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Chains on suspension spectra

NEIL P STRICKLAND

We define and study a homological version of Sullivan’s rational de Rham complex
for simplicial sets. This new functor can be generalised to simplicial symmetric
spectra and in that context it has excellent categorical properties which promise to
make a number of interesting applications much more straightforward.

55P62

1 Introduction

In this paper we will define and study a functor ® from simplicial sets to rational chain
complexes, with the property that Hy (P, (X)) is just the ordinary rational homology
of X.

Some background is needed to understand why this functor deserves attention. There is
a much simpler functor called N4 (normalised simplicial chains) from simplicial sets to
integral chain complexes that computes integral homology, and one can just tensor with
Q to compute rational homology. There is a dual complex N * that calculates integral
cohomology. This is equipped with a natural product N *(X) ® N*(X) - N*(X)
which is commutative up to homotopy but not on the nose. The theory of Steenrod
operations shows that if we work integrally then neither N *(X) nor any reasonable
replacement can be given a strictly commutative product (even with the usual signs).
Rationally, however, the situation is better: in [10] Sullivan developed a rational and
simplicial version of de Rham theory giving a cochain complex *(X) with a strictly
commutative product that computes the ordinary rational cohomology of X. This
can be used as a starting point for the rich and powerful theory of rational homotopy
(originally introduced by Quillen [8] using slightly different machinery). One can
then stabilise and consider the category Sg of rational spectra, which makes things
considerably simpler: it is well-known that the homotopy category of Sg is equivalent
to the category of graded rational vector spaces. However, we can make things harder
again by considering rational spectra with a ring structure or a group action. To handle
these, we need to improve the homotopy classification of rational spectra to some kind
of monoidal Quillen equivalence of Sg with a suitable model category Chg of rational
chain complexes.
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Work of this type has been done especially by Greenlees [5], Greenlees and Shipley [6],
Shipley [9] and Barnes [1], leading to very concrete and interesting descriptions
of the homotopy theory of G —spectra for various compact Lie groups G, among
other things. However, some of the arguments involved are more awkward than one
might like, because they do not have a single symmetric monoidal Quillen functor
W,: So — Chg, but a zig-zag of Quillen functors whose monoidal properties fit
together in an inconvenient way.

Recently, the author and Stefan Schwede independently discovered a functor W, as
above, which promises to simplify many applications such as those of Greenlees et al.
This will be explained in a separate paper by Schwede and the present author. It is
then natural to ask for a calculation of W, (7") for various popular spectra 7', including
suspension spectra. One of the most intriguing aspects of the story is that the complex
D, (X) = W (X*° X,) has a very natural description in terms of simplicial de Rham
theory, although nothing of that kind is visible in the definition. In particular, we
obtain a chain complex similar in spirit to *(X) that computes Hy(X; Q) rather
than H*(X;Q); this cannot reasonably be done by naive dualisation, as Q*(X) is
infinite-dimensional (even when X is finite) and has no natural topology. This forms
the main subject of the present paper.

It will be convenient for us to work in a slightly different order from that suggested
by the above discussion. We will give a definition of ®,(X) that does use de Rham
theory, and investigate the properties of ® using that definition. Eventually, in Theorem
2.10 we will obtain a description of ®,(X) as a colimit of groups that do not involve
differential forms. When we have defined W (in a separate paper) it will be clear from
that description that W, (2 X} ) = O, (X).

Appendix A contains some recollections and notational conventions about the simplicial
category (especially the theory of shuffles) which will be in place throughout the paper.
Appendix B contains formulae for integrals of polynomials over simplices. These are
surely standard, but we do not know a convenient source.

2 de Rham chains

Let K be a field of characteristic zero. Some of our constructions will seem most
natural for K = QQ and others for K = R, but in fact everything works for any K.
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Chains on suspension spectra 1683

Given a finite set 1, we put

Pr=K[t;|i €]

P = f’}/(l—Zti),

i

so Py is the ring of polynomial functions on an algebraic simplex Ajlg = spec(Py) of
dimension |/|— 1. We also put

Wy = K{dz; |i eI}/(Zdti)
i
Q} = P; Qx Wy :PI{dl‘i |i G]}/(Zdli)
i
Qf = Pr @k A*(Wp) = Ap,(Q)).

Here Q7 is graded with |#;| = 0 and |d#;| = 1, and we give Q} the standard de
Rham differential, making it a differential graded algebra. All of these constructions
are contravariantly functorial in /: a map «: I — J of finite sets gives a ring map
a*: Py— Py witha*(tj) =3, ;)= ti» and this extends naturally to a map o*: Q7 —
Q7. If o is just the inclusion of a subset, we write res{ for a*.

In particular, the assignment n +— Qf‘n] is a simplicial object in the category of DGA’s,
so for any simplicial set X we can define

Q% (X) = sSet(X, QF)

and this gives us a differential graded algebra Q*(X). It is well-known that H*Q*(X)
is the usual cohomology H*(X;K).

We would like a version of this construction that is well-related to homology rather
than cohomology. The most obvious approach is to dualise and put

®; 4 = Homg (2%, K),

giving a chain complex that is covariantly functorial in /. However, this is inconvenient
because &D’I‘ is most naturally a product (rather than direct sum) of countably many
copies of @, which introduces numerous technical complications. We will therefore
use a smaller subcomplex ®j 4 < C/I\)I,*.
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1684 Neil P Strickland

Definition 2.1 We define

W," = Homg (W;,K)
®I,m =PI ® Am(WI\/) = A’;,’I(PI 02 WIV)
cI)I,m = @ ®J,m-
o#JCI
We write iy for the inclusion O ,, — ®7 ,,,. We will occasionally use a bigrading on

®y «: we put

Pr(pg) = @ 0J,p+q
|J|=p

SO that (DI,m = @p—}-q:m ®Iy(p=q)'

We want to interpret ®; 4 as a subcomplex of ) I,%»> and for this we need to define
various bilinear pairings. First, we define a pairing of A™(W,") with A™ (W) by the
formula

m

(otl AN N0, W1 /\~--/\a)m>1 = (—l)m(m_l)/z det((a,-,a)j))i’j=1.

This is a perfect pairing, and we will silently use it to identify A™ (W,") with A™(Wr)Y.
Next, we can extend this linearly over Py to get a pairing

(. )1 Orm®QL — Py
given by essentially the same formula. Occasionally we will use the convention

(d,0) =0if 0 € Op anda)GQf with p # m.

Remark 2.2 The factor (—1)"™~1D/2 ig inserted to ensure that the term [1; (0, ;)
in the determinant comes with the standard sign for converting the term

R QU QW Q- Qwny

to the term ARV Ry RWr Q- QU ® Wiy

In other words, if we defined the pairing by a diagram in the usual notation of symmetric
monoidal categories, then the sign would come from the twist maps and so would not
need to be inserted explicitly.

We really want a pairing with values in K rather than Py, and for this we need to
integrate.
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Definition 2.3 Given a monomial t” = [[;¢; #;", we put n = |I| — 1 and define
/t” = (Hv,-!)/(n +) vi)lek.
I ; -
l l
This extends to a linear map f I ﬁl — K, and one can check (see Lemma B.1) that

it factors through the quotient Py = ﬁl /(1 =2, ). It is often convenient to use the
notation v! =[], (vx!) and tP"1 =V /v! and |v| = 3; v;, so that I Ml =1/(n+v))!.

Remark 2.4 One can also check (see Lemma B.2) that in the case K = R, the map
/ ;- Pr — R is just integration over the simplex A; with respect to a natural measure.

Remark 2.5 There is a theory of integration for functions on a space with a measure,
and also a theory of integration for differential forms on a manifold with orientation.
In discussing de Rham cohomology it is more usual to use integration of forms, but
in our application it is painful to keep track of the orientations, so we have chosen to
reformulate everything in terms of integration of functions.

Definition 2.6 We define a pairing
(.) PrmeQ) -K
by (5@, 0) = [ (aresh (o)

In particular, for a € Oy, < ®y ,,, we just have (o, w) = fI (0, w). Welet &: Op ,y —
&)I,m be adjoint to (-, ).

Our main results about @ are summarised below; proofs will be given in the subsequent
sections of the paper.

Theorem 2.7 (a) The map & is injective, and the image (which we will identify
with ®y 4 ) is a subcomplex of ®j 4.

(b) @y« is a covariant functor of I, and the maps ax: ®y « — @ 4 are quasiiso-
morphisms.

(c) For the singleton 1 = {0} we have ®; , = Q (concentrated in degree zero). O

Definition 2.8 If X is a simplicial set, we let ®,(X) be the coend of the functor
AP x A — Chg given by (n,m) = Z[Xy] ® P«
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1686 Neil P Strickland

Theorem 2.9 & is a lax symmetric monoidal functor from spaces to chain complexes,
with a natural isomorphism H,®.(X) = H«(X;K). There is a natural K —linear
isomorphism

D4 (X) =P Ni(X) ® Opp.a-
k
where N4 (X) is the group of normalised chains on X . a

Theorem 2.10 There is a natural isomorphism

Py (X) = h_n}Hom(ﬁ*(SA), N«(SAA X)),
A

where A runs over the category of finite sets and injective maps. |

3 The differential

We next introduce a differential §: ®7 ,,41 — Py s, . This involves interior multiplica-
tion, which we now recall.

Definition 3.1 Let U be a finitely generated free module over a ring R, with dual
UV = Homg(U, R). Given u € U and a € AKTL(UVY), we let u - a € AX(UY)
denote the unique element such that

(utba,v) = (_1)k+1 (a,unv) forallve Ak(U)
(using the standard pairings described in Section 2).

Lemma3.2 (a) IfacUY =AY (UY) wehaveuta=—(u,a).

(b) Ifae AP(UY) and b e A9(UY) thenut (anb) =t a)Ab+ (=1)Pan
(ukb).

(¢) Ifu,veU andae AK(UV) thenut (vFa)+vk (uta)=0.

(d) Ifae AKTY(U) then uta € AK((U/u)V) < AK(UY). Moreover, there is a
well-defined multiplication u A (-): A¥(U/u) — AK+1(U) and in this context
we again have (u - a,v) = (=)t a, u Av).

Proof This is fairly standard multilinear algebra and is left to the reader. |

Definition 3.3 Suppose we have @ # J C I and f € Py and aq € Ad(W}’), )
ij(f ap) € ®r 4. Note that we have an interior product QIJ ®p,; 05405 41,50
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we can interpret df o as an element of © 7 4_;. Also, if j € J we can interpret
dtj F g as an element of A9~ (W /dt;)V) = A9~} (WJV\{J.}). We can thus put

§'(ig(f a0)) = —iy(df - o)
==Y iy (f/01) dtj )

jeJ
8"y (f @) ==Y ingy(resty 3 (f) dj - ao)
jeJ
§(a) =8 (o) + 8" ().
(Here the second description of §'(i y ( fag)) relies on the choice of a lift of f € Py

to P 7, but the first description shows that the result is independent of the lift.) This
gives maps

8/
®Ia(p7q) - ®I:(p7q_l)

8// l i 8//

and thus §: &7, — P ,,—1. We will show that the square above anticommutes.

Proposition 3.4 We have 8’8" +§"8' =0 and (§')?> =0 and (§”)> =0 and §> =0,
so that @ (4 x) is a double complex.

Proof The first three equations follow directly from the definitions, using the second
description of §’, the commutation of partial derivatives and the rule u - (v - a) +
v (uFa) =0. We can then expand out (8’ + §”)? to see that §2 = 0. ]

Proposition 3.5 The map &: & . — &JI,* is a chain map. Equivalently, for « €
D7 441 and w € Q‘Ii we have

B(@). ) = ()" (@. dw).
In order to prove this, we need a definition and a lemma.

Definition 3.6 For any vector x € K/ we write V, for the operator > i xi(9/0t;) on
Pr. We note that this induces an operation on Py = Py/(1—) ;) if and only if
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1688 Neil P Strickland

Lemma 3.7 For f € Py and ) ; x; =0 we have
Vi f + x~[ rest\ ., f=0.
/1 ¥ Xl: “ng

(This is a version of Stokes’ Theorem, but it is easier to prove it directly than to do the
translation necessary to quote it from elsewhere.)

Proof It will suffice to prove this for a monomial f/ =], Put e = 1/(Jv|+n—1)
and J = {i € I |v; > 0}, and suppose that i € J. Let §;: I — {0, 1} be the Kronecker
delta, so 8f/0t; = t"=%] and |v—6;| = |v| — 1. We then have [y xidf/3t; = x;e, but
res}\{i} J = 0. Suppose instead that i ¢ J. Then df/dt; = 0 but fl\{i}res{\{i} f=
/ 1\{i} t"1 = ¢ Thus the first term in the claimed equation is Y ;e Xi€, and the second
term is Ziy x;i€, so altogether we have €. ) ; x; = 0. O

Lemma 3.8 Proposition 3.5 holds when a € Oy 411 < Py 441.

Proof We reduce by linearity to the case where o = f ¢ and w = g wq for some
f.g € Py and o € Ad‘H(WIV) and wy € A% (Wy). Put

xi = (dt; F ag, wo) = (=) Hag. di; Awo) € K.,

and observe that ) ; x; = 0 (because ) _; d#; = 0). We can thus apply Lemma 3.7 to
the function fg giving

/f.nablax(g)—i-/Vx(f).g—I—in/ res{\{i}(fg)zO.
I I 7 I}
From the definitions we find that
X ad
S Vx(g) = (DT Y f B o, dii nwo)
l

= (=) fag, dg Awo) = (—1)T T o, dw).

By a similar argument, we have Vy(f)g = (df F ag,w). Next, recall that we can
interpret dt; - a¢ as an element of Ad(WIK {i}), and then we have

x; = {dt; - ao,resf\{i}(a)o)).
It follows that

Xi resf\{i}(fg) = (res}\{i}(f)dt,- F o, res}\{i}(a))),
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and thus that
/;\{'} Xi res{\{i}(fg) = (i[\{i}(resf\{i}(f)dt,- o), w).
l
The lemma now follows by combining these facts with the definition of §(«). ad

Proof of Proposition 3.5 The element o € ®j ,, 1 can be written as ) gtycrl J(ay),
with oy € ® ;. By applying Lemma 3.8 to the pairs («y, res§ (w)) we recover the
statement of Proposition 3.5. a

Lemma 3.9 The map
§r: Pk — Pk
is injective.

Proof If we can prove this for K = R then it will follow for K = Q by restriction,
and then for arbitrary K by tensoring up again. We therefore take K = R for the rest
of the proof.

Consider a nonzero element & = ) _ ; iy (cy) of the domain. Choose a set J of largest
possible size with ay # 0 in ® ;. As ay is nonzero, and ® j ; is dual over Py to
Q]} , and the restriction map Q’I‘ — Q’} is surjective, we can choose w € Q]I‘ such that
the element fy = (o J,r635 (w)) € Py is nonzero. We can then choose f € Py with
resg(f) = fo. We also put g = ]_[jej ti€ Prand 0 = fgow € Q]; We claim that
Er(@)(0) = (a, 0) # 0. Indeed, we have

ir(es).0) = [J (erg resh (few)) = [J f2resh (g).

Now g > 0 on the interior of the simplex Ay, and f02 is nonnegative everywhere and
strictly positive on a nonempty open set, so the integral is strictly positive. However, we
also need to consider the other terms (ig (xg ), 0) for K £ J. If K is a strict superset
of J then ag = 0 by our choice of J. If K 2 J then we can choose j € J \ K
and then resf( (zj) =0 so res;((g) = 0. Either way we find that (ig (¢g),w) =0. It
follows that (o, w) = (iy(y),®) > 0, as required. a

Definition 3.10 Let W; be the vector space freely generated by {dt; |i € I}, so
Wy = Wy/ 3 ;dt;. Let {e;|i € I} be the obvious basis for W,’, so that W}’ is
spanned by the elements e¢; —e;. Next, in the case I =[n] ={0,1,...,n} put

5[,,] =egAeyA--Ney € A"+1(Wﬁz])

Om) = (e1 —eo) A (e2—eg) A+ A (en —ep)

= (e1—eo) A(e2—er) A+ Alen—en—1) € A" (W) = Opyp .
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It is an exercise to check that the two expressions for O[n) are the same, and that
e; A O[] = Oy for all i, and that 6, is the unique element of A”(W[;’]) with this
property.

If 1 is any finite ordered set with |/| =7 + 1 then there is a unique ordered bijection
[n] — I, and we use this to define 6y € A" (W}Y) and 6; € A"(W}'). It is easy to
see that A" (W;) =K. 6y and A"(W)) =K. 6;.

Lemma 3.11 We have §'(0},)) = 0 and

8" (Opu)) = 8(0pm) = — D (=D i3 O 51)-

Jj€ln]

Proof By inspection of the definitions, this reduces to the claim that
dj b Oy = (=1) fanviy-
For j = 0 it is most convenient to use the expression
O = (e1—eq) A(e2 —er) A+~ Alen—ep—1)
and the derivation property
dioF (@ Ab) = (dig b a) Ab + (=1)1%a A (dig - b).

We have dty = (e; —eo) = —(dtg,e1 —eo) =1 and dty - (e 41 —ex) =0 for k > 0.
It follows that

dig =0 = (e2—e) A(ez —ex) A= A(en —en—1) = O\ (0}
as claimed.
For j > 0 we instead use the expression

On) = (e1 —eq) A(e2 —eg) A--- A(en —ep).

We have dt; = (ex —eg) =0 for k # j, so only the term dt; |- (e; —eg) contributes,
and this has a factor (—1)/~! because of its position in the list. We also have dtj =
(ej —eq) = —(dtj,ej —eg) = —1 which gives one more sign change, so dt; - 0, =
(-1)/ On)\¢jy as claimed. ad
Lemma 3.12 For any totally ordered set J we have Hyx(®y +;6') =K .6;.

(The ordering is only used here to fix the sign of the generator.)
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Proof We may assume that J = [m] for some m, so Py =K[t1,...,t,] and Wy =
K{dt;,....dtm}. Let {wy,..., wy} be the dual basis for W;" and put C(i)« =
K[#]{1, w;}, so that ® ;4 = @); C(i)«. It is not hard to see that this decomposition
is compatible with the differentials, and that in C (i)« we have §'(f(t;)w;) = f'(t;)
and 8’'(g(z;)) = 0. It follows that H4(C(i)«;8’) = K.w;, and thus, by the Kiinneth
theorem, that Hy (O ;6" ) =K. \,w; =K .0;. m|

We can now calculate the homology of ®; . Note that for j € I we have O, , =K
(concentrated in degree zero), so we have an element ig;,(1) € ®; o, which is a cycle
for degree reasons.

Proposition 3.13 The elements i;,(1) are all homologous to each other, and the
corresponding homology class generates Ho(®y «;68) freely over K. Moreover, we
have Hy(®f +;8) =0 forall d #0.

Proof We may assume that I is totally ordered, which gives an ordering on each
subset J C [ and thus defines elements 6; as before.

We now regard ®; as a double complex under §’ and §”, and use the resulting spectral
sequence. We write Cy for the E; page, which is just

Cy = Hi(®14:8)=K{0y | #J CI}.
The differential is given by Lemma 3.11. Note also that
A*(WY)=A*(ei|ie ) =K{0y|J C I}

(and here we do have a term for J = &). We can make this a differential graded
ring with d(e;) = 1 for all i, and the resulting homology is zero. We can then define
¢: A*(W)) — £Cy by ¢(By) = £6; when J # @, and ¢(1) = ¢p(0z) = 0. It
follows from Lemma 3.11 that ¢ is a chain map. The short exact sequence

K — A% (W) % sc,

gives a long exact sequence in homology. This in turn shows that H;(Cyx) = 0 for
i #0, and gives an isomorphism HyCyx = H{(2C4) =K. Our spectral sequence must
therefore collapse at the £, page, so H;(®y ) =0 for all i # 0, and the construction
gives an isomorphism Hy(®Py «) — K. We leave it to the reader to check that this
sends i¢;3(1) to 1 forall ;. ad
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4 Functorality of @,

Definition 4.1 Let o: I — J be a surjective map. As in Section 2 this gives maps
0*: Py — Py and 0*: Wy — Wy and 0*: Q% — QJ. Next, for any map v: [ —
Z we define oxv: J — Z by (oxv)(j) = Za(l-)=j v(i). We then define a map
ox: Py — P (of abelian groups, not of rings) by o4 (t") = rlo=®+D=11 we also
let oy: A*(W}') = A*(W]') be dual to the map o*: A*(Wy) — A*(Wr), and we
again write oy for the map

0x @0y Pr @ A*(Wp)Y — Py @ A*(Wy)V.

Remark 4.2 It is easy to check that in all the contexts mentioned we have (7o) =
Tx04 for any pair of surjective maps

1575 K.

Lemma 4.3 The map o4: 151 —~ P y induces a map ox. Pf — Pj which satisfies

fJU*(f)=f1f-

Proof Putr; =) ;.;t,sothat Pr = 51/(1 —rl)ﬁl and rprV = >+ Delvteil,
A straightforward calculation shows that o (rrt)) = 1y, (11", and it follows that
o4« induces a map P;r — Pj.

For the integral formula, put n = [I| —1 and m = [J| -1, so [, Ml =1/ + |v))!
and [, (1 = (m + | u))!. Tt will suffice to show that 7+ |v| = m + ||, which is again
straightforward. O

Remark 4.4 Ifwelet y: I — 1 be the unique map to a singleton, we find that Py =K
and y«(f) = [; f. This gives another way to see that [, ox(f) = /[, f.

Lemma 4.5 More generally, for f € Py and g € Py we have [; .0%(g) =
fj ox(f).g.

Remark 4.6 One can deduce that in the case K =R, the map o is given by integrating
over fibres of the map o4: Aj — Ay of simplices.

Proof We may assume that f =¢I"] and g = r[#! for some v: I — N and pu: J — N.
Putn=|I|-landm=|J|—1land e=1/(n+ |v|+ |u])!. Pt v=0,(v +1)—1,
so that o4 (1) =tV and |v| = |v| +n—m and [V] + |u| +m = |v] + || +n. Put
uj = (Vj, (j) so oy (1)) = (1, uj)t[i"'“]. and so [ oy (V] = ([T uje.
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Next, put /; =0~ {;j}, and let A; be the set of maps A: I; — N with |A| = u1;. The
binomial expansion tells us that

(]
o*1 = (Z’i) =y M

iGIj )»GA]'

Next, for A € Aj put ¢x = [];ey, (vi. Ai), and then put v; = ca, ca. Put

A=]]Aj = T >Now() = pu},
J

and for A = (Aj)jes put ¢ =[]; ¢, and then put v =3 5 o cx = [[; vj. We find
that tlo*e ) =3, e 1"+ For these terms we have |A| = |0 (A)| = || and
so [; 1" = e It follows that

/Iz[”]o*(t[“]) = (ch)e = (ij)e,

A J
so it will suffice to show that u; = v;.

For this, we choose an identification of /; with the set [d] = {0, 1,...,d} for some
d = 0. Let N; be a totally ordered set of size v;, and put N = [ [;¢(4) Ni, ordered so
that N; comes before N; ;. Now put D = {i + % |0 <i <d} and call this the set of
“dividers”; we order N 11 D so that i + % comes between N; and N;4q.Let M be a
totally ordered set of size 1;, and let U be the set of total orderings of N LI D II M
that are compatible with the given orderings of N II D and M. Now |N LI D| =V;
and |[M| = pj so |U| = (vj,uj) = uj. Given an ordering in U we can split M
along the dividers to get a decomposition M = My LI --- 11 M;. Here the sets M; are
consecutive intervals, so the decomposition is completely determined by the numbers
Ai =|M;|, whichsatisfy )", A; = ;. Given the decomposition M =] [; M;, the order
on N II D II M is determined by the relative order of M; and N; within N; LI M;,
for which the number of choices is [[;(vi, A;) = ¢) . Using this, one can check that
|U| =vj,so uj =v; as required. ]

Definition 4.7 Let o: I — I’ be an arbitrary map of finite sets. Given a subset
J €I and an element @ € ®; , we can interpret ¢ as a surjection J — o(J) and
thus get an element i (y)(0«(t)) € @/ 4. We define a map o4: @7« — P/ 4 by
ox(iy (@) =ig(s)(0x(a)).

Algebraic & Geometric Topology, Volume 9 (2009)



1694 Neil P Strickland

Remark 4.8 Let §;: [n — 1] — [n] be the unique increasing map with image [n]\ {j}.
We can now rewrite Lemma 3.11 as

8" (Bn)) = 8(pm) = — > _ (=17 (6% (Bu-1))-

Jj€ln]
Proposition 4.9 For o € ®; , and w € Q7F, we have (0« (), ) = (2,0 (@)); .
Proof We may assume that @ = iy (fag) for some J € I and some f € Py and
g € Am(WJV). Similarly, we may assume that w = gwo for some g € P;, and
wo € A" (Wys). Put J' = o(J) and let o’ denote the surjective map o: I’ — J'. Put
f"=04(f) € Py and ay = oy (ag) € A" (Wy/)¥. Let i: J' — I’ be the inclusion,
so that io’ = 0. Put g’ =i*g and w; = i*w. From the definitions we then have
o)y = [ (Fapeop) = o) [ 1
It is elementary that
{ags @) = {05 (@0), i ™ (o)) = (a0, (0)*i*wo) = (o, 0™ wy).

Similarly, we see from Lemma 4.5 that
[ r¢=] anitw=[ rerivw=[ roe.
J/ J/ I/ I/
The claim follows directly from this. a

Corollary 4.10 The map o«: @ « — Py’ « is a chain map and a quasiisomorphism.

Proof We can now identify the above map as a restriction of the map o: d Ix—> ) I %
which is dual to the chain map o*: Q7, — Q7 and so is itself a chain map. It follows
from Proposition 3.13 that o is also a quasiisomorphism. a

5 de Rham chains on a simplicial set

We are now in a position to implement Definition 2.8: a simplicial set X gives a functor
A x A — Ch by (n,m) = Z[X,]® D), and we write O, (X') for the coend. Thus
® is a functor from simplicial sets to chain complexes that preserves all colimits, and
@4 (Ap) = Dy« and these properties characterise ®«(X). Any generator of ®;(X)
can be written as X ® o for some x € Xy, and a € @, 4, subject to the relations that
x ® « is a K-linear function of « and p*(x) ® @ = x ® p«(a) for all p: [n] — [m]
and a € @[, 4. The differential is just 6(x @ ) = x ® 6().
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Recall that Q9 (X) is the set of maps X, — le ] that are natural for [n] € A. There is
a natural pairing
(. )y e @ Q1Y) — K

given by (x ® o, w)y = (&, ©(X)),, (for x € Xpp and o € Ppyy1.q and @ € Q;l().

Definition 5.1 We write CTD*(X ) = Homg (22*(X), K), so the above pairing gives a
natural chain map &: @4 (X) — D, (X).

Remark 5.2 In the rest of this paper, we will have a number of constructions related to
®; « that depend on having a total order on I. If 7 is totally ordered and /| =n+1
then there is a unique order-preserving bijection between I and [n] = {0,...,n}.
Because of this, we can work with the sets [r] where convenient, and we will transfer
the results to all other finite ordered sets without explicit comment.

We next compare @, (X) with the usual normalised chain complex Ny (X). (We recall
the definition: an n—simplex x € X}, is called degenerate if it can be written as a™* y
for some y € X}, and some noninjective map « € A([n], [m]), and N,(X) is freely
generated over K by the n—simplices modulo the degenerate ones.)

Proposition 5.3 There is a natural chain map ¢: N« (X) — @4 (X) given by ¢(x) =
(=1)"x ® O € ®n(X) for all x € X,,. (Here 0y, is as in Definition 3.10.)

Proof The formula ¢(x) = (—1)"x®0],] certainly defines a natural map X, — ®,(X)
of sets, which extends linearly to give a map ¢: C,(X) = K{X,} = D, (X) of vector
spaces. We make C,(X) into a chain complex using the alternating sum of face maps
in the usual way. We claim that ¢ is then a chain map. Indeed, we have

¢(dix) = $((6)*x) = (=1)"1(6)* X @ Op—1] = (=1)""' X ® (1) bn—1-

By taking alternating sums and using Remark 4.8 we obtain
$(dx) = (—1)"x ® (— Z(—l)"(én*e[n_u) = (~1)"x ® 8(6p)) = $((x)).
i

Now suppose that x is degenerate, say x = o *(y) for some surjective map o: [n] — [m]
with m <n. Then ¢ (x) =20 (x) @0}, = £X®0+(0,)) and 0« (Opn)) € A”(W[:;]) =0
so ¢ (x) = 0. There is thus an induced chain map ¢: N« (X) = P (X) as claimed. O

Proposition 5.4 There is a natural isomorphism of graded groups

@ Nm(X) (04 ®[m],d — de(X).
m

(The interaction with differentials is complicated and will not be made explicit.)
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Proof Let E be the subcategory of A which contains all the objects but only the
surjective morphisms, and let i: E — A be the inclusion. We find that ® can be
regarded as a functor from E to the category Vi of graded vector spaces over K, and
if we ignore the differential then & is just the left Kan extension li_n)li ©®. Now consider
a simplicial set X and an object Vi € Vy. We can define a functor 7: A — V, by
T, = Map(X,, Vi) and from the universal properties of coends and Kan extensions
we see that

1

Now let ND,(X) BE the set of nondegenerate n—simplices in X . There is an evident
map |[,, E(n,m) x ND,,,(X) — X, sending («,x’) to a*x’, and it is a standard
fact that this is bijective. (The original reference is Eilenberg and Zilber [2, 8.3],
and we have given a proof as Lemma A.10 for convenience.) We therefore have
Tn =[1,, Map(E(n,m), T,,), where T,, =Map(X,,, V). It follows using the Yoneda
Lemma that

[E,Vi)(©,i*T) = [ [ Ve (Opmyx- T)
m

=[] V(Z{X;,} ® Opys. Vi)
m

=V, ( @ Nin(X) ® Opp - V*).
m

We now see that ®;(X) and €, Nu(X) ® Of) 4 represent the same functor, so
they are isomorphic in a canonical way. a

Proposition 5.5 The map ¢x: N« (X) — O, (X) is a quasiisomorphism.

Remark 5.6 The case where X is a point is easy. One way to prove the general case
would be to show that the functor H,®+(X) is homotopy invariant, has Mayer—Vietoris
sequences, and preserves filtered colimits; then the claim would reduce to the usual
uniqueness argument for homology theories. Our proof will be slightly different; we
will rearrange the uniqueness proof so as not to rely on homotopy invariance, which
instead we deduce as a byproduct.

Proof Put X = {X |¢yx is a quasiisomorphism }; we must show that this contains all
simplicial sets. It is easy to see that X is closed under coproducts and filtered colimits.
Proposition 3.13 tells us that A, € X for all n. Now let Z be an n—dimensional
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simplicial set, and suppose inductively that all (» — 1)—dimensional simplicial sets lie
in X. Let Y be the (n — 1)—skeleton of Z, so we have a pushout square of the form

AX A, ——= Ax A,

ok

Y V4

for some set A. This in turn gives a diagram

Nu(A X M) —> Nu(A X Ay) @ Nu(Y) — Ni(2)
| oo |
Dy(AXIA,) —> Dy(A X Ap) ® Nu(Y) —> du(2).

It is standard that the top row is short exact (giving a Mayer—Vietoris sequence in
ordinary homology). Using Proposition 5.4 we see that ®,(X) can be split naturally
as a direct sum of functors of the form N,,(X) for various m, and it follows that the
bottom row is also short exact. The first two vertical maps are quasiisomorphisms
by the induction hypothesis and Proposition 3.13. It follows that ¢z must also be a
quasiisomorphism, so Z € X'. By induction on dimension and passage to colimits we
see that X' contains all simplicial sets, as required. O

5.1 Monoidal properties

We now define natural maps

mxy: Q5 (X) @ Q*(Y) - Q*(X x Y),

in several stages.

The cohomological version is straightforward.

Definition 5.7 Given w € 24 (X) and v € Q¢(Y) we define w Av to be the composite

WAV d mult d+
Xn X Yy — Q% an] — Q[n] €

This is natural for n € A and so gives w AU € Qdte (X xY). This construction makes
Q into a symmetric monoidal functor from simplicial sets to cochain complexes.
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For the homological version, we need to use the set X (n, m) of (n, m)—shuffles; see
Appendix A for details of our approach to this and various other preliminaries about
the simplicial category.

Definition 5.8 In the ring Py = Klto, ..., tn]/(1=_; i) weput s =3 ;_; 1, 50
that 5o =0 and 5,41 =1 and Pj,) =K][sy,...,sy]. This gives a basis {dsy, ..., dsn}
for W,). Recall that I;IV/[;I’] has basis ey, ..., ey, and that W[;,/] is the subspace spanned
by the differences e¢; —e;. We put w; = e;_1 —e¢;, and observe that wq,..., wy, is a

basis for W[;{], with (w;, sj) = 8;j.
The following observation is immediate from the definitions.

Lemma 5.9 If a: [n] — [m] is surjective then a*(s;) = 54t (;y and so a*(ds;) =
dSaJr(i) . O

Lemma 5.10 If (¢, &) € X (n, m), then the resulting maps

(% &)
Win1 @ Wim) —— Wintm)

reE" mult
A*(VV[n]) 02 A*(VV[m]) —_— A*(VV[n—i-m]) ® A*(I/V[n-i-m]) — A*(W/[n—i-m])

mult

*®$*
Py ® P} —— Plntm) @ Plutm] — Pln+m)

IrRE" mult
QEkn] ® kam] QFn—i—m] ® QFn—i—m] QEkn—i-m]

are isomorphisms. (We will write ji¢¢ for any of these maps.)

Proof The maps
¢t £t
] = [n+m] < [m]

give a coproduct decomposition by Lemma A.13. The claim follows by Lemma 5.9. O

Definition 5.11 Given a nondecreasing surjective map o: [n] — [m], we define

o°: W[;;l] — W[,\l’] by 0*(wj) = wy+ ;- We also write o® for Ak (0°): A*(W[yn]) —

A*(W[;{]) or for
0% ® 0" Opnlx = Fom) ® A¥ (W) = Py ® A¥ (W) = O

Remark 5.12 One can check directly from the definitions that (0*(ct), 0™ (®))[n) =
(o, @)y and 0¥ (u) Fo®*(a) =0 (u - a).
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Definition 5.13 Given a shuffle (¢, §): [n +m] — [n] x [m] we define an isomorphism
Heg: A*(I/V[,\,/]) X A*(I’V[;:,]) — A*(VV[;{.;_m])

by peg(oe ® B) = ¢*(a) A&E°(B). This extends to an isomorphism O, « ® O« —
Ofn+m],» by putting

fee(foo ® gBo) = ¥ (FIE*(2)5° (o) AE*(Bo).
Lemma 5.14 Forall « € O, 4 and B € Oy, and o € Q[”fl] and v € Qfm] we have

(Hee(@® B, e (@ @ V) nm) = (Hee (@ ® B), £ () AE™(U)) fnetm]
= (=DPIe* ({ar, ))& ((B. V) ).
Moreover, the following diagram commutes:

T

O], « ® O]« Opm],« ® O], «

2243 2234
®[n—i—m],*

(Here t is the usual twist map t(a ® b) = (=1)14l1tlp @ 4.)
Proof Left to the reader. a

Definition 5.15 We let sgn(¢, §) € {31} be the number such that

e (O] ® Opmy) = sgn(8, &) Oppym)-

We now recall the standard way to make N, into a symmetric monoidal functor (see
for example May [7, Section 29]).

Definition 5.16 We define a map p: Ny(X) @ Nip(Y) = Nytm (X x Y) (called the
shuffle product) by

perey)= Y s HE (). ).
(©.)eT (n,m)

There are a number of known generalisations of this construction; for example, the
same formula gives a well-behaved map R, ® R,; — R+, for any simplicial ring Re..
As far as we understand it, none of these generalisations can be applied directly to our
situation, but nonetheless we can give a definition along the same lines.
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Definition 5.17 We define p: @4 (X) ® Ou(Y) = (X xY) by

w(x®a)@ (@B = > (C*X.EY)® g ®Br)
(&.6)ex(n,m)

for x € Xy, y € Yim, a1 € Oy 4 and By € Op,,) 5. To see that this is well-defined and
has good properties, we repeat the definition in a more long-winded form as follows. We
note that a shuffle (¢, &) gives a nondegenerate (7 +m)—simplex x¢g € (Ap X Ap)nt+m
and thus a basis element in N4, (A, X Ayy). We then define

P O] ® Oplx = Pu(An ® Apy) = @ Na(Ap < Am) @ Oy«
d

by M(a1®ﬁ1)=ZX§§®Mts(al®l31)-
43

By a slight change of notation, if J and K are any finite, nonempty, totally ordered sets
we get natural maps p: Oy ® Ok » = P4 (Ay x Ag). If J C[n] and K C [m] then
Ay xAxg CApxAp,sowegetamap u: Oy 4 ® Ok « — Px(Ay X Ayy). Adding
these up over all J and K, we get amap ju: P, « @ Ppppyp« — Px(Ap X Ayy), which
is a natural transformation of functors A x A — Ch. Given simplicial sets X and Y
we have functors (A X A)°? x A x A — V, given by

(p’ q,n, l’}’l) = Z{XP X Xq} ® q)[n]a* ® q)[m]a*
and (p.g.n,m) = Z{Xp x Xq} @ Pu(Ap X Apy).
The coend of the first is @« (X) ® ®,(Y), whereas the coend of the second is

@, (X xY). The maps u therefore induce a well-defined map @4 (X) @ (YY) —
(X xY).

Proposition 5.18 The maps (1: P4 (X)® P (Y) — P (X X Y) make ® a symmetric
monoidal functor from simplicial sets to graded vector spaces.

We would also like to know that p is a chain map, but the proof of that fact is long so
we will do it separately in Proposition 5.21.

Proof First, for any (m, n, p)—shuffle (¢, &, 6) we can define
Ieg6: Omlx ® Ol ® Opplx = Opmtnpl.x
by the evident analogue of Lemma 5.10. Using this, we define
©3: Px(X) @ Pu(Y) ® Pu(Z) - u(X XY x Z)

by 3(x®e1 ®@y®P1RzRy1) =Y (£*(x),£5(1),0%(2)) @ ezp (1® B1® 1),
.0
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Using Lemma A.15 we see that
po(u®@) =p3=po(1®@u): (X)) 04(¥Y) @ Px(Z) - O (X x Y x 2),

so we have made @, into a monoidal functor. It follows from the diagram in Lemma
5.14 that p is also compatible with the relevant twist maps, so @, is a symmetric
monoidal functor. O

Proposition 5.19 The maps p: P(X) ® P« (Y) — (X x Y) and the maps
A QF(X)QQL*(Y) — Q*(X x Y) satisfy

(1@ ® p), o Av) = (=1)PIl (e, w) (B, v).

Proof We may assume that « = x @ 1 and f = y ® B for some x € X;;, y € Yy,
a1 € Opq¢ and By € Opy).. For a nonzero result we must then have o € Q4 (X)
and v € Q¢(Y), so we can put w; = w(x) € in and v; = v(y) € Q[m] We
then put f/ = (o1, w1) € P and g = (B, v1) € P[m], so that (o, w) = f[n] f and
(B,v) = f[m] g.

Using Lemma B.4 we see that

(a,w)(ﬁ,v)zf[n]f-f[m]g 3 / (I (2).

&.5)ex(n,m)

On the other hand, we have

p@®p) =Y (5 (x). () ® pee(er ® B1).
(3]
Here

(€5 (x), " (M) ®ue(1®B1), wAv) = (peg (1 ®B1), @(E*(x) AU (E*(1)))

{
= (nee(a1 ® 1), w1 AE¥ V)

= (—D)!BIele* (ay, 01 )E*((B1, 1))

= (=DIBlelex (1) £*(g). O

Proposition 5.20 The square

Na(X) ® Ny (Y) 2> Ny (X x Y)

vou| |

Dp(X)®@ D1 (Y) TR Dpim(X xY)

is commutative.
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Proof Suppose we have x € X, and y € Y,;,. Then
p(x®y) = sen(t.£)(E*(x). £*(»)
Lk

G(x ® y) = (=" " sgn(§, £) (6 (x), £°(1)) ® Opnpm)
43

= (=D)"" Y (). E4 () ® g (O @ Opm))
$.E

= (D" L((x ® On)) ® (¥ ® Om)))
=u@PP)(x®y). O

Proposition 5.21 The map p: @4 (X) Q@ P (Y) — P4 (X x Y) is a chain map.

The proof will follow after a number of preparatory results.
Recall that § was defined in Definition 3.3 as the sum of two operators §' and §”.

Lemma 5.22 For a = fag € O s« < Ppy« = P«(Ay) and B = gBo € Oppp s =
D)« = P (Ap) we have

§ (@ ®p)) = pnE' (@) @B+ (—1)n@ @8 (B)) € Du(An x Am).

Proof Let (¢, &) be a shuffle. Using Remark 5.12 we see that
8 pee(a ® B) = 8'(C*()C° (o) AE*(2)E°(Bo))
= —d(*())E (@) F (°(@0) AE°(Bo))
= —(E* (@) ) + T*(/)E*(dg)) F (£ (o) AE*(Bo))
= —0°(df F ag)€*(B) — (—D)*¢* (@) AE°(dg - Bo)
= pes (8@ ® B+ (=D uge(@ @ 5'(B)).

Taking the sum over all shuffles (¢, &) gives the claimed result. |

We now start to consider the §” terms.

Consider an element k € [n + m] and an injective map (¢, £): [n+m]\ {k} — [n] x [m].
We say that this pair is extendable if there exists a shuffle (¢, ¥): [n + m] — [n] x [m]
extending (¢, £). We will need to classify the possible extensions. We first suppose that
0 <k <n+ m. In that case, extendability means precisely that one of the following
three things must hold.
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(0) For some (i, j) € [n] x [m] we have ({,€)(k —1) = (i —1,j — 1) and
(£, &)(k+1)=(i, j). Here we say that (£, &) has a diagonal gap. There are two
possible extensions, given by (¢, ¥)(k) =(i—1, j) and (¢, V) (k)= (G, j—1).

(1) For some (i, j) € {l,...,n— 1} x[m] we have ({,&)(k—1)=(G —1, ) and
(£, &)(k+1)= (i +1, ). Here we say that (¢, &) has a horizontal gap. There
is only one possible extension, given by (¢, ¥)(k) = (i, j).

(2) For some (i, j) € [n] x{l,...,m—1} we have ({,&)(k—1)=(i,j —1) and
(£, &)(k+1)= (i, j +1). Here we say that (¢, £) has a vertical gap. There is
only one possible extension, given by (¢, ¥)(k) = (i, j).

The situation is similar if & = 0, but with some slight adjustments. We must have either
(£,6)(1) = (1,0) or (£, &)(1) = (0,1) (otherwise there is not room for (£, &) to be
injective). In these cases we say that ({, &) has a horizontal (resp. vertical) gap. Either
way, there is a unique extension, with (¢, ¥)(0) = (0, 0). Similarly, if kK =n + m then
we can have only a horizontal or vertical gap, and there is a unique extension given by

(@.¥)(n+m) = (n.m).

(This division into three cases is the same as in the well-known proof that the product
in Definition 5.16 is a chain map.)

Given an extendable pair (¢, £) and an extension (¢, V), the expression ( fao ®gBo) €
O (ApxAp) contains aterm (¢, V) ® pgy (f2o®gBo), 50 8" nu( fao®gPo) contains
aterm —(8,§) ® pgy , Where

Py = Testy il (@ (V™ (@) (dtic b gy (@0 @ Bo))
=M (NEF () (dtx b gy (2o @ Po))-

Lemma 5.23 Suppose that (¢, §): [n+m]\{k} — [n]x[m] has a diagonal gap between
(i—1,j—1) and (i, j), and let (¢, V) and (¢, V) be the two shuffles that extend
(¢,&). Then for any o € A*(W[}\;] and B € W[;’ﬂ we have

di = gy (o ® Bo) + dig b pgg (o ® Bo) = 0.

Proof Write oo as o; + w; Ay, where oy and «; involve only the generators w),
with p #i. In particular, this means that dt; - oo = —ay. Write 8o as B1 +w; A B
in the same way.
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As there is a diagonal gap, we must have 0 < k < n + m. We have the following table
of values:

¢ | ¢ |V | ¥
k—1]i—1li—1|j—1]j—1
k| i li—1]j—1
k+1| i | i | j

Using this we see that k = ¢ (i) = ¥ T(j) and k +1 =¢T(i) = ¥ T(j). On the other
hand, for all p # i we have ¢T(p) = ¢Tp & {k,k + 1}, and for all ¢ # j we have
Vi) =91() ¢ .k + 13,50 ¢° (1) = ¢%(e1) and ¢*(@2) = ¢*(@2). Similarly,
v (B1) = ¥*(B1) and ¥*(B2) = ¥*(B2). Put
V= gy (o ® o) + 1z (o ® Po).
We see that
Ky (@0 ® Bo) = (¢° (1) +wi A@*(2)) A (W (B1) + w1 AV (B2))
1z (o ® o) = (9% (1) + w1 A*(@2)) A (Y (B1) + wie AY*(B2))
v=2¢%(a) AY*(B1)
+ (=D g+ weg) AP (@) AP (B2)
+ (Wi + wi41) AP*(02) AY*(B1)
sk v = s Ev = (DTN @) A YT (B2) — 9% (e2) AV (B)
kv =_(g+1—5x)Fv=0. O

Corollary 5.24 With ¢, , 5 and 1; as in Lemma 5.23, we have pgy, + Py = 0.

Proof This follows from the expression

Pey =S ()EX (@) dti F gy (o ® Bo)). o

We next consider the case of a pair (¢, £): [n+m]\ {k} — [n]x [m] that has a horizontal
gap at i, and thus a unique extension (¢, V). We originally defined shuffles as
maps [p + q] — [p] X [¢] with certain properties, but we can extend the notion in an
evident way to cover maps I — J x K where I, J and K are any finite, totally
ordered sets with |I| = |J| + |K|— 1. In this slightly extended sense, we see that
(C,8): [n+m]\{k}— ([n]\ {i}) x [m] is a shuffle, so it gives a map

[eg: O\ iyx ® Opmlx — Ofu-pm\ ik}
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Lemma 5.25 Suppose we elements o = fog € O, « and B = gfo € Oy «. Then,
in the situation described above we have

Pow = Hze(resiy (/) (dii - 0) ® gPo).

Proof We will cover the case where 0 < k <n +m, leaving the adjustments for k =0
and k = n+ m to the reader. We then have ¢p(k—1)=C¢(k—1)=i—1 and ¢ (k) =i
and ¢(k+1)=¢(k+1) =i+ 1. Also, for some j we have ¥(k —1) =y (k) =
Y(k+1)=E&Kk—1)=E&(k+1)=j. Using the expression

Poy = ()E* (@) (dtx - gy (a0 ® Bo))

we reduce to the case f = g = 1, in which case we must prove that

dig = gy (o ® Bo) = pee((dli o) ® Bo).

We write

Qo =01+ Wi Aoy + Wi A3+ Wi AW A0y,
where «q,...,a4 do not involve w; or w;4+1. Put &y = ¢*(ar) and By = ¥*(Bo).
Then

Ly (0o ® Bo) = (@0 + Wg A& + Wrt1 A + Wk AWk1 Ad3) A Po,

and none of the terms &; or fg involves wy or Wk +1- Using this together with the
relation 5 = sx41 — S, we obtain

dty gy (o ® Bo) = (@2 — &3 + (Wk + Wr41) Aa) A Bo.
We now consider the map ji¢¢ arising from the shuffle
(8. 8): [n+m]\{k} — (n]\ {i}) x[m].
Here the natural basis to use for W[;l’]\ (i} is the list
€1 —€0,...,€j—1—€j—2,6i+1 —€i—1,€i4+2 —€j41,...,6n —€p—1,
or in other words
Wi, ..., Wi—1, Wi + Wig1, Wit2, ..., Wy.
Similarly, the natural basis for W[’\l/ m\{k} is

Wi, .o, We—1, Wi + W1, Wit25 -+ » Wntm-
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We see that {®(wp) = wet(py = Wy (py for p#i+1 and {*(wi+wi+1) =wg +Wg41-
Also, we have

dti - ag = (dsiy1 —dsi) F (o +wi Ay +wip g Az +wi Awjp Aag)

=y —a3 + (w; + wiy1) Aag,
S0 pee((dti = o) ® Bo) = (@2 — &3 + (wy + wi41) A&s) A Bo,

as required. a

Lemma 5.26 If ({,&): [n+m]\ {k} — [n] x [m] has a vertical gap at j and (¢, V) is
the unique extension of (¢, &) then

poy = (=D ge (faro.resfh 1 (2)(dt; - Bo)).
Proof This follows from Lemma 5.25 by applying suitable twist maps. |

Corollary 5.27 In ©.(A, x A,,) we have

S(u(a®p)) = n@d@ &+ (=) 5(8)).

Proof Lemma 5.22 tells us that this holds when § is replaced by &', so we need only
prove the corresponding formula for §”. We have seen that §” (u(ax ® B)) is a sum of
terms —(&, &) ® pgy , one for each extendable pair (£, &) and each extension (¢, V).
The terms where ({, &) has a diagonal gap all cancel out in pairs, by Lemma 5.23.
Those where (¢, £) has a horizontal gap add up to give (8’ («) ® B), as we see from
Lemma 5.25. The remaining terms give (—1)!%//(a¢ ® §(8)), by Lemma 5.26. ad

Proof of Proposition 5.21 The group @4 (X) ® ®«(Y) is generated by terms of the
form (x ® @) ® (y® B) with x € X, and y € Yy, and a € O, 4 and B € O,y 5. We
then have
px @)@ (y®p)) =(x,y) ®ula®p)
S(u((x @) ® (¥ ®B))) = (x,y) @ d(1u(a ® B))
=(x.)) @ u@@ @+ (-1)*la @ 5(8))
=u((x® () ® (y ® B))
+(EDu((x @) @ (v ® 8()))- o
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6 The colimit description

In this section, we explain and prove Theorem 2.10, which asserts that ®,(X) can be
written as a colimit of the groups Hom(Hx(S4), N«(S4 A X1)), as A runs over the
category of finite sets and injective maps.

Definition 6.1 Given a finite set A, we put S4 = A\, 4 S!, where S' = A/0A;.
More explicitly, we define BA =[], 4 A1, so that (BA), =Map(4, A([n].[1])). We
then put

(0BA)n = Map(A4, A([n]. [1])) \ Map(4. E([n]. [1])).

which defines a subcomplex dBA. Finally, we have S4 = BA/dBA.

It is clear that if |4| = n then S4 is a model of the sphere S”, so that Hy(S4) is a
copy of Z, concentrated in degree n. However, there is no natural choice of generator

for this group. Instead, the best thing to say is that there is a natural isomorphism
A"Z{A} — H,(S4).

Definition 6.2 Given a set A with |4| = m and a simplex « € (BA); we define
2(e) € Hu(S) ® Ppaya—m = Hn(S™) ® Pa_n(Ba)

as follows. First, we note that Map(4, [1]) can be regarded as a partially ordered set
using the pointwise order, and

(BA)g = Poset([d], Map(4,[1]))) = [ | A(d].[1]).

acA
Thus « gives a system of maps og: [d] — [1].
(a) If any a4 is constant (or equivalently, not surjective) we put z(a) = 0.

(b) Otherwise, we define f: A — [d] by f(a) = al(l). If f is not injective, we
again put z(«) = 0.

(c) Otherwise, we put
U= K{U)f(a) |a S A}
V = ker(otx: W[Z] — WI\>I/ap(A,[1]))
=K{w; [a@) =a(i =)} =K{w; [{ & f(4)}.

(Here we are using the notation of Definition 5.8.) We find that W[Z] =UaV,
so there is a natural isomorphism

A™U)® ATM(V) = A (W) = Kba).
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Moreover, the map a = wy () induces an isomorphism H, (S4) = A"K{A} —
A™(U), and there are natural inclusions

ATV < ATV < Oad—m < Pa—m(Ag).
By putting these together, we get a map Ad(W[EI’]) — H,y, (SR Py_m(Ag).

We write z(«) for the image of ;) under this map.

Remark 6.3 For some purposes it is useful to be more explicit. Suppose that we are in
case (c) of the definition, so that f: A — [d] is injective. We can then list the elements
of A as {ay,...,am}, ordered in such a way that f(a;) <---< f(an). Similarly, we
list the elements of [d] \ f(A) as {j; < j» <++- < jg—m}. There is then a number
€(a) € {£1} such that

Ord] = €(@) Wr(ay) Av o  AWf(g,,) AWjy A AWjy_ .

Put u(@) = Weg) A AWf(a,,) € A" (U)
Z@)=ai A Aam € N(K{AY) = Hy (S
(@) =wj, A Awj,_, € Ad_m(W[zl/]).
In this notation, the defining property of () is that 6z = e(x)u(a) A z"(a). We
find that z(a) = e(a) Z/'(0) ® 2’ ().
Definition 6.4 For any simplicial set X we define
¢: Ca(BAX X) = Hu(SY Q@ Oy_y(X)

as follows. Any d—simplex in BA x X has the form (o, x) where x € Xy and « is as
in Definition 6.2. The simplex x corresponds to a map X: Ay — X . We put

Pl x) = (1® %) (z(e)) = e(@)z' (@) ® (x ® =" (0)).

Remark 6.5 Clause (a) in Definition 6.2 tells us that the map ¢ factors through
Cx(S? A Xy), and similarly ¢* induces a map

Hom(Hy(S4), (S A X1)) = Du(X).
Lemma 6.6 If the simplex (c, x) € (BA x X)g4 is degenerate then ¢ (o, x) = 0.
Proof As («, x) is degenerate, there must exist a surjection o: [d] — [e] (with e < d)

and amap B: [a] —>Map(4, [1]) and a simplex y € X, suchthat « = o and x =0 *(y).
As e < d we must have o(i — 1) = o (i) for some i > 0. As @ = So this means that
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a(i) =ai —1),s0 w; € V. Clearly o«(w;) = 0x(e;j —ej—1) = e5() — €s(i-1) = 0,
50 0% =0 on A9~ (V), so (1 ® 0%)(z(«r)) = 0. By definition we have

Po. x) = (1 Q@ X4)(z(@)) = (1 ® px)(1 ® 0%)(z()) = 0. 0
Corollary 6.7 There are induced maps ¢: Ny (SAANXy)—> H, (S4) @ Dy (X).

Definition 6.8 Put
Us(A, X) = Hom(Hx (S?), No(SA A X3)).

As H, (S4) is invertible under the tensor product, the map ¢ gives rise to an adjoint
map Ux(A4, X) — ®4(X), which we denote by ¢*.

Now consider «: [d] — Map(A4,[1]) and i € [d], giving a map «b;: [d — 1] —
Map(A4,[1]) and an element z(x§;) € Hm(SlAl) ® Org—1],d—m—1. We can regard
d; as a bijection [d — 1] — [d]\ {i}, so we get an element (1 ® (6;)«)z(xd;) €
I:Im(S|A|) ® O[g)\(i},d—m—1- We also have a map 7;: Oy« — Opg\(i},+ given by
ti(§) =dt F¢.

Lemma 6.9 (—1) (1 ® (6;)+)z(a8:) = (=1)"+1(1 @ 1;)(z(x)).

Proof We will consider the case 0 < i < d; small adjustments for the end cases are
left to the reader. Note that «,: [d] — [1] is surjective if and only if (a,(0) = 0 and
aq(d) = 1) if and only if «d; is surjective. We may assume that this holds for all a,
otherwise both sides of the claimed identity are zero. Next, put f(a) = g (1) as before,
and g(a) = (a48;)T(1). By a check of the various possible cases, we see that

f(a) if f(a) =1,
fl@)—1 ifi < f(a).
It follows that g is injective unless {i,i + 1} C f(A4).

g(a) =oi(f(a) = {

Suppose that {i,i + 1} S f(A4), so g is not injective, so z(ad;) = 0. In this case z” ()
does not involve w; or w;y1, so dt; - z"(«) = (dsj+1 —ds;) F z"(x) = 0, and we
see that both sides of the claimed identity are again zero.

Suppose instead that {i,i + 1} € f(A4). One checks that z'(«) = z'(«d;). Let w’ be
the wedge of all the factors wj, in z”/(a) with j; € {i,i + 1}, and let w” be the wedge
of the remaining factors, so

Z”(Ol) —dw Aw”
for some €’ € {£1}. Because {i,i +1} Z f(A) we must have w’ = w; or w’ = w;4 or
w' = w; Aw;41. In computing (8;)«z" (ad;), we use that (6;)xw; = (8;)«(e; —ej—1) =
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ws, (j) except in the case j =17, in which case we have (8;)«(w;) = w; +w; 4. There
are three cases to consider.

(@ Ifw =w; (soi¢f(A)buti+1e f(A))we find that ds; Iz’ (a) = —’w” and
dsi+1 Fz"(@) =0 so dt; F z” () = €’w”. On the other hand, as i ¢ f(A) we have
3i(g(a)) = 68i(0i(f(a))) = f(a) forall a, so &;([d — 11"\ g(A)) = ([d]'\ f(A)\{i},

s0 (8;)«z"(ad;) = w”. We next need to understand €(«é;). By definition we have
e(@di)u(ad;) nz"(ab;) = Oa—11-

As 8; f = g and (8;)«z" (aé;) = w” we see that u(«) = u(ad;) and

e(@d)u(o) Aw” = Gap\giy-
We then multiply both sides on the left by w; to get

(—D)™e(@dpu(@) Aw; Aw” = (=1) "1

On the other hand, by the definitions of €(«) and €’ we have

e(@)u(a) Awi Aw” = Oa1-
It follows that €(a8;) = (—1)" T T1e’e(«). This gives

(D' (1® (81)x)z(@8i) = (=1)e(@d;)z' (@8) @ (8i)+2" (@)
= (=) (=) ee(0)2 (@w”
= ()" e(@)zZ (@)(d1i 2" (@)
= ()" (1@ u)(z(@)

as required.

(b) Now suppose instead that w’ = w;41, so that i € f(A4) buti +1¢ f(A). We
find that ds; bz (@) = 0 and s;41 F z"(a) = —w”, so dt; - z"" () = —w”. On the
other hand, we find that

fla) if f(a) #1,

51(2(@) = 8i01(f (@) = {l. i e o

From this we see that §;([d — 1]\ g(4)) = ([d] \ f(A)) \ {i + 1}, and thus that
(8i)+z" (@d;) = w”. We next need to understand €(d;). From the definitions we have

(@) Ws;g(ay) A+ A Ws;g(am) A )x2" (@8i) = Opap g3y
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Let r be such that f'(a,) =i, and let v be the wedge of the terms wy(q,) for p #r.
The above equation can then be written as

(=D e(@d)wir1 AvAw” = Oapy-
We now multiply both sides on the left by w; to get
(=D e(@)wi Awirg AvAw” = (1) 1o
On the other hand, by the definitions of €(«) and ¢’ we have
(=D €e(@)wi AvAwi41 Aw” = Gg).
It follows that €(a8;) = (—1)"*i€’e(ar). This gives

(=D (1 ® (8:))z (i) = (—1) e(@8i)z (@) ® (8:)x2" (8;)

= (=D ()" e(@)z (@)w”

= (—D"e(@)Z (@)(=dt; - ="(@) = ()" T 1 @ 1) (z ()
as required.

(c) Finally, suppose that neither i nor i + 1 isin f(A4), so w’ = w; A w;41. As this
has even degree we have ¢’ =1 and z”(a) = w’ A w”. We then have ds; -z (@) =
—wipi1Aw” and ds; 1 F 2" () = wi Aw” so dt; 2" (@) = (wi +wi+1) Aw”. Onthe
other hand, as in case (a) we see that /' =§;g and 8; ([d—1]'\g(A4)) = ([d]'\ f(A)\{i}.
Suppose that i occurs as the r—th element in [d — 1]\ g(A4), so i + 1 occurs as the
r—th element in §; ([d — 1] \ g(A)). Then

(8)x2"(@d)) = (=1)" 71 (E)w (i) Aw” = (=1)" " (w; + wip ) Aw”.
We next need to understand €(d;). By definition we have
e(adi)u(edi) A z"(adi) = Opg—1)-

As 8 f =g and (8;)«z"(@8;) = (—=1)" " N(w; + wi41) Aw” we have u(ad;) = u(a)
and

(=D Te(@di)ula) A (wi + wig1) Aw” = O iy

We then multiply both sides on the left by w; to get

(=)™ Ve(ad)u(a) Awi Awipg Aw” = (1)1 0.
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After comparing this with the definition of €(cr), we see that €(ad;) = (—1)" " Tie(a).
This gives

(=D (1 ® (8;)x)z(@di) = (=) (=)™ (@) (@) ® (=) (w; + wit1) Aw”
= (=1)"He(a)Z (@) (dt; - 2" (@)
= (D" 1 ®u)(z()

as required. O

Corollary 6.10 The maps

¢: No(SAAX4) = Heo(S?) ® ®i(X),
" Up(A4, X) > Dy (X)

are chain maps.

Proof Lemma 6.9 is the universal example. In more detail, we first note that z(c)
involves only the exterior generators dt; so (1 ®§')(z(«)) =0 and

(1®8)(z(e)) = (1®8")(z())
==Y iany(1 ® 1) ((@)
J

= (D)"Y (=D (1@ (6)4) (z(@8))).
J

Next, we will also write § for the standard differential on H, (S4) ® ®4(X), which is
§(a®b) = (—1)4a ® §(b). This gives

3(z(@) = (D" 1@ (=(@) = Y_ (=1 (1 & (§))x) (= (@5))).
j

Now consider an element x € X, giving a map X: A; — X and thus a map
Xa: Ppgp e = Px(Ag) — P (X). If we apply the map 1 ® X« to the above equation
and use the naturality of §, the left hand side becomes §(¢(x, «)). The right hand side
becomes Zj -1/ djx,)(z(adj)), which is ¢(d(x,a)). This shows that ¢ is a
chain map, and it follows adjointly that the same is true for ¢*. a
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Definition 6.11 We define v: Ux(A4, X) Q Ux(B,Y) - Us(A U B, X xY) by ap-
plying the functor Hom(Hy(S45B), —) to the composite

Ne(SAAXL) @ Nu(SBAYL) L Nu(SAA X4 ASBAY,)
(IATAL) 4
_—

No(SAUB A (X xY) )

and using the isomorphism H, (S H, (SB) — H, (S4B

Lemma 6.12 Suppose we have a shuffle (¢, £): [d 4+ e] — [d] x[e] and maps «: [d] —
Map(A4,[1]) and B: [e] > Map(B, [1]) (with |A|=m and | B|=n). Define y: [d+e]—
Map(A U B,[1]) by va(k) = aq(¢(k)) for a € A and yp(k) = Bp(E(k)) for b € B.
Let A denote the map

~ ~ 19t®1 ~ ~
Ho(SM) @ Oape ® Hu(SP) ® Opg s ——> Hi(S4) © Hi(SP) ® Og).4 ® Opey

UBUre  ~
—— H(SMP) @ Oy 4o

Then z(y) = sgn(¢, §)A(z(a) @ z(B)).

Proof If any «, or B; fails to be surjective then so does the corresponding map y,
or yp, so both sides of the claimed equality are zero. We ignore this case from now on.

Put f(a) = aZ(l) and g(b) = ,8;;(1) and /h(c) = yj(l). As (¢, ) is a shuffle we know
that the maps

;T

[d] —[d +e] < [e]'

give a coproduct decomposition, and from the definitions we have h(a) = ¢T(f(a))
and h(b) = £T(g(b)). It follows that  is injective if and only if both f and g are
injective, and we may assume that this is the case as otherwise both sides of the claimed
equality are zero.

From our description of /1, we have
[d + el \ (AL B) =T () \ £(4) LET(e] \ g(B)),

so z/(y) = £¢°(z"(«)) A E°(z"(B)). By a similar argument we have z/'(y) =
+u(z' (@) ® Z/(B)) and so z(y) = £A(z(«) ® z(B)). The real issue is just to control
the signs more precisely. For this we note that

a1 = e(@)u(a) A 2" (@), o] = €(B)u(B) A Z"(B),
S0 E* O a1 NE® Oy = e(@)e(B)S u(a) AL (@) AE*u(B) NE*Z"(B).
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After using Definition 5.15 and reordering the factors, this gives
Oae; = (1" sgn(&. £)e(@)e(B)E ul@) AE"u(B) A L°Z" (@) AE*Z(B).
Now put U =K{wpye)|ce AU B}
V=Kwi|y(@)=y(i—-D}=K{w;|[i (AL B)}
as in Definition 6.2. We find that

Sul@) NEu(p) eU
£ (@) nEZ(B) eV,

so the above expression for 6[z1.] can be used (together with the isomorphism
H, man(SATB) ~ Am+1(U) induced by /) to calculate z(y). The result is

2(y) = (=17 sgn(¢. £)e(@)e (B (@) @ 2'(B) ® 2" () AE°Z"(B),
and this is the same as A(z(x) ® z(8)). O
Proposition 6.13 The following diagram commutes:

Ue(A, X) Q@ Ux(B,Y) ——> Uy (ALL B, X xY)

¢#®¢#l ltﬁ

D4 (X) @ D (Y) Dy (X xY).

Proof It will be enough to check commutativity of the adjoint diagram

No(stn X . B UATAD & galB
QN.(SBEAY,) No(SAAXL ASPAYL) No(SAUB A (X xY)4)

¢

¢®¢l

H,(S54) ®@ ®,(X) Ho(S%) ® Ho(SB)

~ 7 AUIB
QH.(SB)@ 0u(Y) 18701 @D, (X)® Du(Y) KO Hy(S777) ® @i (X x Y).

Consider elements & € (BA)4 and x € Xz and 8 € (BB), and y € Y,. The generator
(o, x) ® (B, y) maps to

> sen(C. )@l BE. T (x). EX (1) € Nype (SME A (X xY)4).

193

The term indexed by the shuffle (¢, &) then maps to sgn(¢, £)(£*(x), £*(»))®z(«l, BE)
in Hy(SAUB) ® ®, (X x Y). It follows from Lemma 6.12 that the other route around

the diagram yields the same result. m|
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Definition 6.14 Suppose we have a set 4 with |4| = m. We note that when k > m
we have NDy (S4) = @ and so Ny (S“) = 0; this means that

Hn(S4) =ker(d: Nu(S1) = Np_1(S4)) < Nou(S4).
The inclusion Hy, (s4) — N (S4) gives a cycle in
Uo(4, 1) = Hom(Hu(S4). Nu(S™)),

which we denote by 74.

Definition 6.15 Given an injective map A: 4 — B, we define
Ax: Hom(Hy (S™), No(SA A X)) — Hom(Hx (SB), No(SEB A X))

as follows. Firstly, if A is a bijection then we just transport the structure in the obvious
way. Next, suppose that A is just the inclusion of a subset, so B = A LI Z for some Z.
We then have a map

V: Us(A, X) @ Us(Z,1) > Us(AU Z, X x 1) = U (B, X)

and we put A«(u) = v(u ® nz). Finally, an arbitrary monomorphism can be written
uniquely as A = A1Ag, where A; is a subset inclusion and A is a bijection. We then

Lemma 6.16 . is a chain map and is functorial.
Proof Left to the reader. O

Lemma 6.17 For any monomorphism A: A — B, the diagram

.
Us(4, X) Ux(B, X)

P (X)

cominutes.

Proof This is clear if A is an isomorphism, and is a special case of Proposition 6.13
if A is a subset inclusion. The general case follows from these special cases. |

Definition 6.18 We write Uy (X) for the colimit of the complexes Ux(A4, X) as 4
runs over the category of finite sets an injective maps. We let ¢: Uy (X) — D4 (X)
denote the map induced by the maps ¢*: Uy (A4, X) — ®4(X) (which exists by Lemma
6.17).
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Theorem 6.19 The map V: Uyx(X) — ®(X) is an isomorphism.

The proof will be given in several stages. Firstly, the construction given below immedi-
ately implies that i is surjective.

Construction 6.20 Suppose we have x € ND,(X) and v: [n] > N and J C[n], say
J={ji1<--<jr}.Putwy =wj A---Awj, € Op,,,. We will construct an element
E(x, v, J) € Up(X) with ¥ (&(x,v,J)) =x @ M e d,(X).

Firstput d = —1+ Y/ o(vi + 1), and let o [d] — [n] be the unique nondecreasing
surjective map such that |0~ !(i)| = v; +1 forall i. Put A =[d] \oT(J) and m = | A4|
and let f: A — [d] be the inclusion. Define a: [d] — Map(4, [1]) by

)= 0 ifi< f(a),
=N f@) <.

We find that z” (&) = w+( sy and so (using Definition 4.1) we have o (z" (@) = My,
Now let

E1(x, v, J): Hp(S) = Ny(SAAX)
be the map that sends the generator €()z’(«) to (e, x). Then ¢;(x, v, J) € Ux(4, X)
and ¢*;(x, v, J) =x @1lw; . We also write ¢(x, v, J) for the image of &;(x, v, J)
in Ux(X), so that ¢ (¢(x,v, J)).

We next need the counterpart in Uy (X) of the relation ) ;4 = 1.

Lemma 6.21 In the notation of Construction 6.20 we have
n

D it DS v 48, T) = E(x, v, ).

i=0

Proof We will freely use the notation of the above construction.

Put A4 = A 1l {oo} so we have a class § = u(§1(x,v,J) ® Niooy) € Ux(44,X)
which represents {(x, v, J). Now £ can be written as a sum of terms, one for each
shuffle (A, p): [d + 1] — [d] x[1]. Such a shuffle is determined by the number k =
o (1) €[d + 1]; indeed, A is forced to be the unique map in E([d + 1],[d]) that takes
the value k — 1 twice. Define v(k): [n] — N by v(k); = |(cA)"!{i}| — 1. We find that
the k—th term in the product 1 (§1(x, v, J) ® n¢s0y) represents {(x,v(k), J), and that
there are v; + 1 different values of k for which v(k) = v + §;. The claim follows. O
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Corollary 6.22 There is a well-defined map

' Oe(X) = @ Oy« — Ux(X)
x €ND;,(X)

given by ' (x ® t"w ) = ¢(x, v, J). Moreover, we have ¥’ = 1: ®4(X) — ®x(X).

Proof The stated formula certainly defines a map

P Pu® A W) - Ua(X).
X €ND;, (X)

We simply need to pass from ﬁ[n] to P, = ﬁ[n] /(1 =3, t), and this is precisely

what we get from Lemma 6.21. |
# /

Lemma 6.23 The composite Ux(A4, X) ¢—> D, (X) i) U«(X) is just the colimit

inclusion map.

Proof Put m = |A| and fix a generator u € I:im(SA). Given v € ]Vd(SA AXy) we
write v for the element of U (A, X) given by u — v. The group Uy(4, X) is
generated by elements u ! (o, x) where a: [d]— Map(4,[1]) and x € X; and the pair
(o, x) is nondegenerate. To avoid trivial cases, we may assume that each «,: [d] — [1]
is surjective, so we can define f(a) = aZ(l) as usual.

If f is not injective, it is built into the definitions that z(«r) = 0 and so ¢*(a, x) =0,
so we must show that #~!(a, x) also maps to zero in the colimit. We can choose
a # a' with f(a) = f(a'), and let T denote the transposition that exchanges a and
a’. We find that 74 (1) = —u but 74 (e, x) = (@, X), 50 T4 (u" (a0, X)) = =" (o, x),
which gives the required vanishing.

From now on we assume that f is injective. As in Lemma A.10 we can write x =0 ()
for some nondegenerate simplex y € X}, and some surjective map o: [d]— [n]. To avoid
further trivial cases, we may assume that the pair (¢, x) is nondegenerate, which is equiv-
alent to the condition [d] = f(4)Uc T ([n]). Define v: [n]— N by v; = |0~ 1{i}|—1, so
that o4 (1) =[], Put J/ =[d]\ f(4), so that 2’ (a) = wy . As [d] = f(4)UoT([n])
we must have J’ = o7(J) for some J C [n]', and this implies that J = o (J’) and so
ox(z"(2)) = tMw . It follows that ¢* (1~ (a, x)) = €/x ® t"lw, where the sign
€’ € {1} is determined by the relation z(«) = €'u®z" (). Now put A’ = f(A), so f
gives a bijection A — A’ and thus an isomorphism Uy (A4, X) — Ux(A’, X). From the
definitions we see that ¢{'¢p* (1~ ! («, x)) is represented by €'y (x,v, J) € Us(4’, X),
which is just the image of 1 (x, &) under this isomorphism. The claim follows. 0O

Proof of Theorem 6.19 Corollary 6.22 tells us that ¥¢’ = 1, and Lemma 6.23 implies
that 'y = 1. ]
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Appendix A Recollections on the simplicial category

In this section we recall some facts about the simplicial category. Most of them are fairly
standard but we will need to use the details so it is convenient to give a self-contained
account here. Many of these facts were first proved by Eilenberg and Zilber [2] or
Gabriel and Zisman [4]; the more recent book Fritsch and Piccinini [3] is also a useful
reference.

Definition A.1 As usual, we let A denote the category whose objects are the finite
ordered sets [n] = {0, ...,n}, and whose morphisms are the nondecreasing maps. All
maps mentioned in this section are implicitly assumed to be nondecreasing. We also
write [E([n], [m]) for the subset of A ([n], [m]) consisting of surjective maps.

Definition A.2 Given a surjective map «: [n] — [m], we define of: [m] — [n] by
af(j) = min{i |a(i) = j}. We also write [n] = [n]\ {0} = {1,...,n} and note that
af(0) =0 and o« ([m]) < [n].

Lemma A.3 The map o is injective, and aat = 1. Moreover, if B: [n] — [p] is
another surjection then (Ba)T = ot pT.

Proof Left to the reader. O

Definition A.4 We say that a subset A C [r] is pointed if 0 € A. Given a pointed
subset A C [n] with |A| =m + 1, we let 64: [m] — [n] be the unique injection with
o4([m]) = A, and we define 7 4: [n] — [m] by m4(i) = max{j |o4(j) <i}. We also
define €4 = a4m4: [n] — [n], s0 €4(i) =max{j € A|j <i} and 631 =€y.

Lemma A.5 (a) Any injective map B: [m] — [n] with 8(0) = 0 has the form
B = a4 for some (unique) pointed set A, namely A = B([m]).

(b) Any surjective map «: [n] — [m] has the form o = 74 for some (unique) pointed
set A, namely A ={0}U{i >0|a@)>a(i—1)}.

(c) Let y: [n] — [n] be a map withi > y(i) = y2(i) forall i. Then y = €4 for
some (unique) pointed set A, namely A ={i |y(i) =1i}.

Proof Left to the reader. O

Lemma A.6 Suppose we have pointed sets A C B C [n] with |A| = m + 1 and
|B|=p+1. Puta =mq 0p: [p]—[m]. Then « is surjective and fits into a commutative
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diagram as follows.

—[p]

\/
/\

Moreover, « is bijective if and only if « = 1 ifand only if A = B.
Proof Left to the reader. O
Lemma A.7 If A and B are pointed subsets of [n] then (e 4€p)N =e4np for N > 0.

Proof For any i € [n] we have a decreasing sequence
i > ep(i) > €qep(i) > epegep(i) = --- = 0.

Let y(i) denote the eventual value of this sequence. We find that for N > 0 we
have y = (e4€p)N = ep(eqep)”’, from which it follows that y = e4y = egy = 2
and i > y(i). It follows that y = €c, where C = image(y) = {i | y(i) =i}. As
y = €4y = €py we see that C = image(y) C image(e4) Nimage(eg) = AN B, but
it is clear that y is the identity on AN B so C = AN B. |

A.1 Degeneracy

Lemma A.8 Let X be a simplicial set, and let x be an n—simplex of X . Then the
following conditions are equivalent.
(1) x =a*(y) for some noninjective map «: [n] — [m] and some y € Xp,.
(2) x = pB*(z) for some surjective map B: [n] — [p] (with p <n) and some z € X),.
(3) x =m}(y) for some proper pointed subset A C [n] and some y € X| 4|1 .
(4) x = €4(x) for some proper pointed subset A C [n].

Proof It is clear that (2) implies (1), and we can prove the converse by factoring o
as a surjection followed by an injection. Lemma A.5(b) tells us that (2) is equivalent
to (3). Using the facts that €4 = o474 and m404 = 1 we see that (3) is equivalent
to (4). O
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Definition A.9 We say that x is degenerate if the above conditions hold. We write
ND,(X) for the set of nondegenerate n—simplices.

The next result is known as the Eilenberg-Zilber lemma.

Lemma A.10 There is a canonical bijection y: [[,, E([n], [m]) x ND,,(X) — X,
given by Y (a, y) = a*(y).

Proof Given x € X, let A denote the collection of pointed subsets 4 C [n] such that
x =e€j(x). Using ¢4 = 04my and mg0,4 = 1 we see that A = {4 |x € image(r})}.

It is clear that [n] € A, and Lemma A.7 implies that 4 is closed under intersections,
so A has a smallest element, say A. Put m = [A4]| —1 and y = 0}(X) € Xp and note
that x = 73 (y).

Suppose that y = B*(z) for some surjection B: [m] — [p]. Then fw4 = mp for some

BC A,but x =nj(Z) so Be Aso AC B. It follows that A = B and p = m and
B =1 so y = z. Using this we see that y is nondegenerate.

More generally, suppose we also have x = g (z) for some B (a priori unrelated to A)
and z € X, (a priori unrelated to y). Then again B € A so A C B so we can apply
Lemma A.6: the map o = mqop: [p] — [m] is surjective and satisfies amrg = m4. As
x =my(z) we have z = 0(x) = ofmy(y) = a*(y). If z is nondegenerate it follows
that we must have p = m and « must be the identity so A = B and y = z. Using
this we see that ¥ is a bijection. O

A.2 Shuffles

We now recall some theory of shuffles.

Definition A.11 Given a sequence n = (ny,...,n,) € N” with ) ", n; =n, an n—
shuffle means a system of surjective maps {;: [#] — [n;] such that the combined map
¢: [n] — [1;[n:] is injective. We write X (n) for the set of all n—shuffles.

Remark A.12 We will most often need the case r = 2. An (n, m)—shuffle is then a
pair of surjections

¢ &
[n] < [n + m] = [m]
such that the map (¢, £): [n + m] — [n] x [m] is injective.
Lemma A.13 Let n and n be as above, and suppose we have sets Ay, ..., A, C[n] =

{1,...,n} with |A;| = n; and we put {; = 74, u{0}: [n] = [ni]. Then the list § is an
n—shuffle if and only if [n] = [ [; A;.
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Proof From the definition of 74,y we see that 4; = {s € [n]' | {i(s) > {i(s — 1)},
so that | J; 4; = {s € [n]' | ¢{(s) # ¢(s —1)}. Thus ¢ is a shuffle if and only if ¢ is
injective if and only if (J; A4; =[n]', and if this happeﬁs then the union is automatically
disjoint by counting. a

Corollary A.14 We have
@] =nl/ [T,
i

In particular,
|Z(n,m)| = (n+m)!/nm!. O

Lemma A.15 There are natural bijections

S(m+n, p)x X(m,n) i) Y (m,n, p) <£ S(n,m+ p)x X(n, p)
given by L($.§:¢. V) = (¢, ¥¢.§) and R($.§:¢. V) = (£, 6¢.8V).

Proof We will only discuss L; the case of R is similar.

Suppose that (£, &) € Z(m+n, p) and (¢, ) € X(m,n). Then ¢, &, ¢ and ¢ are all
surjective, so the same is true of ¢¢ and y¢. The maps (¢, ) x 1: [m + n] x[p] —
[m]x[n]x[p] and (¢, &): [m+n—+ p] — [m+n]x[p] are injective, so the same is true of
their composite, so L(¢,&; ¢, v) € Z(m,n, p). Next, observe that to give a three-piece
splitting [m +n+ p] = AU BUC (with |A| =m and |B| =n and |C| = p) is the
same as to give a splitting [m +n+ p] =U U C (with |[U| =m +n and |C| = p)
together with a splitting U = A I B (with |A| = m and | B| = n). Using this together
with the correspondence T <> 7 we obtain a bijection L': X (m +n, p)x X (m,n) —
Y (m,n, p). We leave it to the reader to check that L = L’. O

Appendix B Integration over simplices

Recall that the map | I Pr — K is defined by

/Itv _ (Hv,-!)/(n+2i:v,~)!,

1

(where n = |I|—1) or equivalently [, M =1/m + ).

Lemma B.1 The map f I IBI — K factors through Py.
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Proof We must show that |’ ; annihilates the ideal generated by 1 -3 ; #;, or equiva-
lently that [, =3, I ;1] We have ;1) = (1 + v;)r1%+v] where §;: I > N
is the Kronecker delta, so |§; + v| = 1 + |v|. We thus have

1
] . v+8i] — .
Lttt = 1+v /t = 1+v
Z[I Sa | TESFTPLRRD
m+14+)! @+ I

Lemma B.2 If K =R then [; f is just the integral of [ over the simplex Aj =
{x: I - R4 | >, x; =1}, with respect to the usual Lebesgue measure normalised so
that w(Ayp) =1/(1|—1)!.

Proof We may assume that / = {0,...,n} and work by induction on n. We can
identify A, by projection with A}, = {x € R" | }.7_, x; < 1}. Define

/ n
/f:/ f(l—in,xl,xz,...,xn)dxl---dxn.
I T i=1

We will show that [, 1) = 7 /"] for any multiindex v with vo = 0. This will suffice
because Pr = RJtq,...,;]. When n = 0 the claim is trivial. When n = 1, the claim
says that | t1=0 ") = 1/(1 + n)!, which is also trivial. This implies that [ = [* even
on polynomials that are not in our preferred basis, which gives

1
/ (- =170 4+i 4 ).
t=0
This will be useful later.

For n > 0 we define amap ¢: A’ | x[0,1] = A}, by ¢(,5) = (st,1 —5s). This is
bijective away from a set of measure zero, and the Jacobian is s”~!. Given a multiindex
v =(0,vq,...,vy), write V" for the truncated sequence (0, vy,...,v,_1). We then
have

b1, s)[v] =(1 —s)[”"](ts)["/] =(1 _S)[Vn]S\V’It[v’]_
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We may assume inductively that

[n—1] (n—1+ )Y
/ 1 /
SO / t[”]=/ / o (x, s)Ms" 1y
[n] s=0 J[n—1]

1 I
:/ (1 —s)[””]s”_H"’/'ds/ X1
s=0 [n—1]

1 ) 1 |
= 1 — g)vnlgln=1+0"11 7o — _ ’
/szo( ) I+vp+n—14+p'P! (n+|v)!

as required.

Now || I, f is certainly the integral of f over Ay with respect to some normalisation
of Lebesgue measure. To determine the normalisation, note that || I/ 1=/ I 101 = 1/n!
as required. O

Lemma B.3 Take I = [n] = {0, 1,...,n}, use the parameters s = Zj<k tj for
k =1,...,n. Consider a monomial s* = [];—, s}é"'. Put pg =3 < (vj +1) and
w =TI, ni. Then f[n]s" =1/u.

Proof It will suffice to prove this when K = R, in which case we have [; s = [} s”
By a straightforward change of variables this becomes

/s” =/ sVdsq---dsy
I 0<s|<-<sp<1

Suppose that the lemma holds for some n. Using the change of variables s; > rs;
(which has Jacobian r") we see that

/ sV dsl-'~dsn=r”+2i”i[ sV dsy---dsy =1/ .
0=<s1=<-=sp=<r 0=<s)=<-=sp=r

Now multiply by " and integrate from r = 0 to » = 1; the right hand side becomes
1/((m + 14 pn)p). Now change notation, replacing r by s,41 and m by v,y ; this
gives the case n + 1 of the lemma. O

Lemma B.4 Suppose that f € P, and g € Pj,). Then

[ 7] s= ¥ [ a0

(a,8€X(n,m))
(Here X (n,m) is the set of (n, m)—shuffles, as in Definition A.11.)
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Proof Put A) ={seR"|0=<s; <---<s, <1}. As implicitly used in the proof of
the previous lemma, there is a homeomorphism Ap,) — A, given by

z»—>(zo,z0+tl,...,2z,~).
i<n
Now consider a shuffle («, ) € X (n, m), and the corresponding maps
{1,...,n}g{l,...,n%—m}i{l,...,m}

given by ¢(j) =min{i |a(i) = j} and ¥ (k) = min{i | (i) = k}. These give a map
(s, Ba): Ay, — Ay X AL, With 0k ()i = Sp) and Bx(s); = sy (j). Let Xyp be
the image of this map. It is standard that these are the top-dimensional simplices in a

triangulation of AJl x A}, so

/f-/ g=Y | [f®z
[n] [m] o,B Xap

Moreover, from the form of the maps ax and B it is clear that the Jacobian of

(0w, Bx): A, L, — Ay x A}, is one. The lemma follows. O
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