ as its including edge.
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Subcase 2.1 Either B or C has a 6–pattern.

The subgraph B cannot have a 6–pattern as then subgraph induced by fa2; a3; b2;

b3; b4g would contain a 1–homologous cycle, contradicting that all 1–homologous
cycles in A pass through its including edge.

Subcase 2.2 Both B and C contain no 1–homologous cycles.

It is easy to see that all 1–homologous cycles of G must pass through the edge .a4; b4/

by looking at the other four K3;3 subgraphs of G and noticing that each subgraph
must have a 1–homologous cycle by the including edge in A. If any subgraph of G

(not including B and C ) has a 6–pattern or a 4–pattern with an including edge that is
not .a4; b4/, then this would force a 1–homologous cycle in B or C . By Lemma 12,
since all 1–homologous cycle pass through a4 , G is linked.

Subcase 2.3 Both B and C have 4–patterns.

If B contains a 4–pattern, then its including edge must pass through a1 . Otherwise,
A contains a 1–homologous cycle disjoint from its including edge. Similarly, if C

contains a 4–pattern, then its including edge must pass through b1 . The subgraph B has
its including edge passing through a1 and C has its including edge passing through b1 .
So we can find disjoint 1–homologous cycles in G .

Subcase 2.4 One of B or C has a 4–pattern and the other contains no 1–homologous
cycles.

Without loss of generality, assume that B has a 4–pattern and C contains no 1–
homologous cycles. By the previous subcase, the including edge in B has a1 as
an endpoint. We claim that the subgraphs induced by fa2; a3; a4; b1; b2; b4g and
fa2; a3; a4; b1; b3; b4g must have 4–patterns: both contain 1–homologous cycles due
to A having a 4–pattern, and if either contained a 6–pattern, there would be a 1–
homologous cycle in C . Any edge with b1 as an endpoint cannot be an including edge
for these two graphs, since then C would contain a 1–homologous cycle. Consequently,
both subgraphs must have .a4; b4/ as its including edge. Otherwise, there would be a
1–homologous 4–cycle in A that does not have .a4; b4/ as one of its edges.

If the including edge in B does not have b4 as its other endpoint, because the subgraph
induced by fa2; a3; a4; b1; b2; b4g has .a4; b4/ as its including edge, G contains
disjoint 1–homologous links. Otherwise, since the cycles aib2a4b4 and aib3a4b4 are
1–homologous from A and cycles a1b2aib4 and a1b3aib4 are 1–homologous from
B , then the subgraph induced by fa1; ai ; a4; b2; b3; b4g has a 4–pattern with .ai ; b4/

as its including edge, for i D 2; 3. In this case, we have shown that all 1–homologous
cycles pass through b4 , so by Lemma 12, G is linked.
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Case 3 The subgraph A has a 6–pattern.

Without loss of generality, the excluding edges in A are .ai ; bi/ for i D 2; 3; 4. Then,
every K3;3 subgraph of G shares a K3;2 with A, so it must contain a 1–homologous
cycle.

Subcase 3.1 Both B and C contain 4–patterns.

If B contains a 4–pattern, its including edge must pass through b4 . Otherwise, B

contains a 1–homologous cycle from the 6–pattern in A that does not pass through
its including edge. Since the subgraph induced by fa2; a3; b2; b3; b4g contains a 1–
homologous cycle by A, then B has it including edge passing through a2 or a3 . Let
.ai ; b4/ be the including edge in B .

Likewise, if C has a 4–pattern, its including edge must be .a4; bj /, where j D 2

or 3. Then, it is easy to see that G contains disjoint 1–homologous cycles. If C has a
6–pattern, then let k D 2; 3, k ¤ i . Then, the subgraph induced by fak ; a4; b1; b2; b3g

contains a 1–homologous 4–cycle, one of which must pass through b1 . The 4–cycle
that is disjoint from this cycle is also 1–homologous by the including edge in B , so G

is linked.

Subcase 3.2 Either B or C contain a 6–pattern.

Without loss of generality, assume that B has a 6–pattern. One of its excluding edges
must be .a1; b4/ since cycle a2b2a3b3 is 0–homologous by A, and .a1; b4/ is the
only edge in B that is disjoint from this cycle. Note that if .a2; b2/ and .a3; b3/ are
also excluding edges, then all cycles in the subgraph induced by fa1; a2; a4; b2; b3; b4g

through .a2; b3/ are 1–homologous. We saw in the Subcase 2.1 that when there is
a 4–pattern in a K3;3 that is one adjacent (differs by one vertex) to a K3;3 with a
6–pattern, then the graph is linked. Otherwise, .a2; b3/ and .a3; b2/ are the other
excluding edges in B .

Similarly, if G does not contain any nontrivial links, then C must have .a4; b1/,
.a2; b3/ and .a3; b2/ as excluding edges. Hence, a1b4a2b2 and a4b1a3b3 are disjoint
1–homologous cycles. So G is linked.

The graph G is minor-minimal since any proper minor of G embeds in the projective
plane, as shown by Glover, et al [6] and Archdeacon [1].

5 K7 minus two edges

We now prove that any graph obtained by removing two edges from K7 is minor-
minimal intrinsically linked in RP3 . There are two cases of Theorem 6: when the two
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edges are adjacent and when the two edges are nonadjacent. We will use the following
lemma.

Lemma 17 Given a linkless embedding of K6 , no K4 subgraph can have all 0–
homologous cycles.

Proof Consider an embedding of K6 for which there is a K4 subgraph with all cycles
0–homologous. By using crossing changes and ambient isotopy, this K4 subgraph
can be deformed so that it does not touch the line at infinity, and so that there are no
crossings on it in a projection. Denote the vertices of this K4 by fv1; v2; v3; v4g and
denote the vertices not in the K4 by v5 and v6 . One can deform the edge .v5; v6/

so that it is contained in the line at infinity, so that v6 is placed at 12 o’clock and
6 o’clock, and so that v5 is placed at 3 o’clock and 9 o’clock. We may assume the
edge .v5; v6/ goes from 12 o’clock to 3 o’clock (see Figure 3).

v1

v2v3

v4

v5 v5

v6

v6

Figure 3: We may deform the embedded graph to be in this position (not all
edges are shown).

Now, we claim that the edges connecting v6 to the K4 can be deformed (using crossing
changes and ambient isotopy) so that they are straight lines in the projection that
connect to the K4 either from 12 o’clock or from 6 o’clock. We may assume that the
edge connecting to v4 is under all of the other edges of the K4 in the projection. We
will justify the claim for the edge .v6; v1/. Consider the embedded cycle formed the
two (additional) edges e1 and e2 , where e1 connects v1 to the 12 o’clock v6 , and
e2 connects v1 to the 6 o’clock v6 , where both e1 and e2 are straight edges in the
projection. This cycle is 1–homologous. The edge .v1; v6/ from the K6 embedding
breaks up this cycle into two cycles, one formed by e1 and .v1; v6/ and the other formed
by e2 and .v1; v6/. One of these two cycles must be 1–homologous, and the other
must be 0–homologous. If the cycle formed by e1 and .v1; v6/ is 0–homologous, then
.v1; v6/ can be deformed, using crossing change and ambient isotopy, to e1 . Similarly,
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if the cycle formed by e2 and .v1; v6/ is 0–homologous, then .v1; v6/ can be deformed
to e2 . This established our claim. It similarly follows that the edges connecting v5 to
the K4 can be deformed (using crossing changes and ambient isotopy) so that they
are straight lines in the projection that connect to the K4 from either 3 o’clock or
9 o’clock.

Now, it cannot be the case that all of the edges connecting v6 to the K4 are incident
to 12 o’clock, for then v1; v2; v3; v4 and v6 would induce a K5 with all cycles
0–homologous, which cannot occur in a linkless embedding of K6 by Lemma 12.
Similarly, all of the edges cannot be incident 6 o’clock, nor can all of the edges
emanating from K5 be incident to 3 o’clock, nor can they all be incident to 9 o’clock.
Thus, there must be exactly 1, 2 or 3 edges from the K4 incident to 12 o’clock, and
exactly 1, 2 or 3 edges from the K4 incident to 3 o’clock. In all cases but one, there
are a pair of disjoint 1–homologous cycles. These disjoint 1–homologous cycles would
have been present in the original embedding of K6 . For example, if only .v1; v6/ is
incident to 12 o’clock, and only .v2; v5/ is incident to 3 o’clock, then .v1; v6; v3/ and
.v2; v5; v4/ form disjoint 1–homologous cycles.

The only case that does not lead to disjoint 1–homologous cycles is the case when
exactly 1 edge from K4 is incident to 12 o’clock (6 o’clock) and exactly one edge
from K4 is incident to 3 o’clock (9 o’clock), and these two edges are incident to the
same vertex in the K4 . By symmetry, we may assume the edge .v1; v6/ is incident to
12 o’clock, and the edge .v1; v5/ is incident to 3 o’clock. Then, all 1–homologous
cycles pass through v1 , so by Lemma 12, this embedding is linked.

An easy consequence of Lemma 17 is as follows:

Corollary 18 The graph on 9 vertices obtained by pasting together two copies of
K3;1;1;1 along the three vertices that are mutually nonadjacent is intrinsically linked in
RP3 .

Theorem 19 The graph obtained from K7 by removing two edges incident to a
common vertex is minor-minimal intrinsically linked in RP3 .

Proof Let G be the graph obtained from K7 by removing two edges incident to a
common vertex. Let v1; v2; ::; v7 denote the vertices of G , with v7 connected only to
v1; v2; v3 and v4 . Embed G . By the previous result, if the embedding is linkless, the
K4 induced on fv1; v2; v3; v4g must contain a 1–homologous 3–cycle. By a homology
argument, then there must be a 1–homologous 3–cycle through the vertex v7 . Without
loss of generality, we may assume the 3–cycle is .v1; v2; v7/. If the embedding is
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linkless, then by the previous result, the K4 induced by fv3; v4; v5; v6g must contain
a 1–homologous cycle, but this forces two disjoint 1–homologous cycles. Thus, the
embedding cannot be linkless.

The graph G is minor-minimal since any proper minor of G embeds in the projective
plane by Glover, et al [6] and Archdeacon [1].

Theorem 20 The graph obtained from K7 by removing two nonadjacent edges is
minor-minimal intrinsically linked in RP3 .

Proof Let K be the graph obtained from K7 by removing two nonadjacent edges.

Label the vertices of K7 as fv1; v2; :::; v7g, and suppose edges .v4; v5/ and .v6; v7/

are removed to result in the graph K . Embed K , and suppose the embedding is linkless.
We claim that the 4–cycle .v4; v7; v5; v6/ cannot be 1–homologous. If it were, then
a cycle of the form .v1; vi ; vj / is 1–homologous, for i; j 2 f4; 5; 6; 7g, with i ¤ j .
Without loss of generality, suppose .v1; v5; v7/ is 1–homologous; then the subgraph
induced by fv2; v3; v4; v6g forms K4 , and since K contracts onto K6 , by Lemma 17,
there must be a disjoint 1–homologous cycle, which is a contradiction. Similarly, the
following 3–cycles must also be 0–homologous: .vi ; v4; v7/, .vj ; v5; v7/, .vk ; v5; v6/

and .vm; v4; v6/, where i; j ; k;m 2 f1; 2; 3g. It follows that for the subgraph induced
by the vertices fv1; v4; v7; v5; v6g, every cycle is 0–homologous. Since this subgraph
contracts onto K4 , and since K contracts onto K6 (by contracting the same edge), it
follows from Lemma 17 that there must be nonsplittable links in the embedding. It
follows that K is intrinsically linked in RP3 .

The graph K is minor-minimal for intrinsic linking since any proper minor of K is
projective planar, as shown by Glover, et al [6] and Archdeacon [1] or does not contain
any intrinsically R3 –linked graphs as a minor, so there exists a linkless embedding of
every proper minor into a 3–ball.

The graph K is minor-minimal for intrinsic linking in RP3 since any proper minor
of K is either projective planar [1; 6] or becomes (R2 ) planar after the removal of
a vertex (and hence is not intrinsically linked in space). In either case no minor is
intrinsically linked in RP3 .

6 Other intrinsically linked graphs

It is not too hard to see that 4� Y exchanges preserve intrinsic linking as in R3

(see Motwani, Raghunathan and Saran [8]), so any graph generated from a known
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intrinsically RP3 –linked graph by a sequence of 4�Y exchanges is also intrinsically
linked. Corollary 18 provides a graph with several 4 subgraphs.

Notice that two copies of K3;1;1;1 glued along the three mutually nonadjacent vertices is
the same as gluing two copies of K6 along three vertices v1; v2; v3 and then removing
the triangle composed of the three edges between v1; v2; and v3 . For notational
convenience, each copy of K6 with the triangle removed will be referred to as K6 ) ,
and K6 ) K6 denotes the gluing of two copies of K6 ) along the three vertices that
are mutually nonadjacent. By Corollary 18, K6 ) K6 is intrinsically linked in RP3 .

In general, we define G ) to be a graph with three marked vertices which are mutually
nonadjacent. If G1 ) and G2 ) are two such graphs, then G1 ) G2 is a graph obtained
by gluing the two graphs along the three marked vertices of G1 ) and G2 ) . The
resulting graph may not be unique if permutation of the marked vertices does not yield
a graph isomorphism of each Gi ) ; i D 1; 2. In such cases, we will differentiate
between the (up to) three distinct graphs by a subscript, as in G1 )1 G2 , G1 )2 G2

and G1 )3 G2 .

Proposition 21 There are 18 intrinsically linked graphs in RP3 with 3–connectivity
that can be obtained from K6 ) K6 by 4�Y exchanges.

Proof Figure 4 shows K6 ) with the marked vertices (d; e; and f ) shown as open
circles, and the edges which were removed from K6 shown as dotted lines. All other
edges are not shown. In the subsequent figures, only edges added by 4�Y exchange
are shown.

The graphs obtained by repeated 4�Y exchanges on K6 ) are shown in Figure 4.
Consequently, there are 18 intrinsically linked graphs in RP3 obtained from K6 ) K6 .
The graphs P7B ) P7B , P7B ) P8B and P8B ) P8B each have two different
configurations. The configuration where the Y subgraphs of the two copies of P7B )
are glued together along a shared vertex is P7B )1 P7B , and the configuration where
they are not is P7B )2 P7B . Similarly, if the Y in P7B ) shares a vertex with a Y

in P8B ) , we have P7B )1 P8B , and otherwise, we have P7B )2 P8B . If the Y

subgraphs are paired up in P8B ) P8B , we have P8B )1 P8B , and otherwise, we
have P8B )2 P8B .

Remark 22 The graphs P7A ) K6 , P7A ) P7A , P7A ) P7B , P7A ) P8B and
P7A ) P9B are intrinsically linked in RP3 , but all contain K4;4 with an edge removed
as a minor. Hence, they are not minor-minimal intrinsically linked in RP3 .

To show that the remaining 13 intrinsically linked graphs in RP3 are minor-minimal,
we will use the following result from Brouwer, et al [2] and Ozawa and Tsutsumi [12]:
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K6 )
a5

b5
c5

d3

e3 f3

4�Y on acd

P7B )
a4

b5
c4

d2

e3 f3

g3

4�Y on abc 4�Y on bcd

P7A )

a4

b4
c4

d3

e3 f3

g3

P8B )

a4

b4

c3
d2

e2 f3

g3

h3

4�Y on abf

P9B )

a3

b3

c3

d2

e2
f2

g3

h3

j3

Figure 4: Graphs obtained from performing 4�Y exchanges on K6 ) and
each subsequent graph, with subscripts denoting degree of the vertex. The
open circles represent the three marked vertices and dashed edges represent
edges removed from the original K6 .

Theorem 23 Let P be a property preserved under 4�Y exchange. Let G be a graph
that contains at least one degree three vertex and is minor-minimal with respect to P .
Let G0 be a graph obtained from G by a Y �4 exchange. If G0 has property P , then
G0 is also minor-minimal with respect to P .

Thus, we need only show that no proper minor of P9B ) P9B is intrinsically linked in
RP3 .

Theorem 24 The 13 graphs obtained from 4�Y exchange on K6 ) K6 which do
not contain P7A ) as a subgraph are minor-minimal intrinsically linked in RP3 .

Proof We will show that no proper minor of P9B ) P9B is intrinsically linked in
RP3 .

Consider P9B ) P9B as drawn in Figure 5. The only pair of linked cycles in this
embedding is c1h1ea1g1 and f i1b1db2i2 . There are two vertex equivalence classes
in P9B ) P9B : fd; e; f g and V .P9B ) P9B/ n fd; e; f g.

To check for minor-minimality, it suffices to show that removing or contracting any
edge in P9B ) P9B results in graph that is not intrinsically linked in RP3 .
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a1

b1

c1

g1

h1

i1

g2

d

b2

h2ea2

i2

f

c2

Figure 5: P9B ) P9B connected along the marked vertices d; e; f . One
copy of P9B ) is denoted by dashed edges.

There are two edge classes (up to graph isomorphism) that need to be considered.
Removing edge .a1; e/ or edge .c1; h1/ from the embedding in Figure 5 results in a
linkless embedding. Contracting edge .f; c1/ or edge .a1; i1/ in Figure 5 results in a
linkless embedding since the edge contractions send vertices on the (only) two linked
cycles to the same point, thus eliminating the nontrivial link.

7 Remarks

Using the weaker definition of unlinked components in Definition 2 allows the use
of 1–homologous cycles to reduce the number of crossings in a graph embedding in
projective space. Thus, intrinsically linked graphs in RP3 are more complex. Unlike
in R3 , where there are simple arguments showing that there are no minor-minimal
intrinsically linked graphs with connectivity 0, 1 or 2, such graphs exist in projective
space. Using careful combinatorics, one can show that there are 21 disconnected
graphs, 91 graphs with 1–connectivity and 469 graphs with 2–connectivity which
are minor-minimal intrinsically linked in RP3 . It is not too hard to see that 4� Y

exchanges preserve intrinsic linking as in R3 , so we predict that there are many more
minor-minimal intrinsically linked graphs than the ones we have observed in this paper.
In particular, the graphs obtained by removing two edges from K7 have a myriad of
triangles in which we can perform a 4� Y exchange, leading to more intrinsically
linked graphs. Some of these graphs have K4;4 with an edge removed as a minor, but
others have yet to be explored fully. It would be of interest to see which of these are in
fact minor-minimal intrinsically linked in RP3 .
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