
Algebraic & Geometric Topology 9 (2009) 1637–1680 1637

Homotopy theory of modules over operads
in symmetric spectra

JOHN E HARPER

We establish model category structures on algebras and modules over operads in sym-
metric spectra and study when a morphism of operads induces a Quillen equivalence
between corresponding categories of algebras (resp. modules) over operads.

55P43, 55P48; 55U35

1 Introduction

Operads parametrize simple and complicated algebraic structures and naturally arise
in several areas of algebraic topology, homotopy theory and homological algebra; see
Basterra and Mandell [1], Goerss and Hopkins [13], Hinich and Schechtman [18],
Kriz and May [24], May [30] and McClure and Smith [31]. The symmetric monoidal
category of symmetric spectra (see Hovey, Shipley and Smith [21]) provides a simple
and convenient model for the classical stable homotopy category, and is an interesting
setting where such algebraic structures naturally arise. Given an operad O in symmetric
spectra, we are interested in the possibility of doing homotopy theory in the categories
of O–algebras and O–modules in symmetric spectra, which in practice means putting a
Quillen model structure on these categories of algebras and modules. In this setting, O–
algebras are the same as left O–modules concentrated at 0 (Section 3.18). This paper
establishes a homotopy theory for algebras and modules over operads in symmetric
spectra.

This is the main theorem.

Theorem 1.1 Let O be an operad in symmetric spectra. Then the category of O–
algebras and the category of left O–modules both have natural model category struc-
tures. The weak equivalences and fibrations in these model structures are inherited
in an appropriate sense from the stable weak equivalences and the positive flat stable
fibrations in symmetric spectra.

Remark 1.2 For ease of notational purposes, we have followed Schwede [37] in using
the term flat (eg, flat stable model structure) for what is called S (eg, stable S –model
structure) in Hovey, Shipley and Smith [21], Schwede [36] and Shipley [39].
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The theorem remains true when the positive flat stable model structure on symmetric
spectra is replaced by the positive stable model structure. This follows immediately
from the proof of Theorem 1.1 since every (positive) stable cofibration is a (positive)
flat stable cofibration.

Theorem 1.3 Let O be an operad in symmetric spectra. Then the category of O–
algebras and the category of left O–modules both have natural model category struc-
tures. The weak equivalences and fibrations in these model structures are inherited in an
appropriate sense from the stable weak equivalences and the positive stable fibrations
in symmetric spectra.

In Section 5 we prove that a morphism of operads which is an objectwise stable
equivalence induces an equivalence between the corresponding homotopy categories of
algebras (resp. modules).

Theorem 1.4 Let O be an operad in symmetric spectra and let AlgO (resp. LtO )
be the category of O–algebras (resp. left O–modules) with the model structure of
Theorem 1.1 or Theorem 1.3. If f W O �!O0 is a map of operads, then the adjunctions

.1:5/ AlgO
f� // AlgO0 ;
f �

oo LtO
f� // LtO0 ;
f �

oo

are Quillen adjunctions with left adjoints on top and f � the forgetful functor. If
furthermore, f is an objectwise stable equivalence, then the adjunctions (1.5) are
Quillen equivalences, and hence induce equivalences on the homotopy categories.

The properties of the flat stable model structure on symmetric spectra are fundamental
to the results of this paper. For some of the good properties, see Hovey, Shipley and
Smith [21, Theorem 5.3.7 and Corollary 5.3.10]. The positive flat stable model structure,
compared to the flat stable model structure, arises very clearly in our arguments. See,
for example, Proposition 4.28 and its proof, the following of which is a special case of
particular interest.

Proposition 1.6 If i W X �! Y is a cofibration between cofibrant objects in symmetric
spectra with the positive flat stable model structure and t � 1, then X^t �! Y ^t is a
cofibration of †t –diagrams in symmetric spectra with the positive flat stable model
structure, and hence with the flat stable model structure.

In Section 7 we summarize several constructions and results of particular interest for
the special case of algebras over operads.
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1.7 Relationship to previous work

One of the theorems of Schwede and Shipley [38] is that the category of monoids in
symmetric spectra has a natural model structure inherited from the (flat) stable model
structure on symmetric spectra. This result was improved by the author [16] to algebras
and left modules over any non–† operad O in symmetric spectra.

One of the theorems of Shipley [39] (resp. Mandell, May, Schwede and Shipley [28])
is that the category of commutative monoids in symmetric spectra has a natural model
structure inherited from the positive flat stable model structure (resp. positive stable
model structure) on symmetric spectra. Theorem 1.1 and Theorem 1.3 improve these
results to algebras and left modules over any operad O in symmetric spectra.

One of the theorems of Elmendorf and Mandell [6] is that for symmetric spectra the
category of algebras over any operad O in simplicial sets has a natural model structure
inherited from the positive stable model structure on symmetric spectra. Theorem 1.3
improves this result to algebras and left modules over any operad O in symmetric
spectra. Their proof involves a filtration in the underlying category of certain pushouts
of algebras. We have benefitted from their paper and our proofs of Theorem 1.1 and
Theorem 1.3 exploit similar filtrations.

Another of the theorems of Elmendorf and Mandell [6] is that a morphism of operads in
simplicial sets which is an objectwise weak equivalence induces a Quillen equivalence
between categories of algebras over operads. Theorem 1.4 improves this result to
algebras and left modules over operads in symmetric spectra.

Our approach to studying algebras and modules over operads is largely influenced by
Rezk [35].

Acknowledgments The author would like to thank Bill Dwyer for his constant en-
couragement and invaluable help and advice. The author is grateful to Emmanuel
Farjoun for a stimulating and enjoyable visit to Hebrew University of Jerusalem in
spring 2006 and for his invitation which made this possible, and to Paul Goerss and
Mike Mandell for helpful comments and suggestions at a Midwest Topology Seminar.

2 Symmetric spectra

The purpose of this section is to recall some basic definitions and properties of symmetric
spectra. A useful introduction to symmetric spectra is given in the original paper of
Hovey, Shipley and Smith [21]; see also the development given by Schwede [37].
Define the sets n WD f1; : : : ; ng for each n� 0, where 0 WD∅ denotes the empty set.
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Let S1 denote the simplicial circle �Œ1�=@�Œ1� and for each n�0 define Sn WD .S1/^n

the n–fold smash power of S1 , where S0 WD�Œ0�C D�Œ0�q�Œ0�.

Definition 2.1 Let n� 0.
� †n is the category with exactly one object n and morphisms the bijections of

sets.
� S� is the category of pointed simplicial sets and their maps.
� S†n

� is the category of functors X W †n �! S� and their natural transformations.

In other words, an object in S†n
� is a pointed simplicial set X equipped with a basepoint

preserving left action of the symmetric group †n and a morphism in S†n
� is a map

f W X �! Y in S� such that f is †n –equivariant.

2.2 Symmetric spectra

Recall the following definition from [21, Section 1.2].

Definition 2.3 A symmetric spectrum X consists of the following:
(1) a sequence of objects Xn 2 S†n

� .n� 0/, and
(2) a sequence of maps � W S1 ^Xn �!XnC1 in S� .n� 0/,

such that the iterated maps �pW Sp ^Xn �!XnCp are †p�†n –equivariant for p�1

and n� 0. Here, �p WD �.S
1 ^ �/ � � � .Sp�1 ^ �/ is the composition of the maps

S i ^S1 ^XnCp�1�i
S i^� // S i ^XnCp�i :

The maps � are the structure maps of the symmetric spectrum.

A map of symmetric spectra f W X �! Y is a sequence of maps fnW Xn �! Yn in
S†n
� .n� 0/, such that the diagram

S1 ^Xn
� //

S1^fn

��

XnC1

fnC1

��
S1 ^Yn

� // YnC1

commutes for each n� 0.

Denote by Sp† the category of symmetric spectra and their maps; the null object is
denoted by �.

The sphere spectrum S is the symmetric spectrum defined by Sn WD Sn , with left
†n –action given by permutation and structure maps � W S1 ^Sn �! SnC1 the natural
isomorphisms.
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2.4 Symmetric spectra as modules over the sphere spectrum

The purpose of this subsection is to recall the description of symmetric spectra as
modules over the sphere spectrum. A similar tensor product construction will appear
when working with algebras and left modules over operads in Section 3.

Definition 2.5 Let n� 0.

� † is the category of finite sets and their bijections.
� S†� is the category of functors X W † �! S� and their natural transformations.
� If X 2 S†� , define Xn WDX Œn� the functor X evaluated on the set n.
� An object X 2 S†� is concentrated at n if Xr D � for all r ¤ n.

If X is a finite set, define jX j to be the number of elements in X .

Definition 2.6 Let X be a finite set and A in S� . The copowers A �X and X �A in
S� are defined as follows:

A �X WD
a
X

AŠA^XC ; X �A WD
a
X

AŠXC ^A;

the coproduct in S� of jX j copies of A.

Definition 2.7 Let X;Y be objects in S†� . The tensor product X ˝ Y 2 S†� is the
left Kan extension of objectwise smash along coproduct of sets:

†�†
X�Y //

`
��

S� � S�
^ // S�

†
X˝Y

left Kan extension
// S�

Useful details on Kan extensions and their calculation are given by Mac Lane [26, X],
in particular see X.4. The following is a calculation of tensor product, whose proof is
left to the reader.

Proposition 2.8 Let X;Y be objects in S†� and N 2 †, with n WD jN j. There are
natural isomorphisms

.X ˝Y /n Š .X ˝Y /ŒN �Š
a

�WN�!2
in Set

X Œ��1.1/�^Y Œ��1.2/�;

Š

a
n1Cn2Dn

†n �
†n1
�†n2

Xn1
^Yn2

:.2:9/
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Remark 2.10 The coproduct is in the category S� . Set is the category of sets and
their maps.

The following is proved in [21, Section 2.1] and verifies that tensor product in the
category S†� inherits many of the good properties of smash product in the category S� .

Proposition 2.11 .S†� ;˝;S
0/ has the structure of a closed symmetric monoidal

category. All small limits and colimits exist and are calculated objectwise. The unit
S0 2 S†� is given by S0Œn�D � for each n� 1 and S0Œ0�D S0 .

The sphere spectrum S has two naturally occurring maps S˝S �!S and S0�!S in
S†� which give S the structure of a commutative monoid in .S†� ;˝;S

0/. Furthermore,
any symmetric spectrum X has a naturally occurring map mW S ˝X �!X which
gives X a left action of S in .S†� ;˝;S

0/. The following is proved in [21, Section
2.2] and provides a useful interpretation of symmetric spectra.

Proposition 2.12 Define the category †0 WD qn�0†n , a skeleton of †.

(a) The sphere spectrum S is a commutative monoid in .S†� ;˝;S
0/.

(b) The category of symmetric spectra is equivalent to the category of left S –modules
in .S†� ;˝;S

0/.

(c) The category of symmetric spectra is isomorphic to the category of left S –
modules in .S†

0

� ;˝;S
0/.

In this paper we will not distinguish between these equivalent descriptions of symmetric
spectra.

2.13 Smash product of symmetric spectra

The smash product X ^ Y 2 Sp† of symmetric spectra X and Y is defined as the
colimit

.2:14/ X ^Y WDX ˝S Y WD colim
�

X ˝Y X ˝S ˝Y
m˝ idoo

id˝m
oo

�
:

Note that since S is a commutative monoid, a left action of S on X determines a right
action mW X ˝S �!X which gives X the structure of an .S;S/–bimodule. Hence
the tensor product X ˝S Y has the structure of a left S –module.

The following is proved in [21, Section 2.2] and verifies that smash products of
symmetric spectra inherit many of the good properties of smash products of pointed
simplicial sets.
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Proposition 2.15 .Sp†;^;S/ has the structure of a closed symmetric monoidal cate-
gory. All small limits and colimits exist and are calculated objectwise.

Recall that by closed we mean there exists a functor which we call mapping object (or
function spectrum),

.Sp†/op
� Sp† �! Sp†; .Y;Z/ 7�!Map.Y;Z/;

which fits into isomorphisms

hom.X ^Y;Z/Š hom.X;Map.Y;Z//;.2:16/

natural in symmetric spectra X;Y;Z . These mapping objects will arise when we
introduce mapping sequences associated to circle products in Section 3.

3 Algebras and modules over operads

In this section we recall certain definitions and constructions involving symmetric
sequences, algebras, and modules over operads. A useful introduction to operads
and their algebras is given by Kriz and May [24]. See also the original article of
May [30]; other accounts include Berger and Moerdijk [2], Fresse [8], Ginzburg and
Kapranov [11], Hinich [17], Markl, Shnider and Stasheff [29], McClure and Smith [32]
and Spitzweck [41]. The circle product introduced in Section 3.3 goes back to Getzler
and Jones [10] and Smirnov [40] and more recently appears in Fresse [7; 9], Goerss and
Hopkins [12], Kapranov and Manin [22], Kelly [23] and Rezk [35]. A fuller account
of the material in this section is given in [16] for the general context of a monoidal
model category, which was largely influenced by the development in [35].

3.1 Symmetric sequences

Definition 3.2 Let n� 0 and G be a finite group.

� A symmetric sequence in Sp† is a functor AW †op �! Sp† . SymSeq is the
category of symmetric sequences in Sp† and their natural transformations; the
null object is denoted by �.

� SymSeqG is the category of functors X W G �! SymSeq and their natural trans-
formations.

� A symmetric sequence A is concentrated at n if AŒr�D � for all r ¤ n.

Algebraic & Geometric Topology, Volume 9 (2009)
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3.3 Tensor product and circle product of symmetric sequences

Definition 3.4 Let X be a finite set and A in Sp† . The copowers A �X and X �A

in Sp† are defined as follows:

A �X WD
a
X

AŠA^XC ; X �A WD
a
X

AŠXC ^A;

the coproduct in Sp† of jX j copies of A.

Definition 3.5 Let A1; : : : ;At be symmetric sequences. The tensor products
A1 L̋ � � � L̋ At 2 SymSeq are the left Kan extensions of objectwise smash along coprod-
uct of sets:

.†op/�t
A1� ��� �At //

`
��

.Sp†/�t ^ // Sp†

†op A1
L̋ ��� L̋ At

left Kan extension
// Sp†:

This definition of tensor product in SymSeq is conceptually the same as the definition
of tensor product in S†� given in Definition 2.7. The following is a calculation of tensor
product, whose proof is left to the reader.

Proposition 3.6 Let A1; : : : ;At be symmetric sequences and R 2†, with r WD jRj.
There are natural isomorphisms

.A1 L̋ � � � L̋ At /ŒR�Š
a

�WR�!t
in Set

A1Œ�
�1.1/�^ � � � ^At Œ�

�1.t/�;

Š

a
r1C���CrtDr

A1Œr1�^ � � � ^At Œrt� �
†r1
�����†rt

†r :.3:7/

It will be useful to extend the definition of tensor powers A
L̋ t to situations in which

the integers t are replaced by a finite set T .

Definition 3.8 Let A be a symmetric sequence and R;T 2 †. The tensor powers
A
L̋ T 2 SymSeq are defined objectwise by

.A
L̋ T /ŒR� WD

a
�WR�!T

in Set

^t2T AŒ��1.t/�; T ¤∅ ;.3:9/

.A
L̋ ∅/ŒR� WD

a
�WR�!∅

in Set

S:
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Note that there are no functions � W R �!∅ in Set unless RD∅. We will use the
abbreviation A

L̋ 0 WDA
L̋ ∅ .

Definition 3.10 Let A;B be symmetric sequences, R 2†, and define r WD jRj. The
circle product (or composition product) A ıB 2 SymSeq is defined objectwise by the
coend

.A ıB/ŒR� WD A^† .B
L̋ �/ŒR�Š

a
t�0

AŒt�^†t
.B
L̋ t /Œr�:.3:11/

Definition 3.12 Let B;C be symmetric sequences, T 2†, and define t WD jT j. The
mapping sequence Mapı.B;C / 2 SymSeq and the mapping object Map L̋ .B;C / 2
SymSeq are defined objectwise by the ends

Mapı.B;C /ŒT � WDMap..B L̋ T /Œ��;C /† Š
Y
r�0

Map..B L̋ t/Œr�;C Œr�/†r ;

Map L̋ .B;C /ŒT � WDMap.B;C ŒT q��/† Š
Y
r�0

Map.BŒr�;C Œt C r�/†r :.3:13/

These mapping sequences and mapping objects are part of closed monoidal category
structures on symmetric sequences and fit into isomorphisms

hom.A ıB;C /Š hom.A;Mapı.B;C //;

hom.A L̋ B;C /Š hom.A;Map L̋ .B;C //;

natural in symmetric sequences A;B;C . The mapping sequences also arise in describ-
ing algebras and modules over operads (3.22).

Proposition 3.14

(a) .SymSeq; L̋ ; 1/ has the structure of a closed symmetric monoidal category. All
small limits and colimits exist and are calculated objectwise. The unit 12SymSeq

is given by 1Œn�D � for each n� 1 and 1Œ0�D S .

(b) .SymSeq; ı; I/ has the structure of a closed monoidal category with all small
limits and colimits. Circle product is not symmetric. The (two-sided) unit
I 2 SymSeq is given by I Œn�D � for each n¤ 1 and I Œ1�D S .

Algebraic & Geometric Topology, Volume 9 (2009)



1646 John E Harper

3.15 Symmetric sequences build functors

The category Sp† embeds in SymSeq as the full subcategory of symmetric sequences
concentrated at 0, via the functor y�W Sp† �! SymSeq defined objectwise by

yZŒR� WD

�
Z; for jRj D 0,
�; otherwise:

.3:16/

Definition 3.17 Let O be a symmetric sequence and Z 2 Sp† . The corresponding
functor OW Sp† �! Sp† is defined objectwise by

O.Z/ WDO ı .Z/ WD
a
t�0

OŒt�^†t
Z^t
Š .O ı yZ/Œ0�:

3.18 Algebras and modules and over operads

Definition 3.19 An operad is a monoid object in .SymSeq; ı; I/ and a morphism of
operads is a morphism of monoid objects in .SymSeq; ı; I/.

Similar to the case of any monoid object, we study operads because we are interested
in the objects they act on. A useful introduction to monoid objects and monoidal
categories is given in [26, VII].

Definition 3.20 Let O be an operad. A left O–module is an object in .SymSeq; ı; I/

with a left action of O and a morphism of left O–modules is a map in SymSeq which
respects the left O–module structure.

Each operad O determines a functor OW Sp† �! Sp† (Definition 3.17) together
with natural transformations mW OO �!O and �W id �!O which give the functor
OW Sp† �! Sp† the structure of a monad (or triple) in Sp† . One perspective offered
in [24, I.3] is that operads determine particularly manageable monads. A useful
introduction to monads and their algebras is given in [26, VI]. Recall the following
definition from [24, I.2 and I.3].

Definition 3.21 Let O be an operad. An O–algebra is an object in Sp† with a left
action of the monad OW Sp† �! Sp† and a morphism of O–algebras is a map in Sp†

which respects the left action of the monad OW Sp† �! Sp† .

It is easy to verify that an O–algebra is the same as an object X 2 Sp† with a left
O–module structure on yX , and if X and X 0 are O–algebras, then a morphism of
O–algebras is the same as a map f W X �!X 0 in Sp† such that yf W yX �! yX 0 is a
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morphism of left O–modules. In other words, an algebra over an operad O is the same
as a left O–module which is concentrated at 0.

Giving a symmetric sequence Y a left O–module structure is the same as giving a
morphism of operads

mW O �!Mapı.Y;Y /:.3:22/

Similarly, giving an object X 2 Sp† an O–algebra structure is the same as giving a
morphism of operads

mW O �!Mapı. yX ; yX /:

This is the original definition given in [30] of an O–algebra structure on X , where
Mapı. yX ; yX / is called the endomorphism operad of X , and motivates the suggestion
in [24; 30] that OŒt� should be thought of as parameter objects for t –ary operations.

Definition 3.23 Let O be an operad.
� AlgO is the category of O–algebras and their morphisms.
� LtO is the category of left O–modules and their morphisms.

The category AlgO embeds in LtO as the full subcategory of left O–modules concen-
trated at 0, via the functor y�W AlgO �! LtO defined objectwise by (3.16).

Proposition 3.24 Let O be an operad in symmetric spectra. There are adjunctions

.3:25/ Sp†
O ı .�/// AlgO;

U
oo SymSeq

O ı� //
LtO;

U
oo

with left adjoints on top and U the forgetful functor.

Proof The unit I for circle product is the initial operad, hence there is a unique map
of operads f W I �!O . The desired adjunctions are the following special cases

Sp† D AlgI

f� // AlgO;
f �

oo SymSeqD LtI

f� //
LtO;

f �
oo

of change of operads adjunctions.

Definition 3.26 Let C be a category. A pair of maps of the form

X0 X1

d0oo

d1

oo

in C is called a reflexive pair if there exists s0W X0 �!X1 in C such that d0s0 D id
and d1s0 D id. A reflexive coequalizer is the coequalizer of a reflexive pair.
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The following proposition is proved in [35, Proposition 2.3.5], and allows us to calculate
certain colimits in algebras and modules over operads by working in the underlying
category. It is also proved in [16] and is closely related to [5, Proposition II.7.2]. Since
it plays a fundamental role in several of the main arguments in this paper, we have
included a proof below.

Proposition 3.27 Let O be an operad in symmetric spectra. Reflexive coequalizers
and filtered colimits exist in AlgO and LtO , and are preserved by the forgetful functors.

First we consider the following proposition which is proved in [35, Lemma 2.3.4].
It is also proved in [16] and follows from the proof of [5, Proposition II.7.2] or the
arguments in [12, Section 1] as we indicate below.

Proposition 3.28

(a) If A�1 A0
oo A1

oooo and B�1 B0
oo B1

oooo are reflexive coequalizer
diagrams in SymSeq, then their objectwise circle product

A�1 ıB�1 A0 ıB0
oo A1 ıB1

oooo

is a reflexive coequalizer diagram in SymSeq.

(b) If A;BW D �! SymSeq are filtered diagrams, then objectwise circle product
of their colimiting cones is a colimiting cone. In particular, there are natural
isomorphisms

colim
d2D

.Ad ıBd /Š .colim
d2D

Ad / ı .colim
d2D

Bd /

in SymSeq.

Proof Consider part (a). The corresponding statement for smash products of symmetric
spectra follows from the proof of [5, Proposition II.7.2] or the argument appearing
between Definition 1.8 and Lemma 1.9 in [12, Section 1]. Using this together with (3.9)
and (3.11), the statement for circle products easily follows by verifying the universal
property of a colimit. Consider part (b). It is easy to verify the corresponding statement
for smash products of symmetric spectra, and the statement for circle products easily
follows as in part (a).
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Proof of Proposition 3.27 Suppose A0 A1
oooo is a reflexive pair in LtO and con-

sider the solid commutative diagram

O ıO ıA�1

d0

��
d1

��

O ıO ıA0
oo

m ı id
��

idım
��

O ıO ıA1
oooo

m ı id
��

id ım
��

O ıA�1

m

��

O ıA0
oo

m

��

O ıA1
oo oo

m

��
A�1

s0

DD

A0
oo

� ı id

DD

A1
oooo

� ı id

DD

in SymSeq, with bottom row the reflexive coequalizer diagram of the underlying
reflexive pair in SymSeq. By Proposition 3.28, the rows are reflexive coequalizer
diagrams and hence there exist unique dotted arrows m; s0; d0; d1 in SymSeq which
make the diagram commute. By uniqueness, s0D �ı id, d0Dmı id, and d1D idım.
It is easy to verify that m gives A�1 the structure of a left O–module and that the
bottom row is a reflexive coequalizer diagram in LtO ; it is easy to check the diagram
lives in LtO and that the colimiting cone is initial with respect to all cones in LtO . The
case for filtered colimits is similar.

The next proposition is proved in [35, Proposition 2.3.5]. It verifies the existence of all
small colimits in algebras and left modules over an operad, and provides one approach
to their calculation. The proposition also follows from the argument in [5, Proposition
II.7.4]. To keep the paper relatively self-contained, we have included a proof at the end
of Section 6.

Proposition 3.29 Let O be an operad in symmetric spectra. All small colimits exist
in AlgO and LtO . If AW D �! LtO is a small diagram, then colim A in LtO may be
calculated by a reflexive coequalizer of the form

colim AŠ colim
�
O ı

�
colim
d2D

Ad

�
O ı

�
colim
d2D

.O ıAd /
�oooo
�

in the underlying category SymSeq; the colimits appearing inside the parenthesis are in
the underlying category SymSeq.

The proof of the following is left to the reader.

Proposition 3.30 Let O be an operad in symmetric spectra. All small limits exist in
AlgO and LtO , and are preserved by the forgetful functors.
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4 Model structures

The purpose of this section is to prove Theorem 1.1 and Theorem 1.3, which establish
certain model category structures on algebras and left modules over an operad. Model
categories provide a setting in which one can do homotopy theory, and in particular,
provide a framework for constructing and calculating derived functors. A useful
introduction to model categories is given in Dwyer and Spalinski [4]; see also the
original articles of Quillen [33; 34] and the more recent by Goerss and Jardine [15],
Hirschhorn [19] and Hovey [20]. When we refer to the extra structure of a monoidal
model category, we are using Schwede and Shipley [38, Definition 3.1]; an additional
condition involving the unit is assumed in Lewis and Mandell [25, Definition 2.3]
which we will not require in this paper.

In this paper, our primary method of establishing model structures is to use a small
object argument together with the extra structure enjoyed by a cofibrantly generated
model category [19, Chapter 11; 20, Section 2.1; 38, Section 2]. The reader unfamiliar
with the small object argument may consult [4, Section 7.12] for a useful introduction,
followed by the (possibly transfinite) versions described in [19, Chapter 10; 20, Section
2.1; 38, Section 2].

In [38, Section 2] an account of these techniques is provided which will be sufficient for
our purposes; our proofs of Theorem 1.1 and Theorem 1.3 will reduce to verifying the
conditions of [38, Lemma 2.3(1)]. This verification amounts to a homotopical analysis
of certain pushouts (Section 4.3) which lies at the heart of this paper. The reader may
contrast this with a path object approach explored in [2], which amounts to verifying
the conditions of [38, Lemma 2.3(2)]; compare also [17; 41].

A first step is to recall just enough notation so that we can describe and work with
the (positive) flat stable model structure on symmetric spectra, and the corresponding
projective model structures on the diagram categories SymSeq and SymSeqG , for G a
finite group. The functors involved in such a description are easy to understand when
defined as the left adjoints of appropriate functors, which is how they naturally arise in
this context.

For each m�0 and subgroup H �†m denote by l W H �!†m the inclusion of groups
and define the evaluation functor evmW S

†
� �! S†m

� objectwise by evm.X / WD Xm .
There are adjunctions

S�
//
SH
�

limH

oo
†m �H � //

S†m
�

l�
oo //

S†�evm

oo
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with left adjoints on top. Define GH
m W S� �! S†� to be the composition of the three top

functors, and define limH evmW S
†
� �! S� to be the composition of the three bottom

functors; we have dropped the restriction functor l� from the notation. It is easy to
check that if K 2 S� , then GH

m .K/ is the object in S†� which is concentrated at m

with value †m �H K . Consider the forgetful functor Sp† �! S†� . It follows from
Proposition 2.12 that there is an adjunction

S†�
S˝� //

Sp†oo

with left adjoint on top.

For each p � 0, define the evaluation functor EvpW SymSeq �! Sp† objectwise
by Evp.A/ WD AŒp�, and for each finite group G , consider the forgetful functor
SymSeqG

�! SymSeq. There are adjunctions

Sp†
Gp // SymSeq
Evp

oo
G � � //

SymSeqGoo

with left adjoints on top. It is easy to check that if X 2 Sp† , then Gp.X / is the
symmetric sequence concentrated at p with value X �†p .

Putting it all together, there are adjunctions

.4:1/ S�
GH

m //
S†�

limH evm

oo
S˝� //

Sp†oo
Gp // SymSeq
Evp

oo
G�� //

SymSeqGoo

with left adjoints on top. We are now in a good position to describe several useful
model structures. It is proved in [39] that the following two model category structures
exist on symmetric spectra.

Definition 4.2

(a) The flat stable model structure on Sp† has weak equivalences the stable equiva-
lences, cofibrations the retracts of (possibly transfinite) compositions of pushouts
of maps

S ˝GH
m @�Œk�C �! S ˝GH

m �Œk�C .m� 0; k � 0; H �†m subgroup/;

and fibrations the maps with the right lifting property with respect to the acyclic
cofibrations.
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(b) The positive flat stable model structure on Sp† has weak equivalences the stable
equivalences, cofibrations the retracts of (possibly transfinite) compositions of
pushouts of maps

S ˝GH
m @�Œk�C �! S ˝GH

m �Œk�C .m� 1; k � 0; H �†m subgroup/;

and fibrations the maps with the right lifting property with respect to the acyclic
cofibrations.

It follows immediately from the above description that every positive flat stable cofi-
bration is a flat stable cofibration. Several useful properties of the flat stable model
structure are proved in [21, Section 5.3]; here, we remind the reader of Remark 1.2.

The stable model structure on Sp† is defined by fixing H in Definition 4.2(a) to be
the trivial subgroup. This is one of several model category structures that is proved in
[21] to exist on symmetric spectra.

The positive stable model structure on Sp† is defined by fixing H in Definition 4.2(b)
to be the trivial subgroup. This model category structure is proved in [28] to exist on
symmetric spectra. It follows immediately that every (positive) stable cofibration is a
(positive) flat stable cofibration.

These model structures on symmetric spectra enjoy several good properties, including
that smash products of symmetric spectra mesh nicely with each of the model structures
defined above. More precisely, each model structure above is cofibrantly generated in
which the generating cofibrations and acyclic cofibrations have small domains, and that
with respect to each model structure .Sp†;^;S/ is a monoidal model category. There
is also a model structure on Sp† which has weak equivalences the stable equivalences
and cofibrations the monomorphisms [21, Section 5.3]; this model structure is not a
monoidal model structure on .Sp†;^;S/.

If G is a finite group, it is easy to check that the diagram categories SymSeq and
SymSeqG inherit corresponding projective model category structures, where the weak
equivalences (resp. fibrations) are the objectwise weak equivalences (resp. objectwise
fibrations). We refer to these model structures by the names above (eg, the positive
flat stable model structure on SymSeqG ). Each of these model structures is cofibrantly
generated in which the generating cofibrations and acyclic cofibrations have small
domains. Furthermore, with respect to each model structure .SymSeq;˝; 1/ is a
monoidal model category; this is proved in [16], but can easily be verified directly
using (3.13).

Proof of Theorem 1.1 Consider SymSeq and Sp† both with the positive flat stable
model structure. We will prove that the model structure on LtO (resp. AlgO ) is created
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by the adjunction

SymSeq
O ı� //

LtO
U

oo
�

resp. Sp†
O ı .�/// AlgO

U
oo

�
with left adjoint on top and U the forgetful functor.

Define a map f in LtO to be a weak equivalence (resp. fibration) if U.f / is a weak
equivalence (resp. fibration) in SymSeq. Similarly, define a map f in AlgO to be a
weak equivalence (resp. fibration) if U.f / is a weak equivalence (resp. fibration) in
Sp† . Define a map f in LtO (resp. AlgO ) to be a cofibration if it has the left lifting
property with respect to all acyclic fibrations in LtO (resp. AlgO ).

Consider the case of LtO . We want to verify the model category axioms (MC1)–(MC5)
in [4]. By Proposition 3.29 and Proposition 3.30, we know that (MC1) is satisfied, and
verifying (MC2) and (MC3) is clear. The (possibly transfinite) small object arguments
described in the proof of [38, Lemma 2.3] reduce the verification of (MC5) to the
verification of Proposition 4.4 below. The first part of (MC4) is satisfied by definition,
and the second part of (MC4) follows from the usual lifting and retract argument, as
described in the proof of [38, Lemma 2.3]. This verifies the model category axioms.
By construction, the model category is cofibrantly generated. Argue similarly for the
case of AlgO by considering left O–modules concentrated at 0.

Proof of Theorem 1.3 Consider SymSeq and Sp† both with the positive stable model
structure. We will prove that the model structure on LtO (resp. AlgO ) is created by the
adjunction

SymSeq
O ı� //

LtO
U

oo
�

resp. Sp†
O ı .�/// AlgO

U
oo

�
with left adjoint on top and U the forgetful functor. Define a map f in LtO to be a
weak equivalence (resp. fibration) if U.f / is a weak equivalence (resp. fibration) in
SymSeq. Similarly, define a map f in AlgO to be a weak equivalence (resp. fibration)
if U.f / is a weak equivalence (resp. fibration) in Sp† . Define a map f in LtO (resp.
AlgO ) to be a cofibration if it has the left lifting property with respect to all acyclic
fibrations in LtO (resp. AlgO ).

The model category axioms are verified exactly as in the proof of Theorem 1.1; (MC5)
is verified by Proposition 4.4 below since every cofibration in SymSeq (resp. Sp† )
with the positive stable model structure is a cofibration in SymSeq (resp. Sp† ) with
the positive flat stable model structure.
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4.3 Homotopical analysis of certain pushouts

The purpose of this section is to prove the following proposition which we used in the
proofs of Theorem 1.1 and Theorem 1.3. The constructions developed here will also
be important for homotopical analyses in other sections of this paper.

Proposition 4.4 Let O be an operad in symmetric spectra, A 2 LtO , and i W X �! Y

a generating acyclic cofibration in SymSeq with the positive flat stable model structure.
Consider any pushout diagram in LtO of the form

.4:5/
O ıX

f //

id ı i

��

A

j
��

O ıY // Aq.OıX / .O ıY /:

Then j is a monomorphism and a weak equivalence.

Symmetric arrays arise naturally when calculating certain coproducts and pushouts of
left modules and algebras over operads (Proposition 4.7 and Proposition 4.20).

Definition 4.6
� A symmetric array in Sp† is a symmetric sequence in SymSeq; ie a functor

AW †op �! SymSeq.
� SymArray WD SymSeq†

op
Š .Sp†/†

op�†op
is the category of symmetric arrays

in Sp† and their natural transformations.

First we analyze certain coproducts of modules over operads. The following proposition
is proved in [16] in the more general context of monoidal model categories, and was
motivated by a similar argument given in [14, Section 2.3] and [27, Section 13] in the
context of algebras over an operad. Since the proposition is important to several results
in this paper, and in an attempt to keep the paper relatively self-contained, we have
included a proof below.

Proposition 4.7 Let O be an operad in symmetric spectra, A2 LtO , and Y 2 SymSeq.
Consider any coproduct in LtO of the form

.4:8/ Aq .O ıY /:

There exists a symmetric array OA and natural isomorphisms

Aq .O ıY /Š
a
q�0

OAŒq� L̋ †q
Y
L̋ q
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in the underlying category SymSeq. If q � 0, then OAŒq� is naturally isomorphic to a
colimit of the form

OAŒq�Š colim
�

p̀�0

OŒp C q�^†p
A
L̋ p

p̀�0

OŒp C q�^†p
.O ıA/

L̋ p

d1

oo
d0oo �

;

in SymSeq where d0 is induced by operad multiplication and d1 is induced by
mW O ıA �!A.

Remark 4.9 Other possible notations for OA include UO.A/ or U.A/; these are
closer to the notation used in [6; 27] and are not to be confused with the forgetful
functors.

First we make the following observation.

Proposition 4.10 Let O be an operad in symmetric spectra and A 2 LtO . Then

.4:11/ A O ıA
moo O ıO ıA

m ı idoo

id ım
oo

is a reflexive coequalizer diagram in LtO .

Proof We use a split fork argument. The unit map �W I �!O induces a map
s0 WD id ı � ı idW O ıA �!O ıO ıA in LtO . Relabeling the three maps in (4.11)
as d0 WDm; d0 WDmı id; d1 WD idım, it is easy to verify that d0s0D id and d1s0D id.
Hence the pair of maps is a reflexive pair in LtO , and by Proposition 3.27 it is enough
to verify that (4.11) is a coequalizer diagram in the underlying category SymSeq. The
unit map �W I �!O also induces maps

s�1 WD � ı idW A �!O ıA

s�1 WD � ı id ı idW O ıA �!O ıO ıA

in the underlying category SymSeq which satisfy the relations

d0d0 D d0d1; d0s�1 D id; d1s�1 D s�1d0:

Using these relations, it is easy to check that (4.11) is a coequalizer diagram in SymSeq

by verifying the universal property of colimits.

Proof of Proposition 4.7 The objectwise coproduct of two reflexive coequalizer
diagrams is a reflexive coequalizer diagram, hence by Proposition 4.10 the coproduct
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.4:8/ may be calculated by a reflexive coequalizer in LtO of the form

Aq .O ıY /Š colim
�
.O ıA/q .O ıY / .O ıO ıA/q .O ıY /

d1

oo
d0oo

�
:

The maps d0 and d1 are induced by maps mW O ıO �!O and mW O ıA �!A,
respectively. By Proposition 3.27, this reflexive coequalizer may be calculated in the
underlying category SymSeq. There are natural isomorphisms

.O ıA/q .O ıY /ŠO ı .AqY /

Š

a
t�0

OŒt�^†t
.AqY /

L̋ t

Š

a
q�0

�a
p�0

OŒp C q�^†p
A
L̋ p
�
L̋ †q

Y
L̋ q;

and similarly,

.O ıO ıA/q .O ıY /Š
a
q�0

�a
p�0

OŒp C q�^†p
.O ıA/

L̋ p
�
L̋ †q

Y
L̋ q;

in the underlying category SymSeq. The maps d0 and d1 similarly factor in the
underlying category SymSeq.

Remark 4.12 We have used the natural isomorphisms

.AqY /
L̋ t
Š

a
pCqDt

†pCq �†p�†q
A
L̋ p L̋ Y

L̋ q

in the proof of Proposition 4.7.

Definition 4.13 Let i W X �! Y be a morphism in SymSeq and t � 1. Define Qt
0
WD

X
L̋ t and Qt

t WD Y
L̋ t . For 0< q < t define Qt

q inductively by the pushout diagrams

.4:14/

†t �†t�q�†q
X
L̋ .t�q/ L̋Q

q
q�1

i�
��

pr� // Qt
q�1

��

†t �†t�q�†q
X
L̋ .t�q/ L̋ Y

L̋ q // Qt
q

in SymSeq†t . We sometimes denote Qt
q by Qt

q.i/ to emphasize in the notation the
map i W X �! Y . The maps pr� and i� are the obvious maps induced by i and the
appropriate projection maps.
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Remark 4.15 For instance, to construct Q3
2

, first construct Q2
1

via the pushout
diagram

.4:16/

†2 �†1�†1
X L̋ X

id �†1�†1
id L̋ i

��

// †2 �†2
X
L̋ 2 Š //

X
L̋ 2

��

†2 �†1�†1
X L̋ Y // Q2

1

in SymSeq†2 , then construct Q3
1

by the pushout diagram

†3 �†2�†1
X
L̋ 2 L̋ X

id �†2�†1
id L̋ i

��

// †3 �†3
X
L̋ 3 Š //

X
L̋ 3

��

†3 �†2�†1
X
L̋ 2 L̋ Y // Q3

1

in SymSeq†3 , and finally construct Q3
2

by the pushout diagram

.4:17/

†3 �†1�†2
X L̋Q2

1

id �†1�†2
id L̋ i�

��

pr� // Q3
1

��

†3 �†1�†2
X L̋ Y

L̋ 2 // Q3
2

in SymSeq†3 . The map i� in (4.17) is induced via (4.16) by the two maps

X
L̋ 2
�! Y

L̋ 2;

†2 �†1�†1
X L̋ Y �!†2 �†1�†1

Y L̋ Y �!†2 �†2
Y
L̋ 2
Š Y

L̋ 2:

The pushout diagram

.4:18/

†3 �†1�†1�†1
X L̋ X L̋ X

��

// †3 �†1�†2
X L̋ X

L̋ 2

��

†3 �†1�†1�†1
X L̋ X L̋ Y // †3 �†1�†2

X L̋Q2
1

in SymSeq†3 is obtained by applying †3 �†1�†2
X L̋ � to (4.16); the map pr� in

(4.17) is induced via (4.18) by the two maps

†3 �†1�†2
X L̋ X

L̋ 2
�!†3 �†3

X
L̋ 3
ŠX

L̋ 3
�!Q3

1;

†3 �†1�†1�†1
X L̋ X L̋ Y �!†3 �†2�†1

X
L̋ 2 L̋ Y �!Q3

1:
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Remark 4.19 The construction Qt
t�1

can be thought of as a †t –equivariant version
of the colimit of a punctured t –cube [16]. There is a natural isomorphism Y

L̋ t=Qt
t�1
Š

.Y=X /
L̋ t .

The following proposition is proved in [16] in the more general context of monoidal
model categories, and was motivated by a similar construction given in [6, Section 12]
in the context of simplicial multifunctors of symmetric spectra. Since several results in
this paper require both the proposition and its proof, and in an effort to keep the paper
relatively self-contained, we have included a proof below.

Proposition 4.20 Let O be an operad in symmetric spectra, A2LtO , and i W X �! Y

in SymSeq. Consider any pushout diagram in LtO of the form

.4:21/
O ıX

f //

id ı i

��

A

j
��

O ıY // Aq.OıX / .O ıY /:

The pushout in (4.21) is naturally isomorphic to a filtered colimit of the form

.4:22/ Aq.OıX / .O ıY /Š colim
�

A0

j1 // A1

j2 // A2

j3 // � � �
�

in the underlying category SymSeq, with A0 WDOAŒ0�ŠA and At defined inductively
by pushout diagrams in SymSeq of the form

.4:23/

OAŒt� L̋ †t
Qt

t�1

id L̋ †t
i�

��

f� // At�1

jt

��
OAŒt� L̋ †t

Y
L̋ t

�t // At

Proof It is easy to verify that the pushout in (4.21) may be calculated by a reflexive
coequalizer in LtO of the form

Aq.OıX / .O ıY /Š colim
�

Aq .O ıY / Aq .O ıX /q .O ıY /
xioo

xf

oo
�
:

By Proposition 3.27, this reflexive coequalizer may be calculated in the underlying
category SymSeq. Hence it suffices to reconstruct this coequalizer in SymSeq via a
suitable filtered colimit in SymSeq. A first step is to understand what it means to give
a cone in SymSeq out of this diagram.
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The maps xi and xf are induced by maps idıi� and idıf� which fit into the commutative
diagram

.4:24/

Aq
�
O ı .X qY /

�
xi

��
xf

��

O ı .AqX qY /oo

id ı i�
��

id ıf�
��

O ı
�
.O ıA/qX qY

�d0oo

d1

oo

id ı i�
��

id ıf�
��

Aq .O ıY / O ı .AqY /oo O ı
�
.O ıA/qY

�d0oo

d1

oo

in LtO , with rows reflexive coequalizer diagrams, and maps i� and f� in SymSeq

induced by i W X �! Y and f W X �!A in SymSeq. Here we have used the same
notation for both f and its adjoint (3.25). By Proposition 3.27, the pushout in (4.21)
may be calculated by the colimit of the left-hand column of (4.24) in the underlying
category SymSeq. By (4.24) and Proposition 4.7, f induces maps xfq;p which make
the diagrams

Aq
�
O ı .X qY /

�
Š

q̀�0 p̀�0

� �
xf

��

�
OAŒp C q� L̋ †p�†q

X
L̋ p L̋ Y

L̋ q
�inq;poo

xfq;p

��
Aq .O ıY /Š

t̀�0

� � �
OAŒq� L̋ †q

Y
L̋ q
�inqoo

in SymSeq commute. Similarly, i induces maps xiq;p which make the diagrams

Aq
�
O ı .X qY /

�
Š

q̀�0 p̀�0

� �
xi

��

�
OAŒp C q� L̋ †p�†q

X
L̋ p L̋ Y

L̋ q
�inq;poo

xiq;p

��
Aq .O ıY /Š

t̀�0

� � �
OAŒp C q� L̋ †pCq

Y
L̋ .pCq/

�inpCqoo

in SymSeq commute. We can now describe more explicitly what it means to give a
cone in SymSeq out of the left-hand column of (4.24). Let 'W Aq .O ıY / �! � be
a morphism in SymSeq and define 'q WD 'inq . Then 'xi D ' xf if and only if the
diagrams

.4:25/
OAŒp C q� L̋ †p�†q

X
L̋ p L̋ Y

L̋ q

xiq;p
��

xfq;p // OAŒq� L̋ †q
Y
L̋ q

'q

��
OAŒp C q� L̋ †pCq

Y
L̋ .pCq/

'pCq // �
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commute for every p; q � 0. Since xiq;0 D id and xfq;0 D id, it is sufficient to consider
q � 0 and p > 0.

The next step is to reconstruct the colimit of the left-hand column of (4.24) in SymSeq

via a suitable filtered colimit in SymSeq. The diagrams (4.25) suggest how to proceed.
We will describe two filtration constructions that calculate the pushout (4.21) in the
underlying category SymSeq. The purpose of presenting the filtration construction
(4.27) is to provide motivation and intuition for the filtration construction (4.23) that
we are interested in. Since (4.27) does not use the gluing construction in Definition
4.13 it is simpler to verify that (4.22) is satisfied and provides a useful warm-up for
working with (4.23).

For each t � 1, there are natural isomorphisms

.X qY /
L̋ t
�Y

L̋ t
Š

a
pCqDt

q�0;p>0

†pCq �†p�†q
X
L̋ p L̋ Y

L̋ q:.4:26/

Here, .X qY /
L̋ t �Y

L̋ t denotes the coproduct of all factors in .X qY /
L̋ t except

Y
L̋ t . Define A0 WDOAŒ0�ŠA and for each t � 1 define At by the pushout diagram

.4:27/

OAŒt� L̋ †t

�
.X qY /

L̋ t �Y
L̋ t
�

i�
��

f� // At�1

jt

��
OAŒt� L̋ †t

Y
L̋ t

�t // At

in SymSeq. The maps f� and i� are induced by the appropriate maps xfq;p and xiq;p .
We want to use (4.26), (4.27) and (4.25) to verify that (4.22) is satisfied; it is sufficient to
verify the universal property of colimits. By Proposition 4.7, the coproduct Aq.OıY /
is naturally isomorphic to a filtered colimit of the form

Aq .O ıY /Š colim
�

B0
// B1

// B2
// � � �

�
in the underlying category SymSeq, with B0 WDOAŒ0� and Bt defined inductively by
pushout diagrams in SymSeq of the form

�

��

// Bt�1

��
OAŒt� L̋ †t

Y
L̋ t // Bt
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For each t � 1, there are naturally occurring maps Bt �!At , induced by the appro-
priate �i and ji maps in (4.27), which fit into the commutative diagram

Aq
�
O ı .X qY /

�
xi

��
xf

��
B0

// B1

��

// B2

��

// � � � // colimt Bt
Š //

��

Aq .O ıY /

x�
��

A0

j1 // A1

j2 // A2

j3 // � � � // colimt At colimt At

in SymSeq; the morphism of filtered diagrams induces a map x� . We claim that the
right-hand column is a coequalizer diagram in SymSeq. To verify that x� satisfies
x� xi D x� xf , by (4.25) it is enough to check that the diagram

OAŒp C q� L̋ †p�†q
X
L̋ p L̋ Y

L̋ q

xiq;p

��

xfq;p // OAŒq� L̋ †q
Y
L̋ q

x� inq

��
OAŒp C q� L̋ †pCq

Y
L̋ .pCq/

x� inpCq // colimt At

commute for every q � 0 and p > 0; this is easily verified using (4.26) and (4.27),
and is left to the reader. Let 'W Aq .O ıY / �! � be a morphism in SymSeq such
that 'xi D ' xf . We want to verify that there exists a unique map x'W colimt At �! � in
SymSeq such that ' D x' x� . Consider the corresponding maps 'i in (4.25) and define
x'0 WD '0 . For each t � 1, the maps 'i induce maps x't W At �! � such that x't jt D

x't�1 and x't �t D 't . In particular, the maps x't induce a map x'W colimt At �! � in
SymSeq. Using (4.25) it is an easy exercise (which the reader should verify) that x'
satisfies ' D x' x� and that x' is the unique such map. Hence the filtration construction
(4.27) satisfies (4.22). One drawback of (4.27) is that it may be difficult to analyze
homotopically. A hint at how to improve the construction is given by the observation
that the collection of maps xfq;p and xiq;p satisfy many compatibility relations. To
obtain a filtration construction we can homotopically analyze, the idea is to replace
.X qY /

L̋ t �Y
L̋ t in (4.27) with the gluing construction Qt

t�1
in Definition 4.13 as

follows.

Define A0 WDOAŒ0�ŠA and for each t � 1 define At by the pushout diagram (4.23)
in SymSeq. The maps f� and i� are induced by the appropriate maps xfq;p and xiq;p .
Arguing exactly as above for the case of (4.27), it is easy to use the diagrams (4.25)
to verify that (4.22) is satisfied. The only difference is that the naturally occurring
maps Bt �!At are induced by the appropriate �i and ji maps in (4.23) instead of in
(4.27).
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The following proposition illustrates some of the good properties of the positive flat
stable model structure on SymSeq. The statement in part (b) is motivated by [6, Lemma
12.7] in the context of symmetric spectra with the positive stable model structure. We
defer the proof to Section 6.

Proposition 4.28 Let B 2 SymSeq†
op
t and t � 1. If i W X �! Y is a cofibration

between cofibrant objects in SymSeq with the positive flat stable model structure, then
(a) X

L̋ t �! Y
L̋ t is a cofibration in SymSeq†t with the positive flat stable model

structure, and hence with the flat stable model structure,
(b) the map B L̋ †t

Qt
t�1
�! B L̋ †t

Y
L̋ t is a monomorphism.

We will prove the following proposition in Section 6.

Proposition 4.29 Let G be a finite group and consider SymSeq, SymSeqG and
SymSeqGop

each with the flat stable model structure.
(a) If B 2 SymSeqGop

, then the functor

B L̋ G �W SymSeqG
�! SymSeq

preserves weak equivalences between cofibrant objects, and hence its total left
derived functor exists.

(b) If Z 2 SymSeqG is cofibrant, then the functor

� L̋ G ZW SymSeqGop
�! SymSeq

preserves weak equivalences.

We are now in a good position to give a homotopical analysis of the pushout in
Proposition 4.4.

Proposition 4.30 If the map i W X �! Y in Proposition 4.20 is a generating acyclic
cofibration in SymSeq with the positive flat stable model structure, then each map jt is
a monomorphism and a weak equivalence. In particular, the map j is a monomorphism
and a weak equivalence.

Proof The generating acyclic cofibrations in SymSeq have cofibrant domains. Propo-
sition 4.28 implies that each jt is a monomorphism. We know that At=At�1 Š

OAŒt� L̋ †t
.Y=X /

L̋ t and that � �! Y=X is an acyclic cofibration in SymSeq with the
positive flat stable model structure. It follows from Proposition 4.28 and Proposition
4.29 that jt is a weak equivalence.

Proof of Proposition 4.4 By assumption, the map i W X �! Y is a generating acyclic
cofibration in SymSeq with the positive flat stable model structure, hence Proposition
4.30 finishes the proof.
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5 Relations between homotopy categories

The purpose of this section is to prove Theorem 1.4, which establishes an equivalence
between certain homotopy categories of algebras (resp. modules) over operads. Our
argument is a verification of the conditions in [4, Theorem 9.7] for an adjunction to
induce an equivalence between the corresponding homotopy categories, and amounts
to a homotopical analysis (Section 5.1) of the unit of the adjunction.

Proof of Theorem 1.4 Let f W O �!O0 be a morphism of operads and consider
the case of left modules. We know (1.5) is a Quillen adjunction since the forgetful
functor f � preserves fibrations and acyclic fibrations. Assume furthermore that f is
a weak equivalence in the underlying category SymSeq with the positive flat stable
model structure; let’s verify the Quillen adjunction (1.5) is a Quillen equivalence. By
[4, Theorem 9.7], it is enough to verify: for cofibrant Z 2 LtO and fibrant B 2 LtO0 ,
a map �W Z �! f �B is a weak equivalence in LtO if and only if its adjoint map
�W f�Z �! B is a weak equivalence in LtO0 . Noting that � factors as

Z // f �f�Z
f �� // f �B

together with Proposition 5.2 below finishes the proof. Argue similarly for the case of
algebras by considering left modules concentrated at 0.

5.1 Homotopical analysis of the unit of the adjunction

The purpose of this subsection is to prove the following proposition which we used
in the proof of Theorem 1.4. Our argument is motivated by the proof of [6, Theorem
12.5].

Proposition 5.2 Let f W O �!O0 be a morphism of operads and consider LtO with
the positive flat stable model structure. If Z 2 LtO is cofibrant and f is a weak
equivalence in the underlying category SymSeq with the positive flat stable model
structure, then the natural map Z �! f �f�Z is a weak equivalence in LtO .

First we make the following observation.

Proposition 5.3 Consider SymSeq with the positive flat stable model structure. If
W 2 SymSeq is cofibrant, then the functor

�ıW W SymSeq �! SymSeq

preserves weak equivalences.
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Proof Let A �! B be a weak equivalence in SymSeq; we want to verify

AŒt�^†t
.W
L̋ t /Œr� �! BŒt�^†t

.W
L̋ t /Œr�

is a weak equivalence in Sp† with the flat stable model structure for each r; t � 0.
By Proposition 4.28 we know W

L̋ t is cofibrant in SymSeq†t with the flat stable
model structure for each t � 1. By considering symmetric sequences concentrated at 0,
Proposition 4.29 finishes the proof.

Proof of Proposition 5.2 Let X �! Y be a generating cofibration in SymSeq with
the positive flat stable model structure, and consider the pushout diagram

.5:4/

O ıX //

��

Z0

��
O ıY // Z1

in LtO . For each W 2 SymSeq consider the natural maps

Z0q .O ıW / �! f �f�
�
Z0q .O ıW /

�
;.5:5/

Z1q .O ıW / �! f �f�
�
Z1q .O ıW /

�
;.5:6/

and note that the left-hand (resp. right-hand) diagram

O ıX //

��

Z0q .O ıW /DWA

��
O ıY // Z1q .O ıW /ŠA1

O0 ıX //

��

f�Z0q .O0 ıW /DWA0

��
O0 ıY // f�Z1q .O0 ıW /Š f�A1

is pushout diagram in LtO (resp. LtO0 ). Assume (5.5) is a weak equivalence for every
cofibrant W 2 SymSeq; let’s verify (5.6) is a weak equivalence for every cofibrant
W 2 SymSeq. Suppose W 2 SymSeq is cofibrant. By Proposition 4.20 there are
corresponding filtrations

A0
//

�0

��

A1
//

�1

��

A2
//

�2

��

� � � // colimt At

��

A1

��
A0

0
// A0

1
// A0

2
// � � � // colimt A0t

Š // f �f�A1;

together with induced maps �t .t � 1/ which make the diagram in SymSeq commute.
By assumption we know �0 is a weak equivalence, and to verify (5.6) is a weak
equivalence, it is enough to check that �t is a weak equivalence for each t �1. Since the
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horizontal maps are monomorphisms and we know At=At�1 ŠOAŒt� L̋ †t
.Y=X /

L̋ t ,
it is enough to verify that

Aq .O ı .Y=X // // A0q .O0 ı .Y=X //

is a weak equivalence, which is the same as verifying that

Z0q .O ıW /q .O ı .Y=X // �! f �f�
�
Z0q .O ıW /q .O ı .Y=X //

�
is a weak equivalence. Noting that W q .Y=X / is cofibrant finishes the argument that
(5.6) is a weak equivalence. Consider a sequence

Z0
// Z1

// Z2
// � � �

of pushouts of maps as in (5.4). Assume Z0 makes (5.5) a weak equivalence for every
cofibrant W 2 SymSeq; we want to show that for Z1 WD colimk Zk the natural map

Z1q .O ıW / �! f �f�
�
Z1q .O ıW /

�
.5:7/

is a weak equivalence for every cofibrant W 2 SymSeq. Consider the diagram

Z0q.OıW / //

��

Z1q.OıW / //

��

Z2q.OıW / //

��

� � �

f �f�
�
Z0q.OıW /

�
// f �f�

�
Z1q.OıW /

�
// f �f�

�
Z2q.OıW /

�
// � � �

in LtO . The horizontal maps are monomorphisms and the vertical maps are weak
equivalences, hence the induced map (5.7) is a weak equivalence. Noting that every
cofibration O ı� �!Z in LtO is a retract of a (possibly transfinite) composition of
pushouts of maps as in (5.4), starting with Z0 DO ı �, together with Proposition 5.3,
finishes the proof.

6 Proofs

The purpose of this section is to prove Proposition 4.28 and Proposition 4.29; we have
also included a proof of Proposition 3.29 at the end of this section. First we establish a
characterization of flat stable cofibrations.

6.1 Flat stable cofibrations

The purpose of this subsection is to prove Proposition 6.6, which identifies flat stable
cofibrations in SymSeqG , for G a finite group.
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It is proved in [39] that the following model category structure exists on left †n –objects
in pointed simplicial sets.

Definition 6.2 Let n� 0.

� The mixed †n –equivariant model structure on S†n
� has weak equivalences the

underlying weak equivalences of simplicial sets, cofibrations the retracts of
(possibly transfinite) compositions of pushouts of maps

†n=H � @�Œk�C �!†n=H ��Œk�C .k � 0; H �†n subgroup/;

and fibrations the maps with the right lifting property with respect to the acyclic
cofibrations.

Furthermore, it is proved in [39] that this model structure is cofibrantly generated in
which the generating cofibrations and acyclic cofibrations have small domains, and that
the cofibrations are the monomorphisms. It is easy to prove that the diagram category
of .†op

r �G/–shaped diagrams in S†n
� appearing in the following proposition inherits

a corresponding projective model structure. This proposition, whose proof is left to the
reader, will be needed for identifying flat stable cofibrations in SymSeqG .

Proposition 6.3 Let G be a finite group and consider any n; r � 0. The diagram cate-
gory .S†n

� /†
op
r �G inherits a corresponding projective model structure from the mixed

†n –equivariant model structure on S†n
� . The weak equivalences (resp. fibrations) are

the underlying weak equivalences (resp. fibrations) in S†n
� and the cofibrations are the

monomorphisms such that †op
r �G acts freely on the simplices of the codomain not in

the image.

Definition 6.4 Define xS 2 Sp† such that xSn WD Sn for n � 1 and xS0 WD �. The
structure maps are the naturally occurring ones such that there exists a map of symmetric
spectra i W xS �! S satisfying in D id for each n� 1.

The following calculation, which follows easily from (2.9) and (2.14), will be needed
for characterizing flat stable cofibrations in SymSeqG below.

Calculation 6.5 Let m;p � 0, H �†m a subgroup, and K a pointed simplicial set.
Define X WD G �Gp.S ˝GH

m K/ 2 SymSeqG . Here, X is obtained by applying the
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indicated functors in (4.1) to K . Then for r D p we have

. xS ^X Œr�/n Š
�

G �
�
†n �†n�m�†m

xSn�m ^ .†m=H �K/
�
�†p for n>m,
� for n�m,

X Œr�n Š

8<:
G �
�
†n �†n�m�†m

Sn�m ^ .†m=H �K/
�
�†p for n>m,

G � .†m=H �K/ �†p for nDm,
� for n<m,

and for r ¤ p we have X Œr�D �D xS ^X Œr�.

The following characterization of flat stable cofibrations in SymSeqG is motivated by
[21, Proposition 5.2.2]; we have benefitted from the discussion and corresponding
characterization in [37] of cofibrations in Sp† with the flat stable model structure.

Proposition 6.6 Let G be a finite group.

(a) A map f W X �! Y in SymSeqG with the flat stable model structure is a cofi-
bration if and only if the induced maps

X Œr�0 �! Y Œr�0; r � 0; nD 0;

. xS ^Y Œr�/nq. xS^X Œr�/n X Œr�n �! Y Œr�n; r � 0; n� 1;

are cofibrations in .S†n
� /†

op
r �G with the model structure of Proposition 6.3.

(b) A map f W X �! Y in SymSeqG with the positive flat stable model structure is
a cofibration if and only if the maps X Œr�0 �! Y Œr�0 , r � 0, are isomorphisms,
and the induced maps

. xS ^Y Œr�/nq. xS^X Œr�/n X Œr�n �! Y Œr�n; r � 0; n� 1;

are cofibrations in .S†n
� /†

op
r �G with the model structure of Proposition 6.3.

Proof It suffices to prove part (a). Consider any f W X �! Y in SymSeqG with the
flat stable model structure. We want a sufficient condition for f to be a cofibration.
The first step is to rewrite a lifting problem as a sequential lifting problem.

X //

��

E

��
Y //

>>

B

X Œr�n //

��

EŒr�n

��
Y Œr�n //

;;

BŒr�n

. xS ˝Y Œr�/n

��

// Y Œr�n

��
. xS ˝EŒr�/n // EŒr�n
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The left-hand solid commutative diagram in SymSeqG has a lift if and only if the
right-hand sequence of lifting problems in .S†n

� /†
op
r �G has a solution, if and only if

the sequence of lifting problems

X Œr�n //

��

EŒr�n

��
Y Œr�n //

;;

BŒr�n

. xS ^Y Œr�/n

��

// Y Œr�n

��
. xS ^EŒr�/n // EŒr�n

in .S†n
� /†

op
r �G has a solution, if and only if the sequence of lifting problems

X Œr�0 //

.�/0
��

EŒr�0

��
Y Œr�0 //

;;

BŒr�0

. xS ^Y Œr�/nq. xS^X Œr�/n X Œr�n //

.�/n

��

EŒr�n

��
Y Œr�n //

55

BŒr�n .n� 1/

has a solution. If each .�/n is a cofibration then f has the left lifting property with
respect to all acyclic fibrations, and hence f is a cofibration. Conversely, suppose f
is a cofibration. We want to verify that each .�/n is a cofibration. Every cofibration is
a retract of a (possibly transfinite) composition of pushouts of generating cofibrations,
and hence by a reduction argument that we leave to the reader, it is sufficient to verify
for f a generating cofibration. Let gW K �!L be a monomorphism in S� , m;p � 0,
H �†m a subgroup, and define f W X �! Y in SymSeqG to be the induced map

G �Gp.S ˝GH
m K/

g� // G �Gp.S ˝GH
m L/ :

Here, the map g� is obtained by applying the indicated functors in (4.1) to the map g .
We know .�/0 is a cofibration. Consider n � 1. By Calculation 6.5: .�/n is an
isomorphism for the case r ¤ p and for the case (r D p and n¤m). For the case
(r D p and nDm), .�/n is the map

G � .†m=H �K/ �†p

G � .†m=H �g/ �†p // G � .†m=H �L/ �†p

Hence in all cases .�/n is a cofibration.
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6.7 Proofs

Proof of Proposition 4.29 Consider part (b). Let gW K �!L be a monomorphism
in S� , m;p � 0, H �†m a subgroup, and consider the pushout diagram

.6:8/

G �Gp.S ˝GH
m K/ //

g�

��

Z0

��
G �Gp.S ˝GH

m L/ // Z1

in SymSeqG . Here, the map g� is obtained by applying the indicated functors in (4.1)
to the map g . Consider the functors

� L̋ G Z0W SymSeqGop
�! SymSeq;.6:9/

� L̋ G Z1W SymSeqGop
�! SymSeq;.6:10/

and assume (6.9) preserves weak equivalences; let’s verify (6.10) preserves weak
equivalences. Suppose A �! B in SymSeqGop

is a weak equivalence. Applying
A L̋ G � to (6.8) gives the pushout diagram

A L̋ Gp.S ˝GH
m K/

.�/

��

// A L̋ G Z0

.��/

��
A L̋ Gp.S ˝GH

m L/ // A L̋ G Z1

in SymSeq. Let’s check .�/ is a monomorphism. This amounts to a calculation:�
A L̋ Gp.S ˝GH

m K/
�
Œr�Š

�
AŒr�p�^ .S ˝GH

m K/ �†r�p�1†r for r � p;

� for r < p:

Since the map S ˝GH
m K �! S ˝GH

m L is a cofibration in Sp† with the flat stable
model structure, smashing with any symmetric spectrum gives a monomorphism. It
follows that .�/ is a monomorphism, and hence .��/ is a monomorphism. Consider
the commutative diagram

A L̋ G Z0
//

��

A L̋ G Z1
//

��

A L̋ Gp.S ˝GH
m .L=K//

��

B L̋ G Z0
//// B L̋ G Z1

// B L̋ Gp.S ˝GH
m .L=K//:

Since S˝GH
m .L=K/ is cofibrant in Sp† with the flat stable model structure, smashing

with it preserves weak equivalences. It follows that the right-hand vertical map is a
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weak equivalence. By assumption, the left-hand vertical map is a weak equivalence,
hence the middle vertical map is a weak equivalence and we get that (6.10) preserves
weak equivalences. Consider a sequence

Z0
// Z1

// Z2
// � � �

of pushouts of maps as in (6.8). Assume (6.9) preserves weak equivalences; we want
to show that for Z1 WD colimk Zk the functor

� L̋ G Z1W SymSeqGop
�! SymSeq

preserves weak equivalences. Suppose A �! B in SymSeqGop
is a weak equivalence

and consider the diagram

A L̋ G Z0
//

��

A L̋ G Z1
//

��

A L̋ G Z2
//

��

� � �

B L̋ G Z0
// B L̋ G Z1

// B L̋ G Z2
// � � �

in SymSeq. The horizontal maps are monomorphisms and the vertical maps are weak
equivalences, hence the induced map A L̋ G Z1 �!B L̋ G Z1 is a weak equivalence.
Noting that every cofibration ��!Z in SymSeqG is a retract of a (possibly transfinite)
composition of pushouts of maps as in (6.8), starting with Z0 D �, finishes the proof
of part (b). Consider part (a). Suppose X �! Y in SymSeqG is a weak equivalence
between cofibrant objects; we want to show that B L̋ G X �! B L̋ G Y is a weak
equivalence. The map � �! B factors in SymSeqGop

as

� // Bc // B

a cofibration followed by an acyclic fibration, the diagram

Bc L̋ G X //

��

Bc L̋ G Y

��
B L̋ G X // B L̋ G Y

commutes, and since three of the maps are weak equivalences, so is the fourth.

Proposition 6.11 Let G be a finite group. If B 2 SymSeqGop
, then the functor

B L̋ G �W SymSeqG
�! SymSeq

sends cofibrations in SymSeqG with the flat stable model structure to monomorphisms.
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Proof Let gW K �!L be a monomorphism in S� , m;p � 0, H �†m a subgroup,
and consider the pushout diagram

.6:12/

G �Gp.S ˝GH
m K/ //

g�

��

Z0

��
G �Gp.S ˝GH

m L/ // Z1

in SymSeqG . Here, the map g� is obtained by applying the indicated functors in (4.1)
to the map g . Applying B L̋ G � gives the pushout diagram

B L̋ Gp.S ˝GH
m K/

.�/

��

// B L̋ G Z0

.��/

��
B L̋ Gp.S ˝GH

m L/ // B L̋ G Z1

in SymSeq. The map .�/ is a monomorphism by the same arguments used in the proof
of Proposition 4.29, hence .��/ is a monomorphism. Noting that every cofibration in
SymSeqG is a retract of a (possibly transfinite) composition of pushouts of maps as in
(6.12) completes the proof.

The following two propositions are exercises left to the reader.

Proposition 6.13 Let t � 1. Suppose the left-hand diagram is a pushout diagram in
SymSeq:

X //

i
��

A

j

��
Y // B

Qt
t�1
.i/ //

��

Qt
t�1
.j /

��

Y
L̋ t //

B
L̋ t

Then the corresponding right-hand diagram is a pushout diagram in SymSeq†t .

Proposition 6.14 Let t � 1 and consider a commutative diagram of the form

A

i
��

s // B

j

��

r // C

k
��

X
s // Y

r // Z
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in SymSeq. Then the corresponding diagram

Qt
t�1
.i/

��

xs // Qt
t�1
.j /

��

xr // Qt
t�1
.k/

��

X
L̋ t //

Y
L̋ t //

Z
L̋ t

in SymSeq†t commutes. Furthermore, xr xs D rs and idD id.

The following calculation, which follows easily from (2.9), (2.14) and (3.7), will be
needed in the proof of Proposition 4.28 below.

Calculation 6.15 Let k;m;p � 0, H � †m a subgroup, and t � 1. Let the map
gW @�Œk�C �!�Œk�C be a generating cofibration for S� and define X �! Y in
SymSeq to be the induced map

Gp.S ˝GH
m @�Œk�C/

g� // Gp.S ˝GH
m �Œk�C/ :

Here, the map g� is obtained by applying the indicated functors in (4.1) to the map g .
For r D tp we have the calculation

�
.Y
L̋ t /Œr�

�
n
Š

8<:
†n �†n�tm�H�t Sn�tm ^ .�Œk�

�t /C �†tp for n> tm,
†tm �H�t .�Œk��t /C �†tp for nD tm,

� for n< tm,�
xS ^ .Y

L̋ t /Œr�
�
n
Š

�
†n �†n�tm�H�t xSn�tm ^ .�Œk�

�t /C �†tp for n> tm,
� for n� tm,

�
Qt

t�1Œr�
�
n
Š

8<:
†n �†n�tm�H�t Sn�tm ^ @.�Œk�

�t /C �†tp for n> tm,
†tm �H�t @.�Œk��t /C �†tp for nD tm,

� for n< tm,�
xS ^Qt

t�1Œr�
�
n
Š

�
†n �†n�tm�H�t xSn�tm ^ @.�Œk�

�t /C �†tp for n> tm,
� for n� tm,

and for r ¤ tp we have .Y L̋ t /Œr�D�D xS^.Y L̋ t /Œr� and Qt
t�1
Œr�D�D xS^Qt

t�1
Œr�.

The following proposition is proved in [3, I.2] and will be useful below for verifying
that certain induced maps are cofibrations.
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Proposition 6.16 Let M be a model category and consider a commutative diagram of
the form

A0

��

A1

��

oo // A2

��
B0 B1

oo // B2

in M. If the maps A0�!B0 and B1qA1
A2�!B2 are cofibrations, then the induced

map

A0qA1
A2 �! B0qB1

B2

is a cofibration.

Proof of Proposition 4.28 Consider part (a). The argument is by induction on t . Let
m� 1, H �†m a subgroup, and k;p� 0. Let gW @�Œk�C �!�Œk�C be a generating
cofibration for S� and consider the pushout diagram

.6:17/

Gp.S ˝GH
m @�Œk�C/

//

g�

��

Z0

i0

��
D WDGp.S ˝GH

m �Œk�C/
// Z1

in SymSeq with Z0 cofibrant. Here, the map g� is obtained by applying the indicated
functors in (4.1) to the map g . By Proposition 6.13, the corresponding diagram

Qt
t�1
.g�/ //

.�/

��

Qt
t�1
.i0/

.��/
��

D
L̋ t // Z

L̋ t
1

is a pushout diagram in SymSeq†t . Since m� 1, it follows from Proposition 6.6 and
Calculation 6.15 that .�/ is a cofibration in SymSeq†t , and hence .��/ is a cofibration.
Consider a sequence

.6:18/ Z0

i0 // Z1

i1 // Z2

i2 // � � �

of pushouts of maps as in (6.17), define Z1 WD colimq Zq , and consider the naturally
occurring map i1W Z0 �!Z1 . Using Proposition 6.16 and (4.14), it is easy to verify
that each Z

L̋ t
q �!Qt

t�1
.iq/ is a cofibration in SymSeq†t . By above we know that each

Qt
t�1
.iq/�!Z

L̋ t
qC1

is a cofibration. It follows immediately that each Z
L̋ t

q �!Z
L̋ t

qC1

is a cofibration in SymSeq†t , and hence the map Z
L̋ t

0
�!Z

L̋ t
1 is a cofibration. Noting
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that every cofibration between cofibrant objects in SymSeq with the positive flat stable
model structure is a retract of a (possibly transfinite) composition of pushouts of maps
as in (6.17) finishes the proof for part (a). Consider part (b). Proceed as above for part
(a) and consider the commutative diagram

.6:19/

Z
L̋ t

0
// Qt

t�1
.i0/

��

// Qt
t�1
.i1i0/

��

// Qt
t�1
.i2i1i0/

��

// � � �

Z
L̋ t

0
// Z
L̋ t

1
// Z
L̋ t

2
// Z
L̋ t

3
// � � �

in SymSeq†t . We claim that (6.19) is a diagram of cofibrations. By part (a), the bottom
row is a diagram of cofibrations. Using Proposition 6.16 and (4.14), it is easy to verify
that if i and j are composable cofibrations between cofibrant objects in SymSeq, then
the induced maps

Qt
t�1.i/ �!Qt

t�1.j i/ �!Qt
t�1.j /

are cofibrations in SymSeq†t ; it follows easily that the vertical maps and the top row
maps are cofibrations. Applying B L̋ †t

� to (6.19) gives the commutative diagram

.6:20/

B L̋ †t
Z
L̋ t

0
// B L̋ †t

Qt
t�1
.i0/

��

// B L̋ †t
Qt

t�1
.i1i0/

��

// � � �

B L̋ †t
Z
L̋ t

0
// B L̋ †t

Z
L̋ t

1
// B L̋ †t

Z
L̋ t

2
// � � �

in SymSeq. By Proposition 6.11, (6.20) is a diagram of monomorphisms, hence the
induced map B L̋ †t

Qt
t�1
.i1/ �! B L̋ †t

Z
L̋ t
1 is a monomorphism. Noting that every

cofibration between cofibrant objects in SymSeq is a retract of a (possibly transfinite)
composition of pushouts of maps as in (6.17), together with Proposition 6.14, finishes
the proof for part (b).

Proof of Proposition 3.29 Suppose AW D �! LtO is a small diagram. We want to
show that colim A exists. It is easy to verify, using Proposition 4.10, that this colimit
may be calculated by a reflexive coequalizer in LtO of the form

colim AŠ colim
�

colim
d2D

.O ıAd / colim
d2D

.O ıO ıAd /
.m ı id/�oo

.id ım/�

oo
�
;

provided that the indicated colimits appearing in this reflexive pair exist in LtO . The
underlying category SymSeq has all small colimits, and left adjoints preserve colimiting
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cones, hence there is a commutative diagram

colim
d2D

.O ıAd /

Š

��

colim
d2D

.O ıO ıAd /

Š

��

.m ı id/�oo

.id ım/�

oo

O ı
�
colim
d2D

Ad

�
O ı

�
colim
d2D

.O ıAd /
�oooo

in LtO ; the colimits in the bottom row exist since they are in the underlying category
SymSeq (we have dropped the notation for the forgetful functor U ), hence the colimits
in the top row exist in LtO . Therefore colim A exists and Proposition 3.27 completes
the proof.

7 Constructions in the special case of algebras over an op-
erad

Some readers may only be interested in the special case of algebras over an operad
and may wish to completely avoid working with the circle product and the left O–
module constructions. It is easy to translate the constructions and proofs in this
paper into the special case of algebras while avoiding the circle product notation.
Usually, this amounts to replacing .SymSeq; L̋ / with .Sp†;^/, replacing the left
adjoint O ı�W SymSeq �! LtO with the left adjoint O.�/W Sp† �! AlgO (Definition
3.17), and then replacing the symmetric array OA in Proposition 4.7 with the symmetric
sequence OA in Proposition 7.2. We illustrate below with several special cases of
particular interest.

7.1 Special cases

Proposition 4.7 has the following special case.

Proposition 7.2 Let O be an operad in symmetric spectra, A 2 AlgO , and Y 2 Sp† .
Consider any coproduct in AlgO of the form

.7:3/ AqO.Y /:

There exists a symmetric sequence OA and natural isomorphisms

AqO.Y /Š
a
q�0

OAŒq�^†q
Y ^q
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in the underlying category Sp† . If q � 0, then OAŒq� is naturally isomorphic to a
colimit of the form

OAŒq�Š colim
�

p̀�0

OŒp C q�^†p
A^p

p̀�0

OŒp C q�^†p
.O.A//^p

d1

oo
d0oo �

;

in Sp† , with d0 induced by operad multiplication and d1 induced by mW O.A/ �!A.

Definition 4.13 has the following special case.

Definition 7.4 Let i W X �! Y be a morphism in Sp† and t � 1. Define Qt
0
WDX^t

and Qt
t WD Y ^t . For 0< q < t define Qt

q inductively by the pushout diagrams

†t �†t�q�†q
X^.t�q/ ^Q

q
q�1

i�
��

pr� // Qt
q�1

��
†t �†t�q�†q

X^.t�q/ ^Y ^q // Qt
q

in .Sp†/†t . We sometimes denote Qt
q by Qt

q.i/ to emphasize in the notation the
map i W X �! Y . The maps pr� and i� are the obvious maps induced by i and the
appropriate projection maps.

Proposition 4.20 has the following special case.

Proposition 7.5 Let O be an operad in symmetric spectra, A2AlgO , and i W X �! Y

in Sp† . Consider any pushout diagram in AlgO of the form

.7:6/

O.X /
f //

id.i/
��

A

j

��
O.Y / // AqO.X /O.Y /:

The pushout in (7.6) is naturally isomorphic to a filtered colimit of the form

AqO.X /O.Y /Š colim
�

A0

j1 // A1

j2 // A2

j3 // � � �
�
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in the underlying category Sp† , with A0 WDOAŒ0�ŠA and At defined inductively by
pushout diagrams in Sp† of the form:

OAŒt�^†t
Qt

t�1

id^†t
i�

��

f� // At�1

jt

��
OAŒt�^†t

Y ^t
�t // At

Propositions 4.28, 4.29 and 4.30 have the following special cases, respectively.

Proposition 7.7 Let B 2 .Sp†/†
op
t and t � 1. If i W X �! Y is a cofibration between

cofibrant objects in Sp† with the positive flat stable model structure, then

(a) X^t �! Y ^t is a cofibration in .Sp†/†t with the positive flat stable model
structure, and hence with the flat stable model structure,

(b) the map B ^†t
Qt

t�1
�! B ^†t

Y ^t is a monomorphism.

Proposition 7.8 Let G be a finite group and consider Sp† , .Sp†/G , and .Sp†/G
op

each with the flat stable model structure.

(a) If B 2 .Sp†/G
op

, then the functor

B ^G �W .Sp†/G �! Sp†

preserves weak equivalences between cofibrant objects, and hence its total left
derived functor exists.

(b) If Z 2 .Sp†/G is cofibrant, then the functor

�^G ZW .Sp†/G
op
�! Sp†

preserves weak equivalences.

Proposition 7.9 If the map i W X �! Y in Proposition 7.5 is a generating acyclic
cofibration in Sp† with the positive flat stable model structure, then each map jt is a
monomorphism and a weak equivalence. In particular, the map j is a monomorphism
and a weak equivalence.
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