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Singularities of projected immersions revisited

GÁBOR LIPPNER

Szűcs proved in [6] that the r –tuple-point manifold of a generic immersion is cobor-
dant to the †1r�1 –point manifold of its generic projection. Here we extend this by
showing that the natural mappings of these manifolds are bordant to each other. The
main novelty of our approach is that we construct an explicit geometric realization of
the bordism.

57R42, 57R45

1 Introduction

There is a surprising relationship between the multiple-points of an immersion gW M #
N �R and the singularities of its projection f W M !N that was found by Szűcs [6]
(see also Szűcs [5]). Namely he showed that if N is a Euclidean space then the
.r C 1/–tuple-points of g are cobordant to the †1r points of f . The case r D 2 has
long been well-known (see eg McCrory [3]), and the case of higher singularities was
also studied by McCrory [2].

The proof of this result involved computing the characteristic numbers of the two
manifolds and observing that they coincide. It is very natural to ask whether this
cobordism can be “seen” in an explicit way hidden in the geometry of f , not just as
mere luck that all the characteristic numbers coincide.

We shall answer this question in the affirmative by constructing a cobordism that
connects the two manifolds. This allows us to slightly extend the original theorem:
instead of cobordism of manifolds we obtain singular bordism of maps, and we prove
the theorem for any smooth target manifold N . (The notation and the necessary
definitions are given in Section 2.)

Theorem 1.1 Let f W M n!N nCk be a prim map, and let gW M # N �R be its
lift to an immersion. Then for any r � 1 we have gr � .†

1r�1.f / ,!M /, that is they
represent the same element in the singular bordism group N�.M /.

If M and N are oriented and the codimension k is odd, then gr�SO .†
1r�1.f / ,!M /,

that is they represent the same element in the singular oriented bordism group �.M /.
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2 Definitions and notation

Consider a proper, generic immersion gW M n!N nCk of a closed smooth manifold M

to a smooth manifold N . The r –fold points of g are those points in N whose preimage
consists exactly of r different points. We shall denote this set Nr . This is not always a
closed set in N . Its closure xNr consists of those points that have at least r distinct
preimages. Put Mr D g�1.Nr /, this is the set of r –tuple points of g in the source
manifold. Its closure is denoted by SMr .

The sets Mr and Nr are generally not submanifolds of M and N but they are images
of (nongeneric) immersions of (possibly open) manifolds. Here we recall a well-known
construction (see eg Ronga [4]) to fix the notation: Let�Mr .g/D f.x1; : : : ;xr / 2M .r/

W g.x1/D � � � D g.xr /; .i ¤ j /) .xi ¤ xj /g:

The symmetric group Sr acts on this set freely in an obvious way. Let Œx1; : : : ;xr �

denote the equivalence class of .x1; : : : ;xr /. On the other hand Sr�1 also acts freely
on the last r � 1 coordinates. Here the equivalence class of .x1; : : : ;xr / is denoted by
.x1; Œx2; : : : ;xr �/.

Definition 2.1 The sets of equivalence classes are denoted by��r .g/D �Mr .g/=Sr

�r .g/D �Mr .g/=Sr�1:

There are obvious mappings

zgr W
��r .g/!N zgr .Œx1; : : : ;xr �/ WD g.x1/

gr W �r .g/!M gr .x1; Œx2; : : : ;xr �/ WD x1

sr W �r .g/! ��r .g/ sr .x1; Œx2; : : : ;xr �/ WD Œx1; : : : ;xr �:

The images of zgr and gr are clearly xNr and SMr and they are bijective to the points
that have multiplicity exactly r . On the other hand sr is clearly an r –sheeted covering.

The sets ��r .g/ and �r .g/ are called the r –fold multiple-point manifolds of g in
the target and source respectively. They are indeed manifolds. To see this we need
the notion of the fat and narrow diagonals. Let V be a manifold and let V .r/ be
its r –fold Cartesian product. Then let ır .V / D f.x;x; : : : ;x/ 2 V .r/ j x 2 V g and
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�r .V /D f.x1;x2; : : : ;xr / 2 V .r/ j 9 i ¤ j ;xi D xj g denote the narrow and the fat
diagonals respectively. Consider the r –fold product g.r/W M .r/!N .r/ . Clearly�Mr .g/D .g

.r//�1.ır .N // n�r .M /:

Since g is a generic immersion, g.r/ is transverse to ır .N / and thus �Mr .g/ is a
closed manifold of dimension n� .r � 1/k . The symmetric group Sr acts on it freely,
so after factoring out with the group actions of Sr or Sr�1 we still get manifolds.

Remark If M and N are oriented and the codimension is even, then the multiple-
point manifolds can be given a natural orientation. If k is odd however, then the action
of Sr contains orientation reversing elements, thus the factor manifolds will have no,
or at least no preferred orientation.

Definition 2.2 Given a smooth map f W M ! N where dim M � dim N , a point
x 2 M is said to be a †i point if the corank (ie the dimension of the kernel) of
dfx W TxM ! Tf .x/N is i . The closure of the set of such points will be denoted by
†i.f /. If i1 � i2 then we can define †i1;i2.f /D †i2.f j†i1 .f //. This method can
be continued recursively to give the definition of †.i1;i2;:::;ir / points, where i1 � i2 �

� � � � ir . This classification of singular points is called the Thom–Boardman type. For
details see eg Arnold et al [1].

Definition 2.3 A map f W M !N is said to be a Morin map if it has no †2 points.
The singularities of such maps are classified by their Thom–Boardman type, which can
only be

†

r‚ …„ ƒ
.1; 1; : : : ; 1/

D†1r

for some r � 0. (In the notation of [1] this is Ar .) The set †1r .f / is actually a
submanifold of M .

Definition 2.4 A generic map f W M !N is called prim (projected immersion) if it
has a specified lifting to a generic immersion, gW M # N �R (ie f D � ıg , where
� W �R!N is the projection). This lifting g has to be given up to regular homotopy.
Such a map is necessarily a Morin map (i.e. its differential has corank at most one at
any point), and so its singularities are classified by their Thom–Boardman type.

Remark Given a Morin map f W M !N one can associate to it its kernel-bundle,
that is a line bundle over the singular points in M . It is not too hard to see that f has
a lifting to an immersion gW M # N �R if and only if this kernel-bundle is trivial
(see eg Szűcs [5]). However the kernel-bundle can be trivialized in more than one way.
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Each trivialization gives a lifting to an immersion and every lifting gives a trivialization.
It turns out that fixing the trivialization corresponds to fixing the regular homotopy
class of the lifting. Generally it is more convenient to assume that the kernel-bundle
has a fixed trivialization rather than just being trivial, hence the usual definition of
prim map is a Morin map with trivializes kernel-bundle. In the lifting terminology this
means that two liftings that are not regularly homotopic in the space of all possible
liftings represent different prim maps. Though in our context both approaches work
equally since we shall work with a completely fixed lifting.

Definition 2.5 The fat diagonal of †1r .f /�M .i�1/ can be defined analogously to
�i.M /, since †1r .f /�M is a submanifold. Let us denote

�r
i .M /D f.x1;x2; : : : ;xi/ 2†

1r .f /�M .i�1/
W 9 j ¤ l;xj D xlg:

Remark For any manifold M we shall denote its cobordism class by ŒM � 2 N� and
for a map f W M ! N we shall denote its singular bordism class by Œf � 2 N�.N /.
The cobordism relation for both manifolds and maps will be denoted by �. If M is
oriented then the same notation will be used for the corresponding classes in �� and
��.N / respectively.

3 Proof of Theorem 1.1

3.1 Preparations

Let us fix a prim map f W M n!N nCk , its lift gW M # N �R and an integer r � 2

(for r D 1 the statement is obvious). For any 1� i � r we shall introduce an auxiliary
manifold ƒi

r and a map �i
r W ƒ

i
r !M which we shall call the “mixed”-point manifold.

Mixed in the sense that these �i
r will be resolutions of those points in M that are

i –tuple points of g and at the same time †1r�i points of f . These points do not
necessarily form a submanifold of M , but we can construct their resolution just like
we did for the set of r –tuple points of an immersion: Let us consider the map

Gi WD gj†1r�i .f /�g�� � ��gW †1r�i .f /�M �� � ��M ! .N �R/�� � �� .N �R/;

where we take i � 1 factors of M on the left, and thus i factors of .N �R/ on the
right. Since f is a generic prim map and g is its generic lift we have that outside of
the fat diagonal (see Definition 2.5) �r�i

i .M /�†1r�i .f /�M .i�1/ the map Gi is
transverse to the narrow diagonal ıi.N �R/ � .N �R/.i/ . Let us consider the set�Mi;r�i.f / WDG�1

i .ıi.N �R//n�r�i
i .M /. The transversality of Gi implies that this
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set is a manifold without boundary. But g is an immersion and Gi is obtained by
restricting g to a certain submanifold. From this it follows by Lemma 2.1 on page 523
of [4] (or as a special case of Theorem 4.2 in Section 4 of this paper) that �Mi;r�i.f /

is actually disjoint from a small open neighborhood of the fat diagonal �r�i
i .M /.

Hence it is compact and thus it is actually a closed submanifold of †1r�i .f /�M .i�1/ .
The symmetric group Si�1 acts on †1r�i .f /�M .i�1/ by permuting the last i � 1

coordinates. This action restricted to �Mi;r�i.f / is free, so we can factorize and get
the manifold

ƒi
r D

�Mi;r�i.f /=Si�1:

A point of ƒi
r can be referred to as .x1; Œx2; : : : ;xi �/ where the xj ’s are all different,

g.x1/Dg.x2/D� � �Dg.xi/ and x12†
1r�i .f /. In this notation the desired resolution

�i
r W ƒ

i
r !M

.x1; Œx2; : : : ;xi �/ 7! x1:is given by

(The maps f;g are omitted from the notation.) It is easy to see that the manifold
ƒi

r has dimension n� .r � 1/.kC 1/. If we choose i D r then we get that Gi is
the product map g.r/ and hence our construction boils down to the standard original
construction of the r –tuple point manifold. So ƒr

r D�r .g/ and �r
r D gr . In the other

extreme case, when i D 1 we get that Gi is simply the inclusion †1r�1.f / ,!N �R.
The narrow diagonal of the right hand side is the whole space and the fat diagonal of
the left hand side is empty. Hence the mixed-point manifold becomes just the singular
set and its “resolution” �1

r W ƒ
1
r !M is the natural inclusion †1r�1.f / ,!M . Thus

the theorem follows from the following lemma.

Lemma 3.1 �1
r � �

2
r � � � � � �

r
r , ie these maps represent the same class in N�.N /.

The proof consists of two very different ingredients. The first ingredient is the global
construction of the desired cobordisms using the map f . The constructed spaces are
easy to describe but they are not obviously manifolds. The precise proof that they are
indeed manifolds requires detailed study of the map f near its singular points. Thus
the second ingredient is a local computation using normal forms. This computation is
only a technical point so first we give the proofs omitting the computational details.
Then in Section 4 we finally show how to carry out the computations used earlier.

3.2 A sample case

Here we shall illustrate the main idea behind Lemma 3.1 in a special case where it is
actually possible to visualize both the immersion and its projection. The only case that
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is interesting and can be “drawn” at the same time is that of an immersion of a surface
into R3 and its projection to R2 .

Instead of using a closed surface as an example, we shall just use a small setup which
should be thought of as being a part of a large example. In the following pictures we
sketch the immersion of an open disc to R3 . The projection should be understood to
be the vertical one. We start by taking the picture of a usual cusp lifted to R3 as in
Figure 1.

A

B

Figure 1: A usual cusp

Then we take the corner labeled “A”, and pull it down so as to create self-intersection.
We then do the same with the corner “B”, only upwards. The resulting immersion is
shown in Figure 2.

A

B

Figure 2: Moving the corners up and down

On Figure 3 we can see the same immersion with two dashed lines representing the
self-intersection. Where these two dashed lines meet there is a triple point (“T”). The
third dashed line labeled with “e” is the vertical projection, or shadow of one of the
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A

B

C

d

e

M

T

Figure 3: Dashed lines indicate self-intersection points

self-intersection lines to the layer of corner “B”. This line is the set of those points
above which there is a double-point of the immersion.

The cusp point of the projection is labeled “C” on the picture. “M” shows the place of
one of the mixed-points. Namely it is a double-point and a fold point at the same time.
The segment “e” provides the cobordism between “M” and “T”. It is a manifold with
two types of boundary. This follows from transversality and the local computations in
Section 4. The first type, when the double-point curve intersects the sheet on which “e”
lies creates a boundary of “e” and that exactly corresponds to a triple-point. The other
type is when one of the sheets forming the double-curve comes together with the sheet
containing “e”. This also creates a boundary, which will be a mixed-point. This way
“e” forms the cobordism between the triple-points and the mixed-points.

Finally the arc labeled by “d” consist of points that are fold points above which there is
an other sheet of the immersion. As before, by transversality and the local computations
it turns out that this is always a manifold with two types of boundary. The first type
occurs when the sheet above the fold curve passes through the fold curve thereby
creating a mixed-point. The other type occurs when the sheet above the fold curve
comes together with the fold curve, creating a cusp point. Thus “d” provides the
cobordism between the cusps and the mixed-points.

3.3 Proof of Lemma 3.1

We shall now turn to the precise construction of the cobordism manifolds in the general
case. Let us again consider the map

Gi WD gj†1r�i .f /�g�� � ��gW †1r�i .f /�M �� � ��M ! .N �R/�� � �� .N �R/:
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Let us define

�Ci D f..x; s/; .x; t/; : : : ; .x; t// 2 .N �R/.i/ W s � tg:

Outside of �r�i
i .M / the map Gi is transverse to �Ci and @�Ci D ıi.N �R/, since

both f and g are generic and thus self-transverse.

Let us now define H 0 D G�1
i .�Ci / n�

r�i
i .M /. Transversality implies that H 0 is a

(not necessarily compact) manifold with boundary G�1
i .ıi.N �R// n�r�i

i .M / D�Mi;r�i.f /. Let us denote the closure of H 0 in †1r�i .f /�M .i�1/ by H . Obviously
H nH 0 � �r�i

i .M /. We have seen in Section 3.1 that @H 0 is a closed manifold
disjoint from the fat diagonal. Thus @H 0 is disjoint from H nH 0 ��r�i

i .M /.

Let us take a point .x1; : : : ;xi/ 2H nH 0 . Then by definition of H 0 there exist points
yk

j .k � 1; i � j � 1/ that fulfill all the following requirements:

(1) For every j we have limk!1 yk
j D xj .

(2) yk
1
2†1r�i .f /.

(3) For any fixed k the yk
j ’s are all different.

(4) g.yk
j1
/D g.yk

j2
/ for any j1; j2 � 2.

(5) f .yk
j1
/D f .yk

j2
/ for any j1; j2 � 1.

Since g is a generic immersion, (3) and (4) imply that for all j > l � 2 we have
xj ¤ xl . Then since H nH 0 ��r�i

i .M / there must be a j > 1 such that x1 D xj .
Thus yk

1
! x1 and yk

j ! x1 as well. Furthermore yk
1
2†1r�i .f /. Theorem 4.2 in

Section 4 can be applied and hence x1 2†
1r�iC1.f /.

Conversely let us suppose that x1 2 †
1r�iC1.f / and x2; : : : ;xi�1 are all different

from each other and x1 and g.xj / is the same for every 1 � j � i � 1. We want
to show that in the neighborhood of .x1;x1;x2; : : : ;xi�1/ the set H is a compact
manifold with boundary and .x1;x1;x2; : : : ;xi�1/ is on @H . First consider the first
two factors separately from the others.

G2 D gj†1r�i .f / �gW †1r�i .f /�M ! .N �R/.2/:

Let us denote H 0
2
D G�1

2
.�C

2
/. By Theorem 4.3 in Section 4 we know that locally

around .x1;x1/ its closure H2D cl.H 0
2
/ is a compact manifold with boundary @H2D

f.u;u/ W u 2 †1r�iC1.f /g. Clearly H is locally the complete intersection of H2 �

†1r�i .f /�M around .x1;x1/ and �Mi�2.g/�M .i�2/ around .x2; : : : ;xi�1/. Thus
the genericity of f and g implies that H is also locally a compact manifold with
boundary @H the complete intersection of @H2 and �Mi�2.g/.
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Thus H is a compact manifold. Its boundary consist of two disjoint components H nH 0

and @H 0 D �Mi;r�i.f /. The symmetric group Si�1 acts on †1r�i .f /�M .i�1/ by
permuting the last i � 1 coordinates. By definition H 0 is invariant under this action.
The above considerations show that @H 0 and H nH 0 are also invariant, and the action
is free on each. Thus we can factorize by this action on H and get that the quotient
is again a compact manifold yH with boundary @H 0=Si�1 and .H nH 0/=Si�1 . By
definition @H 0=Si�1 D

�Mi;r�i.f /=Si�1 Dƒ
i
r . On the other hand we have seen that

H nH 0 D f.x1;x2; : : : ;xi/ 2�
r�iC1
i .M / n†1r�iC1.f /��i�1.M / W

g.xj /D g.xl/ .1� j < l � i/g:

So there is a natural map �W .H nH 0/=Si�1!ƒiC1
r given by �.x1; Œx2; : : : ;xi �/D

.x1; Œx2; : : : ;xj�1;xjC1; : : : ;xi �/ when x1 D xj . This map is clearly a diffeomor-
phism. Thus .H nH 0/=Si�1 Dƒ

iC1
r .

Finally projecting everything to the first coordinate we get a map yH !M that on the
boundary coincides with �i

r and �iC1
r . Thus �i

r � �
iC1
r .

Remark If the codimension k is odd, then the codimension of g is even. So if M

and N are oriented, then H 0 can be given a natural orientation. This is preserved by
the action of Si�1 and so the manifold yH that creates the cobordism between �i

r and
�iC1

r is oriented. Thus �i
r �SO �

iC1
r and the oriented part of the theorem follows as

well.

4 Local computations

Let us consider a prim map f W M n ! N nCk . Let us write n D r.k C 1/ C z .
Then the †1r –points of f form a z–dimensional submanifold in M . Let x 2

†1r .f / n†1rC1.f /. Then (according to eg [1]) it is possible to take small Euclidean
neighborhoods of x and f .x/ and introduce local coordinates such that f takes the
following local normal form (we take both x and f .x/ to be in the origin):

F W .Rr.kC1/Cz; 0/! .R1CkC.r.kC1/�1/Cz; 0/

.t;yr ;yr�1; : : : ;y1;xs/ 7! .p0.t/;p1.t/; : : : ;pk.t/;y;xs/;

yj D .yj ;0;yj ;1; : : : ;yj ;k/ 2RkC1 for every 1� j � r � 1;where

yr D .yr;1;yr;2; : : : ;yr;k/ 2Rk :
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By y we denote the collection of all y
j
i , so y 2Rr.kC1/�1 . Finally xs D .s1; : : : ; sz/2

Rz . The polynomials pi are defined by p0.t/ D trC1Cyr�1;0tr�1C � � �Cy1;0t

which is of degree rC1 and for any i > 0 we have pi.t/D yr;i t
r C� � �Cy1;i t which

is of degree r . We will think of the pi mostly as polynomials of the single variable t .

Lemma 4.1

(1) The point .t;y;xs/ is a †1j –point of F if and only if p0i.t/ D p00i .t/ D � � � D

p
.j/
i .t/D 0 for every 0� i � k .

(2) The set of such points form a submanifold in Rr.kC1/Cz which can be smoothly
parametrized by xs;yr ; : : : ;yjC1 .

Proof Part (2) easily follows from part (1), since if j < r and xs;yr ; : : : ;yjC1 are
fixed, then p

.j/
i .t/D 0 is a nondegenerate linear equation for yj . This can be uniquely

solved. Then p
.j�1/
i .t/D 0 is a nondegenerate linear equation for yj�1 , and so on.

Finally if j D r then obviously the only solution is yl;iD 0 for every i; l independently
of xs . Thus it suffices to show part (1).

We will proceed by induction on j . The initial step j D 1 is easy to see: dF is
singular if and only if p0i.t/ D 0 for every i and in this case ker dF is the t –axis.
Now let us suppose we know the statement for j � 1 and take a point x 2 †1j .F /.
Then x 2†1j�1.F / and ker dxF � Tx†

1j�1.F /. Then there is a sequence of points
x.i/D .t.i/;y.i/;xs.i/ 2†1j�1.F / such that x.i/! x D .t;y;xs/,

t.i/� t

jx.i/�xj
! 1

jy.i/�yj

jx.i/�xj
! 0:and

Let us focus on pl where l is arbitrary but fixed, and temporarily denote it by p . We
will also temporarily include in the notation of p all its hidden variables. Then

p.j/.t;y/D lim
i!1

p.j�1/.t.i/;y/�p.j�1/.t;y/

t.i/� t

(1)
D lim

i!1

p.j�1/.t.i/;y/�p.j�1/.t.i/;y.i//

t.i/� t

(2)
D 0:

Here (1) holds since p.j�1/.t;y/Dp.j�1/.t.i/;y.i//D 0 by the inductive hypothesis.
(2) holds since p.j�1/ is a fixed finite sum of expressions linear in y and

jy.i/�y.i/j

t.i/� t
! 0:
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This argument can be easily reversed and so the statement is true for j . This completes
the induction and thus proves part (1).

Theorem 4.2 Let f W M n ! N nCk a generic Morin map. If there exist points
xi ¤ x0i 2M I .i � 1/ such that xi ! x , x0i ! x , xi 2 †

1r .f / and f .xi/ D f .x
0
i/

for every i , then x 2†1rC1.f /.

Proof It is obvious that x 2 †1r .f /. Let us suppose that x 2 †1r .f / n†1rC1.f /.
We can consider f locally around x and introduce Euclidean neighborhoods as before,
denoting the function in the new coordinate-system by F . As xi ! x and x0i ! x ,
these points will fall into the chosen neighborhood with at most finite exceptions. From
Lemma 4.1 it is obvious that the only †1r –points of F are those for which t D 0

and y D 0, and xs is arbitrary. On the other hand if F.t;y;xs/D .0; 0; : : : ; 0; 0;xs/ then
obviously t D 0 and y D 0. So none of the †1r –points of F are double points of F

which is contradiction.

If f W M n ! N nCk is actually a prim map with lifting gW M n # N nCk �R and
x 2 †1r .f / n†1rC1.f /, then we can take the Euclidean coordinates around x and
f .x/ introduced at the beginning of this section, and choose a last extra coordinate
around g.x/ such that g takes the local form G.x/D .F.x/; t/. Let j < r and let us
consider the set

A0 D f.u; v/ 2Rn
�Rn

W u 2†1j .F /;F.u/D F.v/; t.u/� t.v/g

and its closure AD cl.A0/.

Theorem 4.3 The set A is a manifold with boundary @AD f.u;u/ W u 2†1jC1.F /g.

Proof Theorem 4.2 implies that a boundary point of A0 must be in †1jC1.F /. We
shall give an explicit smooth parametrization of A0 on an open halfspace, and show
that this extends smoothly and bijectively to a parametrization of †1jC1.F / on the
boundary of the halfspace. It is obvious that the variables xs play no role whatsoever,
so without loss of generality we may assume that z D 0 and omit xs from the further
calculations.

The condition F.u/DF.v/ obviously implies y.u/D y.v/, so .u; v/2A0 if and only
if t.u/ > t.v/, and p0i.t.u//D p00i .t.u//D � � � D p

.j/
i .t.u//D pi.t.u//�pi.t.v//D 0

for every i . (Here we think of pi as a polynomial of one variable. Its coefficients
depend on y , but since y is independent of u and v , this notation makes sense.)

We claim that for any choice of parameters t.v/ > t.u/;yr ;yr�1; : : : ;yjC2 there is
a unique choice of yjC1; : : : ;y1 depending smoothly on the parameters such that
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the resulting pair of points .u; v/ 2 A0 . (In case of j D r � 1 there is only a single
parameter t.v/ > 0.)

Let us first deal with the case j < r � 1. Then for each i the problem of finding
yjC1;i ;yj ;i ; : : : ;y1;i such that p0i.t.u//D p00i .t.u//D � � � D p

.j/
i .t.u//D pi.t.u//�

pi.t.v// D 0 holds can be solved independently of each other. In fact the problem
is the same for every i , so we fix an arbitrary i and denote pi.t/D p.t/D �r tr C

� � � C �1t temporarily. Let us write p.t/ D q.t/C �jC2tjC2C � � � C �r tr D q.t/C

r.t/. Since �r ; : : : ; �jC2; t.u/ and t.v/ are fixed parameters, we know the value of
r.t.u//; r.t.v//; r 0.t.u//; r 00.t.u//; : : : ; r .j/.t.u//. We have to find the coefficients of
q . Let us write q as a Taylor polynomial around t.u/. Then

(1) q.t/D q.t.u//C

jX
iD1

q.i/.t.u// �
.t � t.u//i

i !
C�jC1 � .t � t.u//jC1:

Since 0D p.i/.t.u//D q.i/.t.u//C r .i/.t.u//, in (1) the only unknown value is �jC1 .
By definition

q.t.v//� q.t.u//D p.t.v//� r.t.v//C r.t.u//�p.t.u//D r.t.u//� r.t.v//;

and hence by substituting t D t.v/ in (1) we get that

�jC1 D

�
1

t.v/� t.u/

�jC1

�

�
r.t.u//� r.t.v//�

jX
iD1

q.i/.t.u// �
.t � t.u//i

i !

�
:

As every quantity on the right hand side is fixed and t.u/ > t.v/ we find that the
parameters uniquely and smoothly determine �jC1 . Then all the remaining �’s are
uniquely and smoothly determined by the Taylor expansion (1). Finally to see what
happens on the boundary of the halfspace t.u/ > t.v/ just observe, that the vanishing
of the derivatives of p at t.u/ imply that p.t/ D p.t.u// C .t � t.u//jC1 � w.t/

for some polynomial w.t/. Then the equation p.t.v// D p.t.u// is equivalent to
w.t.v//D 0. Then if t.v/� t.u/ converges to 0 the solution will converge to a w.t/
for which w.t.u//D 0, which is equivalent to saying that p.jC1/.t.u//D 0. So the
boundary of the halfspace t.u/ > t.v/ parametrizes those points .u;u/ for which
p0.t.u//D p00.t.u//D � � � D p.jC1/.t.u//D 0 which is equivalent to u 2†1jC1.F /.

Now consider the case j D r � 1. The only parameter is t.v/. Let us suppose that we
have a solution u that satisfies all the equations. Let i � 1. Then pi.t/ is a degree r

polynomial for which the first r derivatives vanish at t.u/. Thus pi D ci � .t � t.u//r .
Further we know that pi.t.v//Dpi.t.u//D 0 while t.v/ > t.u/. This is only possible
if ci D 0. So all the pi ’s must be identically 0, except for p0 . Let us temporarily
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denote p0.t/Dp.t/D trC1C�r�1tr�1C� � �C�1t . The constraints on the derivatives
imply that

p.t/D p.t.u//Cp.r/.t.u// �
.t � t.u//r

r !
C .t � t.u//rC1:

The polynomial p has no xr term by definition, so p.r/.t.u//D r !.r C 1/t.u/, thus

p.t/D p.t.u//C .t C r � t.u//.t � t.u//r :

Finally p.t.u//D p.t.v//D p.t.u//C .t.v/C r � t.u//.t.v/� t.u//r ;

so t.u/D�t.v/=r , and p.0/D 0 determines p.t.u//. Thus indeed for any t.v/ > 0

there is a unique solution u, this solution is smoothly parametrized by t.v/, and the
boundary t.v/D 0 goes to the only †1r –point, the origin.
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