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Homotopy groups and twisted homology of arrangements

RICHARD RANDELL

Recent work of M Yoshinaga [12] shows that in some instances certain higher
homotopy groups of arrangements map onto nonresonant homology. This is in
contrast to the usual Hurewicz map to untwisted homology, which is always the zero
homomorphism in degree greater than one. In this work we examine this dichotomy,
generalizing both results.

55N25, 57N65; 55Q52

1 Introduction

Let A be an arrangement of hyperplanes in C` . Thus A is a finite nonempty collection
fH1; : : : ;Hng where Hi D ˛

�1
i .bi/ with bi 2C and each ˛i is a linear homogeneous

form in the variables .z1; : : : ; z`/. (See Orlik and Terao [9] for material on arrange-
ments). We call A an `–arrangement. We let M be the complement of the union H

of the hyperplanes
M D C` n

[
Hi :

Now M is the complement of a real codimension two subset of R2` and so has
numerous topological properties of interest. Here we focus on the homotopy theory of
the complement. Since the fundamental group of the complement � D �1.M /is fairly
rich in structure, it makes sense to look at covers of the complement. Equivalently one
may look at homology or homotopy with coefficients in RD ZŒ�� modules or at local
system homology. Two results motivate this study. The first is found in Randell [10];
the untwisted Hurewicz homomorphism hW �k.M /! Hk.M IZ/ is trivial for k > 1.
On the other hand, Yoshinaga [12] has shown that the twisted Hurewicz homomorphism
maps onto certain twisted homology for nonresonant local systems, in the case that M

is a generic section of another hyperplane arrangement. In this work we generalize
both these results while giving a unified treatment.

It is known that an arrangement complement has a minimal CW structure (see Dimca
and Papadima [4] and Randell [11]), and this fact is used in Yoshinaga’s proof. Part of
our goal in this work is to understand exactly where this minimality is useful in studying
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the topology of arrangement complements. Thus we assume minimality only when
necessary, and in particular reprove Yoshinaga’s result without use of this property.

We begin in the next section with a discussion of the twisted homology and Hurewicz
homomorphisms and general relationships between higher homotopy groups and twisted
homology groups. We then specialize to the case of hyperplane arrangement comple-
ments and derive consequences in various situations.

2 Local systems and the twisted Hurewicz homomorphism

Let .X;Y / be an .n�1/�connected topological pair with n� 3. Thus �j .X;Y /Š 0

for j � n� 1, and by the long exact homotopy sequence of the pair, �j .X /Š �j .Y /

for j � n � 2. In particular, the fundamental group � D �1.Y / of Y includes
isomorphically into the fundamental group of X . Then there is a generalized (twisted)
Hurewicz isomorphism, which we now explain. We follow the discussion of Rong [8],
with notation as in Hatcher [6]. Let N be a left ZŒ��–module, characterized by the
left action

'W �1.X /�N !N

or equivalently by the homomorphism

'W �1.X /! Aut.N /:

Then as usual there is an associated local system N' on X . (See Hatcher [6] for details
about local systems). Then one has homology and cohomology with coefficients in N' ,
and by the usual left action of � on �n.X;Y / we may form the tensor product

�n.X;Y /˝� N

where we use the subscript“�” to indicate the tensor product over ZŒ��. Note that
since we are working over a generally noncommutative ring, we need to make the
action on �n.X;Y / into a right action, as in [6]. In what follows we will switch as
appropriate among the various viewpoints and notation for local systems, but we will
always have the above set-up in mind. We will generally suppress ' from the notation.

Theorem 1 (Twisted Hurewicz Theorem) Let .X;Y / be an .n � 1/�connected
topological pair with n� 3. Then there is a natural isomorphism

(2-1) hW �n.X;Y /˝� N !Hn.X;Y IN /:

Notice that the right hand side involves local system homology, while the left hand side
is an algebraic tensor product. We sketch the proof of this theorem below to highlight the
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property of naturality. Here “naturality” means that with these assumptions there exist
homomorphisms hW �n.X /˝� N ! Hn.X IN / and hW �n.Y /˝� N ! Hn.Y IN /

so that the following diagram commutes.

(2-2)
! Hn.X IN / ! Hn.X;Y IN /

i�
! Hn�1.Y IN / !

" h " hŠ " h

! �n.X /˝� N ! �n.X;Y /˝� N ! �n�1.Y /˝� N !

!Hn�1.X IN / ! Hn�1.X;Y IN / !

" h " h

! �n�1.X /˝� N ! �n�1.X;Y /˝� N !

Proof (Compare the sketch in [8].) Let . zX ; zY / denote the universal covers. There is
a sequence of isomorphisms

Hn..X;Y /IN /ŠH0.�;Hn. zX ; zY IN //; by the Eilenberg–Moore spectral sequence

Š ŒHn. zX ; zY IN /��

ŠHn. zX ; zY /˝� N; by the universal coefficient theorem

Š �n.X;Y /˝� N; by the usual Hurewicz theorem.

Naturality may be traced through these isomorphisms.

Note that since tensor product is not exact, we have no guarantee that the lower row of
this diagram is exact. It will be exact, of course, if the module N is flat. Of course the
upper row is exact always. Then we have the following general result:

Theorem 2 Let .X;Y / be an .n� 1/�connected topological pair with n� 3. Then
ker.i�W Hn�1.Y IN /!Hn�1.X IN //� im.hY W N ˝� �n�1.Y /!Hn�1.Y IN //.

Proof Since �n�1.X;Y /Š 0, and tensor product is right exact, the sequence

�n.X;Y /˝� N ! �n�1.Y /˝� N ! �n�1.X /˝� N ! 0

is exact, so that the commuting diagram above yields a commuting diagram with exact
rows:

(2-3)
Hn.X;Y IN / ! Hn�1.Y IN /

i�
! Hn�1.X IN / ! 0 !

" hŠ " hY " h

�n.X;Y /˝� N ! �n�1.Y /˝� N ! �n�1.X /˝� N ! 0 !

A simple diagram chase then gives the result.

Next we examine the above result in various special cases.
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3 Consequences of the twisted Hurewicz theorem

The following result follows immediately from the exact sequence (2-3).

Proposition 1 Let .X;Y / be an .n� 1/�connected topological pair with n � 3. If
hY is the zero homomorphism, then i�W Hn�1.Y IN /!Hn�1.X IN / is injective and
hence an isomorphism.

Definition 1 An arrangement pair .M;M 00/ is an .n� 1/–connected pair of topo-
logical spaces with M an arrangement complement and M 00 a generic hyperplane
section of M .

The notation is usual; M 00 is the “restriction” of M to a hyperplane. A hyperplane
section is generic provided that the intersection lattice of M 00 agrees with that of M

through rank n� 1.

It is well-known that a generic section M 00 of M yields an arrangement pair with the
homotopy type of a CW pair, and that in fact the number of n–cells attached to M 00 to
yield M is exactly equal to the n–th Betti number of M . (See Dimca and Papadima [4]
and Randell [11]).

Proposition 2 If N is the trivial system, N D Z, and .M;M 00/ is an arrangement
pair, then i� is an isomorphism, as is j�W Hn.M IN /!Hn.M;M 00IN /.

Proof For the trivial system, it was shown in [10] that the Hurewicz map is always
trivial on higher homotopy groups. Thus hM 00 D 0. It then follows from (2-3) that i�
and j� are isomorphisms.

In the case of hyperplane arrangements, the injectivity of i� follows from the Orlik–
Solomon algebra (or, more basically from the Lefschetz theorem on hyperplane sections).
More interesting is the next result, as mentioned due to Yoshinaga in the case of a
generic pair of hyperplane complements and a nonresonant local system N , where N

as an abelian group is just Cr (a local system of rank r ). Our method of proof uses
nothing about the minimal CW structure of arrangement complements, however.

Corollary 1 Suppose .X;Y / is an .n � 1/�connected pair of topological spaces,
n � 3 . Suppose that N is a local system on X so that Hn�1.X IN / D 0. Then
hY W �n�1.Y /˝� N !Hn�1.Y IN / is onto.
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Stated for arrangement pairs we have:

Theorem 3 (Yoshinaga [12]) Suppose .M;M 00/ is an arrangement pair and N

is a nonresonant local system of rank r on M . Then hM 00 W �n�1.M
00/˝� N !

Hn�1.M
00IN / is onto.

Proof For a nonresonant system Hn�1.M IN /D 0.

Actually the Hurewicz map here differs slightly from the one considered by Yoshinaga,
but the result above clearly implies that of Yoshinaga. Here is the relationship. Let X

be a topological space with basepoint x . Then, as in [12] we have a twisted Hurewicz
map

hj W �j .X;x/˝Z Lx!Hj .X;L/
defined by setting h.f ˝ t/ equal to the twisted cycle it determines. This Hurewicz
homomorphism differs by a change of ring (from ZŒ�� to ZŒ1�Š Z) from the one we
considered earlier. The homomorphisms are related by the obvious commuting triangle.

4 The image of Hurewicz maps

4.1 Basic topological properties of arrangement complements

An arrangement complement M has several basic topological properties. Before listing
them we need a bit of notation [9]. To any hyperplane arrangement one has the lattice
whose elements are the various intersections of the hyperplanes, ordered by reverse
inclusion. To any lattice element Z one has the “localization” AZ DfH 2A jZ�H g.
The rank r D rk.Z/ of any lattice element Z is its codimension. Note that it is always
the case that there is the inclusion M.A/�M.AZ /.

Here are several basic properties of arrangement complements.

� (Locality) The “Brieskorn homomorphism” i W
L

H r .M.AZ //!H r .M.A//
is an isomorphism, the direct sum taken over all rank r lattice elements.

� (Toroidality) The cohomology of M is generated by cohomology in degree
one, in particular by the logarithmic one forms d˛i=˛i , where ˛i is a linear
form defining the hyperplane Hi .

� (Minimality) M has the homotopy type of a minimal CW–complex, where
“minimal” here means that the number of q cells is equal to the q–th Betti
number, for all q .
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In the context of local systems locality is not usually relevant, since the Brieskorn
homomorphisms are usually not defined: to do so one needs a local system on M.A/
which is the restriction of one on M.AZ /, and so is trivial around hyperplanes not
containing Z . Deletion-restriction for this situation (when rk.Z/D 1) is examined by
D Cohen in [1].

Minimality in the local systems setting has been examined in [5]. In particular they show
there that the � –equivariant chain complex associated to a Morse-theoretic minimal
CW structure on an arrangement complement is independent of the CW structure.

In this section we will examine the role of toroidality for local systems. We will prove
the analog of the result mentioned earlier, that the Hurewicz map is trivial for the trivial
local system, finding a part of the kernel for any local system. Later we will speculate
about injectivity—can the Hurewicz map in local systems detect homotopy groups?

Now for a nonresonant (or “generic”) local system it is known that the first homology and
cohomology groups vanish [2]. Thus for generic local systems, toroidality fails badly.
Toroidality is a key ingredient in the proof that the usual Hurewicz homomorphism
is zero. In place of that result we have the result below, which first requires some
preparation.

4.2 The Hurewicz image for general arrangement covers

Now since M is an arrangement complement, it is path-connected, locally path-
connected and semilocally simply connected. Therefore M has a universal cover
and there is a bijective correspondence between subgroups � 0 of � D �1.M / and
connected covering spaces of M . Let M 0 be the cover corresponding to � 0 . Then
the free abelian group ZŒ�=� 0� with basis the cosets � 0 is a ZŒ��–module and the
homology groups of M 0 with coefficients in Z are the same as the homology groups
of M with coefficients in the local system ZŒ�=� 0�. The same holds in cohomology
and there are isomorphisms

Hj .M;ZŒ�=� 0�/ŠHj .M
0;Z/

H j .M;ZŒ�=� 0�/ŠH j .M 0;Z/:and

Let us now consider the case where we have a local system on M of the form N D

ZŒ�=� 0�/ .

Proposition 3 Im.h0W �j .M
0/!Hj .M

0//� ker.p�W Hj .M
0/!Hj .M //.

Note that Hj .M
0/DHj .M;ZŒ�=� 0�/. In case M DM 0 this is the result of [10].
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Proof Fix j � 2. Let pW �M !M be the universal cover of M . Then there is a
commuting diagram:

(4-1)

�j . �M /
zh
! Hj . �M /

p� # Š # p�

�j .M
0/

h0

! Hj .M
0/

p� # Š # p�

�j .M /
h
! Hj .M /

Now by the result of [10] the bottom horizontal arrow is the zero homomorphism, and
the result follows.

Note that one can tensor the left-hand higher homotopy groups with ZŒ��–modules,
maintaining the commutativity and the isomorphisms in the left-hand column, to get
analogous results. We further note that finite covers of M , such as the Milnor fiber, fit
into this framework. For instance, in the case of the Milnor fiber one may see easily
that one does not have isomorphism in the above proposition.

Examples below show that the inclusion in the above Proposition may be strict.

4.3 Examples

Example 1 Consider the reflection arrangement A3 , as an arrangement in projective
space. In that case H1.M / is free abelian of rank five, while the six-fold cyclic
cover M 0 (which is the Milnor fiber F of the associated central arrangement) has
H1.F / free of rank seven. One may use standard calculations and euler characteristic
arguments to conclude that the second homology groups have ranks six and eighteen
respectively. Also, M and M 0DF are aspherical, so that Im.h0W �j .M

0/!Hj .M
0//

is zero, while it may be seen easily that p�W H2.M
0/ !H2.M / has nontrivial kernel

(in fact, p� is surjective, so that the kernel is free abelian of rank twelve.)

The next example shows that the Hurewicz map on the universal cover may be an
isomorphism, and that this is reflected in twisted homology.

Example 2 Let A be any arrangement, with complement M , and let �M be its
universal cover. Then on the first nontrivial homotopy group, the Hurewicz map is
an isomorphism. For example, one may take A to be the arrangement of the three
hyperplanes x D 0, y D 0, x C y � 1 D 0 in C2 . Now by a well-known result of
A Hattori [7], the complement M has the homotopy type of the two-skeleton of the
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three torus T 3 . That is, M has the homotopy type of T 3 with a single 3–cell removed.
It is then easily seen that F has the homotopy type of T 3 with four 3–cells removed.
Then �2.M / is the free ZŒ��–module of rank one (where � D �1.M / is the free
abelian group of rank three.) Then the Hurewicz homomorphism

hW �2.M /˝� ZŒ�� ! H2. �M / Š H2.M;ZŒ��/

is an isomorphism.

In fact, one recalls the following well-known fact (Hurewicz) on detectability of higher
homotopy groups. We will say (an element of) a homotopy group is detectable if there
is some twisted Hurewicz map h which does not send it to zero.

Theorem 4 The first nontrivial higher homotopy group of an space X possessing a
universal cover zX is detected by local system homology.

Proof The groups �k.X / and �k. zX / are isomorphic, and the Hurewicz theorem
gives an isomorphism between �k. zX /, and Hk. zX /. The latter is isomorphic to
Hk.X IZŒ��/.

The next example points out that the twisted Hurewicz map may have the maximal
image, subject to the above results.

Example 3 Take A to be x D 0, y D 0, x C y � 1 D 0 in C2 giving M as in
the previous example. Consider the Milnor fiber F associated to the cone of this
arrangement, fx D 0;y D 0;xCy� z D 0; z D 0g. This fiber F is the four-fold cyclic
cover of M associated to the homomorphism sending each meridional loop of M to
the generator of Z=4Z. Since F is a cover of M , �2.F / is also the free ZŒ��–module
of rank 1, where � is free abelian of rank 3, and of course the homomorphism induced
by the covering map is an isomorphism.

Now regarding �2.F / as a module over ZŒ�1.F /� one can show that the image of
�2.F /˝� Z in H2.F / is free of rank three. Thus this image is of finite index in
ker.p�/, which is easily seen to be of rank three.

Finally, we may consider the same arrangement, but with various rank one local systems.

Example 4 Take the same arrangement as in Example 3, but take rank one local
systems La corresponding to the automorphisms sending all generators of first ho-
mology to aD 1, aD i , aD�1, aD�i respectively. Then by Corollary 1.5 of [3]
the homology H2.F IC/ is the direct sum of the four corresponding local system
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homology groups H2.F ILa/ where aD 1; i;�1;�i . The latter three values of a yield
“nonresonant” local systems, with homology concentrated in degree two (of dimension
one). The value a D 1 yields the homology of M with Betti numbers .1; 3; 3/. In
each case a¤ 1 the twisted Hurewicz map

h2W �2.M;m/˝Z Lm!H2.M;La/

is onto.

We close with a general question:

Question Let A be any complex hyperplane arrangement in C` , � 2 �k.M / with
k � `. When is there a rank one local system L on M so that for the appropriate
Hurewicz map hW �k.M /˝Z Lm!Hk.M IL/, one has h.�/¤ 0?
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