
Algebraic & Geometric Topology 9 (2009) 1413–1422 1413

Helicity and the Mañé critical value

GABRIEL P PATERNAIN

We establish a relationship between the helicity of a magnetic flow on a closed surface
of genus � 2 and the Mañé critical value.

53C25, 53C21, 35J15

1 Results

Let N be a closed oriented 3–manifold with a volume form �. A vector field F on N

that preserves � is said to be null-homologous or exact if the closed 2–form iF� is
exact. Given a volume preserving null-homologous vector field F , the helicity H.F /
is defined by setting

H.F / WD
Z

N

� ^ d� D

Z
N

�.F /�;

where � is any primitive of iF�. It is easy to check that this definition is independent of
the choice of primitive � . The helicity (also referred to as the asymptotic Hopf invariant)
measures how much in average field lines wrap and coil around one another. The term
“helicity” was introduced by K Moffatt [12] who also pointed out the topological nature
of the invariant. We refer to Arnold and Khesin [2] for a complete account of this
concept as well as its interpretation as an average self-linking number.

In this note we wish to study the following class of volume preserving flows. Let M

be a closed oriented surface of genus � 2 and let g be a Riemannian metric on M .
The unit circle bundle SM determined by g is a closed 3–manifold with volume form
�D ˛^ d˛ , where ˛ is the contact 1–form of the geodesic flow of g . Let X be the
geodesic vector field and let V denote the infinitesimal generator of the circle action on
the fibres of SM . Suppose we are given in addition a 2–form � on M (automatically
closed). We may write � D f �g , where �g is the area form of g . The vector field
F WD X C f V preserves the volume form � and in fact is null-homologous. Its
helicity is easy to compute and one obtains

(1) H.F /D 2�AC Œ� �2=�;
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where A is the area of g , Œ� � is the total integral of � and � is the Euler characteristic
of M (we refer to Section 2 for proofs of these elementary facts). In fact formula (1)
holds also for the 2–sphere, but in that case H.F / > 0 always.

There is a well known symplectic interpretation for the vector field F . Denote by
� W TM !M the canonical foot-point projection. Consider the twisted symplectic
form ! WD �d˛ C ��� on TM and the Hamiltonian H W TM ! R given by the
kinetic energy of g , ie, H.x; v/ WDgx.v; v/=2. The Hamiltonian vector field �H of H

with respect to ! restricted to SM is precisely F (�H is defined by i�H! D dH ).
Note that SM coincides with the energy hypersurface H D 1=2. The flow of F is
called a magnetic flow or a twisted geodesic flow. It is also well known, that considering
�H restricted to a hypersurface H D k is equivalent to considering the vector field Fs

on SM determined by s � , where sD 1=
p

2k . We can think of s as the intensity that
modulates the magnetic field � . The projections to M of the orbits of Fs model the
motion of a particle with charge s under the effect of the magnetic field � . If we let
!s WD �d˛C s��� , then the pair .SM; !s/ determines a Hamiltonian structure for
every s .

This note is partially motivated by the following two open questions:

(A) For which values of s 2 .0;1/ is the Hamiltonian structure .SM; !s/ of contact
type? (Recall that contact type means that there exists a smooth 1–form � on
SM such that d�D !s and �.Fs/ never vanishes.)

(B) For which values of s 2 .0;1/ does Fs have a closed orbit?

The literature on Question (B) is vast and it is impossible to do it justice in this brief
note. Suffices to say that the study of the problem of existence of closed orbits for
magnetic flows was initiated by V I Arnold [1] and S P Novikov [13] in the early 80’s
with subsequent work by many others. We refer the reader to Ginzburg [8; 9] for a
survey of some of these results, particularly for the case of surfaces discussed here.

Obviously (A) and (B) are related by Taubes’ proof of the Weinstein conjecture [16].
In the exact case Œ� � D 0, both questions were solved by Contreras, Macarini and
the author [6] with the help of Aubry–Mather theory. An important ingredient in [6]
was the Mañé critical value whose definition we now recall. Let pW �M !M denote
the universal covering of M . Since we are assuming that M has � < 0, �M is
diffeomorphic to R2 and thus p�� has a primitive. Set

c.g; �/ WD inf
�

sup
x2 �M

1

2
j�xj

2;
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where the infimum runs over all 1–forms � with d� D p�� , and the norm of � is
taken with respect to the lifted Riemannian metric.1 It is easy to see that c.g; �/ <1

using the fact that on the upper-half plane with the hyperbolic metric, the primitive
�y�1dx of the area form y�2dx ^ dy is bounded. If � D �g , then 1=

p
2c.g; �/

coincides with Cheeger’s isoperimetric constant of the universal covering (cf Burns and
Paternain [3]). The critical value cD c.g; �/ is also relevant for us because it is known
by work of the author [14] that for any s 2 .0; sc/, every nontrivial homotopy class
of M contains the projection of a closed orbit of Fs , where sc WD 1=

p
2c . A thorough

discussion of the relevance of the Mañé critical value to the symplectic topology of
hypersurfaces may be found in Contreras, Macarini and Paternain [5].

Let us return to the helicity now. In the nonexact case ( Œ� �¤ 0) an inspection of (1)
tells us that there is a unique positive value of s for which H.Fs/D 0 and is given by

s2
h WD

�2��A

Œ� �2
:

Since the helicity vanishes, .SM; !sh
/ cannot be of contact type. How does it relate

with sc ? The answer is given by the following theorem:

Theorem For an arbitrary pair .g; �/ on a closed surface of genus � 2 with Œ� �¤ 0,
we have sc � sh with equality if and only if g has constant Gaussian curvature and �
is a constant multiple of the area form of g .

We note that if g has constant curvature �1 and � D �g , then sc D sh D 1. The
vector field F1 is the horocycle flow, which is uniquely ergodic and has of course, zero
helicity. The theorem is saying that unless we are in this well understood homogeneous
situation, if we wish to answer Questions (A) and (B) above, we would need to wrestle
with a nontrivial interval Œsc ; sh� whose Hamiltonian structures are probably out of
reach of current technology. Presumably, every s 2 Œsc ; sh� is not of contact type, but
even for sc this is not known in full generality.

The proof of the theorem has two ingredients. One was already present in [3, Theorem B]
(but its relation with the helicity was not exposed) and it will give fairly easily the
inequality and the fact that, if equality holds, then g must have constant curvature.
However to show that � must be a constant multiple of the area form requires a new
tool. This is provided by techniques closely related with the Selberg trace formula and
the study of an appropriate Radon transform of 1–forms on geodesic circles of the
Riemann surface M .

1More generally, there is a Mañé critical value associated to any covering of M on which � becomes
exact. The main result in [6] asserts that if � is exact on M , a hypersurface with energy k is of contact
type if and only if k > c0 , where c0 is the Mañé critical value of the abelian covering. This value
coincides with the minimum of Mather’s alpha function. Moreover, every energy level has a closed orbit.
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Caveat on terminology In magnetohydrodynamics (MHD) the role of F is played
by a magnetic field B, frozen into a fluid of infinite conductivity filling N . What we
call here magnetic field is the 2–form � and the two “fields” should not be confused.

2 Proofs

Let M be a closed oriented surface with genus � 2 and g a Riemannian metric.
As above SM is the unit circle bundle. We consider a 2–form � on M with total
integral Œ� � and the magnetic flow on SM defined by the pair .g; �/. The vector field
of the magnetic flow is given by F WD X C f V where f is defined by � D f �g ,
and �g is the area form of g with total integral A. There is a coframe of 1–forms
f˛; 
;  g in SM related by the structure equations d˛ D  ^ 
 , d
 D� ^˛ and
d D�K ˛^
 , where K is the Gaussian curvature of g and ˛ is the contact 1–form
dual to the geodesic vector field X . The coframe f˛; 
;  g is dual to fX;H;V g,
where H D ŒV;X �.

Let � WD ˛ ^ d˛ be the Sasaki volume form on SM . A calculation using the
structure equations shows that iF�D d˛� f ˛^ 
 D d˛� f ���g . In other words
iF�D d˛ ���� . It is easy to find a primitive for ��� . Write � D �aK�gC dˇ ,
where a satisfies Œ� �D�a 2�� and ˇ is a 1–form on M . Then ��� D a d Cd��ˇ

and thus iF�Dd� , where � WD˛�a ���ˇ . This shows that F is null-homologous
and

�.F /.x; v/D 1� af .x/�ˇx.v/:

Since the function .x; v/ 7! ˇx.v/ is odd with respect to the flip v 7! �v we haveZ
SM

ˇx.v/�D 0:

It follows that the helicity of F is given by

H.F /D 2�A� a 2� Œ��D 2�AC Œ� �2=�;

which proves (1).

Remark 2.1 The calculation of the helicity for an arbitrary magnetic flow was also
carried out in [14, Equation (4)]. Up to the factor �2�A, the helicity is precisely what
I called in [14] the action of the Liouville measure. The Proposition in [14] could be
rephrased by saying that if Fsh

has no conjugate points, then g must have constant
curvature, � is a constant multiple of the area form and Fsh

is a horocycle flow. In fact,
the proof of the Proposition in [14] shows that for any s 2 .sh;1/, Fs has conjugate
points.
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The helicity for geodesic and horocycle flows in the constant curvature case is also
computed in [2, Proposition 4.9] and [17, Example 2.2.1].

Remark 2.2 If we replace � by s� in the argument above we obtain a primitive
�s WD ˛� as  � s��ˇ of iFs

�D�!s such that

�s.Fs/D 1� a s2 f .x/� s ˇx.v/:

This shows right away that if f does not vanish (ie � is symplectic), then there is s0

such that for any s > s0 , .SM; !s/ is of contact type and therefore it has a closed
orbit.

2.1 Mañé’s critical value and helicity

By the conformal equivalence theorem there exists a unique positive scalar C1 func-
tion � such that the metric �2g has constant negative curvature and the same area as g .
Let �g be the conformality coefficient given by

�g WD
1

A

Z
M

� �g:

By the Cauchy–Schwartz inequality, �g � 1 and equality holds if and only if g itself
is a metric of constant negative curvature. In [3, Theorem B] it is shown that

(2) c.g; �/�
Œ� �2

�4��A �2
g

:

In order to make this note self-contained we will give a proof of (2), which is actually a
little simpler than the one in [3] and it will naturally lead us to the proof of theTheorem.
The key idea comes from a similar estimate of Katok [10] of the Cheeger isoperimetric
constant. Without loss of generality we may suppose that g has area AD�2�� and
hence g0 WD �

2 g has constant negative curvature �1.

We lift everything to the universal covering pW H2 ! M and we consider the La-
grangian L.x; v/D gx.v; v/=2� �x.v/, where � is a primitive of p�� . The critical
value c.g; �/ can also be characterised as the infimum of the values of k 2 R such
that the action

ALCk.
 / WD

Z T

0

.LC k/.
 .t/; P
 .t// dt � 0

for all absolutely continuous closed curves 
 W Œ0;T � ! H2 and any T > 0. This
was Mañé’s original approach to the critical value [11] and in the setting of nonexact
magnetic fields, a proof of the equivalence between these two ways of characterising c

may be found in [3].
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Consider a geodesic circle Cr of g0 of radius r . It has g0 –length 2� sinh r and
encloses a disk Dr of g0 –area 2�.cosh r � 1/. Its g–length is given by

`g.Cr /D

Z 2� sinh r

0

��1.
 .t// dt;

where 
 W Œ0; 2� sinh r �!H2 is a parametrisation of Cr with speed one with respect
to g0 . Now parametrise Cr to have speed

p
2c with respect to g . We must have

ALCc.Cr /� 0

for all r > 0. In other words, using Stokes theorem and the definitions,
p

2c `g.Cr /�

Z
Dr

p�� � 0

for all r > 0. We can write � D a�g0
Cdˇ , where �g0

is the area form of g0 . Clearly
Œ� �D�a 2��. Thus

(3)
p

2c `g.Cr /� a 2�.cosh r � 1/�

Z
Cr

p�ˇ � 0

for all r > 0. The key observation now is that the projection to M of a circle Cr in H2

converges to a horocycle when the radius goes to infinity, and the projection to the unit
sphere bundle of .M;g0/ of the normalised arc length measure weakly converges to an
invariant probability measure for the horocycle flow. But the only invariant probability
measure for the horocycle flow is the Liouville measure � of g0 [7].

If we now divide (3) by 2� sinh r , let r go to infinity and use the definition of weak
convergence we derive

p
2c

Z
M

��1 �g0
� a A� 0;

since the integral of ˇ (regarded as a function on TM ) over the unit circle bundle of
g0 with respect to � must vanish. Equivalently, using that Œ� �D a AD �a 2�� we
have

p
2c �

Œ� �R
M ��1 �g0

:

� 2���g D

Z
M

� �g D

Z
M

��1 �g0
:But

p
2c �

Œ� �

�2���g
Hence

which proves (2) when AD�2�� (note that c.g; �/D c.g;��/).
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Next we observe that the inequality s2
c � s2

h
is equivalent to c � Œ� �2=.�4��A/ which

follows immediately from (2) since �g � 1. Moreover, if equality holds then �g D 1

and g must have constant curvature. What remains to prove in the Theorem from the
introduction is that if sc D sh then f must also be constant. Before we proceed any
further we would like to record inequality (2) in the following form:

Proposition 2.3 For any pair .g; �/ on a surface with genus � 2 we have

2 c.g; �/� 2�2
g c.g; �/� 1�

H.F /
2�A

:

As above, and without loss of generality we shall assume that g has constant cur-
vature �1. Since sc D sh we can write � D a�g C dˇ , where Œ� � D �a 2�� and
2c D a2 . We may suppose that in fact aD

p
2c . Using (3) we obtain

2�
p

2c .1C sinh r � cosh r/�

Z
Cr

p�ˇ � 0

which implies

(4)
Z

Cr

p�ˇ � 2�
p

2c .1� e�r /� 2�
p

2c

for all r > 0. In the next subsection we explain how use the bound (4) to show that in
fact ˇ must be closed, and consequently � is a constant multiple of �g D �g0

.

2.2 A Radon transform

Let hW M !R be a smooth function with
R

M h.x/ dx D 0. As before M DH2=�

and pW H2 !M the quotient map. We consider the Radon transform yhr of h on
geodesic disks defined as follows. Given x 2M , let zx be a lift of x and let D.zx; r/

be the disk with center zx and radius r . We set

yhr .x/ WD

Z
D.zx;r/

h ıp.y/ dy:

It is easy to check that this definition is independent of the lift of x .

Let '0; '1; : : : denote a complete orthonormal sequence of real eigenfunctions of the
Laplacian of M corresponding to eigenvalues 0D �0 < �1 � �2 � � � � %1. Write
hD

P
j aj'j . Since h has zero average over M , a0 D 0.

Lemma 2.4 yhr .x/D
P

j aj qr .sj /'j .x/, where qr is the function (s 2C )

qr .s/D 4
p

2

Z r

0

cos su .cosh r � cosh u/1=2 du

and sj is any of the roots of 1
4
C s2

j D �j .
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Proof This is the application of the techniques connected with the Selberg trace
formula [15] and is fully explained in Section 2 of Randol’s chapter in Chavel’s book [4].
It goes as follows. We let kr .x;y/ be the function on H2�H2 such that kr .x;y/D 1

if y 2D.x; r/ and kr .x;y/D 0 otherwise. Set Kr .x;y/ WD
P

2� kr .x; 
y/. Then

it is easy to check that

yhr .x/D

Z
M

h.y/Kr .x;y/ dy:

Using the expansion hD
P

j aj'j we obtain

yhr .x/D
X

j

aj

Z
M

'j .y/Kr .x;y/ dy:

But it is shown in [4, Chapter X, Theorem 1 and page 277] thatZ
M

'j .y/Kr .x;y/ dy D qr .sj /'j .x/;

where qr .s/ is calculated in [4, page 275] yielding the formula in the lemma.

Remark 2.5 If sj is real, then

qr .sj /D 4
p

2

Z r

0

cos sj u .cosh r � cosh u/1=2 du:

If there are small eigenvalues, then sj would be purely imaginary and if we let j̨ Djsj j,
then

qr .sj /D 4
p

2

Z r

0

cosh j̨ u .cosh r � cosh u/1=2 du:

Lemma 2.6 For every j , there is rn!1 such that qrn
.sj /!1.

Proof On account of Remark 2.5 it suffices to prove the lemma when sj is real and
positive since if sj is purely imaginary or zero cosh j̨ u� 1 for all u which implies
that qr .sj /� qr .s/ where s is any real number.

Suppose then that sj is real and positive and note

qr .sj /

4
p

2
D

Z r

0

cos sj u .cosh r � cosh u/

.cosh r � cosh u/1=2
du

�
1

.cosh r/1=2

Z r

0

cos sj u .cosh r � cosh u/ du

D
1

.cosh r/1=2 sj .1C s2
j /
.cosh r sin sj r � sj sinh r cos sj r/:
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Thus, if we take rn D �.2nC 1=2/=sj we derive

qrn
.sj /

4
p

2
�
.cosh rn/

1=2

sj .1C s2
j /

which proves the lemma.

Lemma 2.7 Suppose that yhr .x/� C for all x 2M and all r > 0. Then h� 0.

Proof We will show that all the Fourier coefficients aj vanish. Suppose ak � 0

for some k . By compactness there is a constant Bk such that 'k CBk is a positive
function. Multiply both sides of the inequalityX

j

aj qr .sj /'j .x/� C

by 'k.x/CBk and integrate with respect to x to obtain (a0 D 0)

akqr .sk/� C Bk A

for all r > 0. By Lemma 2.6 this can only happen if ak D 0.

If ak � 0 we proceed in a similar way by considering a constant Bk such that 'kCBk

is a negative function. In any case we obtain ak D 0 as desired.

2.3 End of the proof of the Theorem

Write dˇ D h�g where h has zero average over M . Inequality (4) is saying that
yhr .x/� 2�

p
2c for all x 2M and r > 0. By Lemma 2.7, h vanishes identically and

ˇ must be closed.
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