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Landweber exact formal group laws
and smooth cohomology theories
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THOMAS SCHICK

INGO SCHRÖDER
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The main aim of this paper is the construction of a smooth (sometimes called differen-
tial) extension bMU of the cohomology theory complex cobordism MU , using cycles
for bMU .M / which are essentially proper maps W !M with a fixed U –structure
and U –connection on the (stable) normal bundle of W !M .

Crucial is that this model allows the construction of a product structure and of
pushdown maps for this smooth extension of MU , which have all the expected
properties.

Moreover, we show that yR.M / WDbMU .M /˝MU�R defines a multiplicative smooth
extension of R.M / WDMU.M /˝MU� R whenever R is a Landweber exact MU�–
module, by using the Landweber exact functor principle. An example for this
construction is a new way to define a multiplicative smooth K–theory.

55N20, 57R19

1 Introduction

Smooth (also called differentiable) extensions of generalized cohomology theories
recently became an intensively studied mathematical topic with many applications
ranging from arithmetic geometry to string theory. Foundational contributions are
Cheeger and Simons [7], Brylinski [2] (in the case of ordinary cohomology) and
Hopkins and Singer [14]. The latter paper gives among many other results a general
construction of smooth extensions in homotopy theoretic terms. For cohomology
theories based on geometric or analytic cycles there are often alternative models. This
applies in particular to ordinary cohomology whose smooth extension has various
different realizations (see Cheeger and Simons [7], Gajer [12], Brylinski [2], Dupont
and Ljungmann [8], Hopkins and Singer [14] and Bunke, Kreck and Schick [3]). The
papers by Simons and Sullivan [21] or Bunke and Schick [5] show that all these
realizations are isomorphic.
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An example of a cycle model of a smooth extension of a generalized cohomology
theory is the model of smooth K–theory introduced by Bunke and Schick [4]; see
also Freed [10] and Freed and Hopkins [11]. The present paper contributes geomet-
ric models of smooth extensions of cobordism theories, where the case of complex
cobordism theory MU is of particular importance. In [5] we obtain general results
about uniqueness of smooth extensions which in particular apply to smooth K–theory
and smooth complex cobordism theory bMU . In detail, any two smooth extensions of
complex cobordism theory or complex K–theory which admit an integration alongR
W S1 �M !M are isomorphic by a unique isomorphism compatible with

R
. In

case of multiplicative extensions the isomorphism is automatically multiplicative. Note
that the extension bMU constructed in the present paper has an integration and is
multiplicative.

We expect that our model bMU of the smooth extension of MU is uniquely isomorphic
to the one given by Hopkins and Singer [14]. So far this fact can not immediately
be deduced from the above uniqueness result since for the latter model the functorial
properties of the integration map have not been developed yet in sufficient detail.
However, for the uniqueness of the even part we do not need the integration. Therefore
in even degrees our extension bMU is uniquely isomorphic to the model in [14].

An advantage of geometric or analytic models is that they allow the introduction of
additional structures like products, smooth orientations and integration maps with good
properties. These additional properties are fundamental for applications. In [14, 4.10]
methods for integrating smooth cohomology classes were discussed, but further work
will be required in order to turn these ideas into constructions with good functorial
properties.

In the case of smooth ordinary cohomology the product and the integration have been
considered in various places (see eg Cheeger and Simons [7], Dupont and Ljungmann [8]
and Brylinski [2]) (here smooth orientations are ordinary orientations). The case
of smooth K–theory, discussed in detail in Bunke and Schick [4], shows that in
particular the theory of orientations and integration is considerably more complicated
for generalized cohomology theories.

In the present paper we construct a multiplicative extension of the complex cobordism
cohomology theory MU . Furthermore, we introduce the notion of a smooth MU–
orientation and develop the corresponding theory of integration. The same ideas could
be applied with minor modifications to other cobordism theories.

For an MU�–module R one can try to define a new cohomology theory R�.X / WD

MU�.X /˝MU� R for finite CW–complexes X . By Landweber’s famous result [16]
this construction works and gives a multiplicative complex oriented cohomology theory
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provided R is a ring over MU� which is in addition Landweber exact. In Theorem
2.5 we observe that by the same idea one can define a multiplicative smooth extension
yR.X / WDbMU .X /˝MU� R of R. It immediately follows that this smooth extension

admits an integration for smoothly MU–oriented proper submersions.

In this way we considerably enlarge the class of examples of generalized cohomology
theories which admit multiplicative extensions and integration maps. The construction
can, for example, be applied to Landweber exact elliptic cohomology theories (see
Landweber, Ravenel and Stong [17] and Franke [9]) and complex K–theory1.

In Section 2 we review the main result of Landweber [16] and the definition of a smooth
extension of a generalized cohomology theory. We state the main result asserting the
existence of a multiplicative smooth extension of MU with orientations and integration.
Then we realize the idea sketched above and construct a multiplicative smooth extension
for every Landweber exact formal group law.

In Section 3 we review the standard constructions of cobordism theories using homotopy
theory on the one hand, and cycles on the other. Furthermore, we review the notion of
a genus.

In Section 4 we construct our model of the multiplicative smooth extension of complex
cobordism. Furthermore, we introduce the notion of a smooth MU–orientation and
construct the integration map.

Acknowledgements Thomas Schick was partially funded by the Courant Research
Center “Higher order structures in Mathematics” within the German initiative of
excellence. Ingo Schröder and Moritz Wiethaup were partially funded by DFG GK 535
“Groups and Geometry”.

2 The Landweber construction and smooth extensions

2.1 The Landweber construction

2.1.1 Let X 7!MU�.X / denote the multiplicative cohomology theory (defined on
the category of CW–complexes) called complex cobordism. We fix an isomorphism
MU�.CP1/ŠMU�ŒŒx��. The Künneth formula then gives MU�.CP1 �CP1/Š
MU�ŒŒx;y��.

1It is an interesting problem to understand explicitly the relation with the model [4]. Note that we
abstractly know that the smooth extensions are isomorphic by [5].
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The tensor product of line bundles induces an H –space structure �W CP1�CP1!
CP1 . Under the above identifications the map ��W MU�ŒŒz��!MU�ŒŒx;y�� is deter-
mined by the element f .x;y/ WD ��.z/ 2MU�ŒŒx;y��.

By a result of Quillen [19] the pair .MU�; f / is a universal formal group law. This
means that, given a commutative ring R and a formal group law g 2RŒŒx;y��, there
exists a unique ring homomorphism � W MU�!R such that ��.f /D g .

2.1.2 Let R be a commutative ring over MU� . Then one can ask if the functor
X 7!MU�.X /˝MU�R is a cohomology theory on the category of finite CW–complexes.
The result of Landweber [16] determines necessary and sufficient conditions. A ring
which satisfies these conditions is called Landweber exact.

2.1.3 Actually, Landweber shows a stronger result which is crucial for the present
paper. For any space or spectrum X the homology MU�.X / has the structure of a
comodule over the coalgebra MU�MU in MU�–modules. By duality, if X is finite,
then MU�.X / Š MU�.S.X // also has a comodule structure, where S.X / denotes
the Alexander–Spanier dual (see Adams [1]) of X .

Theorem 2.1 (Landweber [16]) Let M be a finitely presented MU�–module which
has the structure of a comodule over MU�MU , and consider a Landweber exact formal
group law .R;g/ so that in particular R is a ring over MU� . Then for all i � 1 we
have TorMU�

i .M;R/D 0.

2.2 Smooth cohomology theories

2.2.1 In the present subsection B denotes a compact smooth manifold. Let N be a
Z–graded vector space over R. We consider a generalized cohomology theory h with a
natural transformation of cohomology theories cW h.B/!H.B;N /, where H.B;N /

is ordinary cohomology with coefficients in N . The natural universal example is given
by N WDh�˝R, where c is the canonical transformation. Let �.B;N / WD�.B/˝RN ,
where �.B/ denotes the smooth real differential forms on B . Note that this definition
only coincides with the corresponding definition of N –valued forms in [5] if N is
degree-wise finite-dimensional. By dRW �dD0.B;N /!H.B;N / we denote the de
Rham map which associates to a closed form the corresponding cohomology class. To
a pair .h; c/ we associate the notion of a smooth extension yh. Note that manifolds in
the present paper may have boundaries.

Definition 2.2 A smooth extension of the pair .h; c/ is a functor B ! yh.B/ from
the category of compact smooth manifolds to Z–graded groups together with natural
transformations
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(1) RW yh.B/!�dD0.B;N / (curvature)

(2) I W yh.B/! h.B/ (forget smooth data)

(3) aW �.B;N /=im.d/! yh.B/ (action of forms).

These transformations are required to satisfy the following axioms:

(1) The following diagram commutes:

yh.B/

R

��

I // h.B/

c

��
�dD0.B;N /

dR // H.B;N / :

(2) R ı aD d .

(3) a is of degree 1.

(4) The sequence

(2-1) h.B/
c
!�.B;N /=im.d/

a
! yh.B/

I
! h.B/! 0 :

is exact.

2.2.2 If h is a multiplicative cohomology theory, then one can consider a Z–graded
ring R over R and a multiplicative transformation cW h.B/!H.B;R/. In this case
we also talk about a multiplicative smooth extension yh of .h; c/.

Definition 2.3 A smooth extension yh of .h; c/ is called multiplicative, if yh together
with the transformations R; I; a is a smooth extension of .h; c/, and in addition

(1) yh is a functor to Z–graded rings,

(2) R and I are multiplicative,

(3) a.!/[x D a.! ^R.x// for x 2 yh.B/ and ! 2�.B;R/=im.d/.

2.2.3 The first goal of the present paper is the construction of a multiplicative smooth
extension of the pair .MU; c/, where cW MU�.B/!MU�.B/˝Z RŠH�.B;MUR/
is the canonical natural transformation (see Section 3.4.7). The following theorem is
a special case of Theorem 4.21 which gives a construction of multiplicative smooth
extensions of more general pairs .MU; h/.

Theorem 2.4 The pair .MU; c/ admits a multiplicative smooth extension.

The existence of a smooth extension also follows from [14], but there, no ring structure
is constructed.
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2.2.4 In the present paper we consider smooth extensions of generalized cohomology
theories defined on the category of compact manifolds. The reason lies in the fact that
we want to apply the Landweber exact functor theorem. If R is a generalized complex
oriented cohomology theory satisfying the wedge axiom to which the Landweber exact
functor theorem applies, then for finite CW–complexes X

R�.X /ŠMU�.X /˝MU� R :

In general this equality does not extend to infinite CW–complexes since the tensor
product on the right-hand side does not necessarily commute with infinite products.

If one omits the compactness condition in the Definition 2.2 and Definition 2.3, then
one obtains the axioms for smooth and multiplicative smooth extensions defined on the
category of all manifolds. If the coefficients groups R is degree-wise finitely generated
(see the corresponding remark in Section 2.2.1), then we obtain the same notion as
in [5].

Our construction of the smooth extension of the complex cobordism theory does not
depend on any compactness assumption so that there is also a corresponding version of
Theorem 2.4 furnishing a multiplicative smooth extension of .MU; c/ defined on the
category of all smooth manifolds.

2.2.5 We also introduce the notion of a smooth MU–orientation (Definition 4.27) of
a proper submersion pW W ! B and define a pushforward p!W

bMU .W /!bMU .B/
which refines the integration map p!W MU.W /!MU.B/ (Definition 4.34). In Section
4.4 we show that integration is compatible with the structure maps a;R; I of the
smooth extension, functorial, compatible with pullback and the product. We refer to
this subsection and Theorem 2.7 for further details. Integration maps play a fundamental
role in applications of generalized cohomology theories. This is the case, for example,
in the context of T–duality, where we hope to eventually generalize our investigations [6]
to a setting in smooth cohomology.

2.3 Smooth extensions for Landweber exact formal group laws

2.3.1 If .R;g/ is a Landweber exact formal group law, then we let R�.X / WD

MU�.X /˝MU� R denote the associated cohomology theory on finite CW–complexes.
We consider the pair .R; cR/, where cRW R!R˝Z RDWRR is the canonical map.

Theorem 2.5 If .R;g/ is a Landweber exact formal group law, then .R; cR/ has a
multiplicative smooth extension yR, given by yR.B/DbMU .B/˝MU� R.
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Proof We start with Theorem 2.4 which states that .MU; c/ has a multiplicative
smooth extension. Since �k.�/ D 0 for k 6D 0, �0.�/ Š R, and MUodd

D 0, the
natural map bMUev.�/ ! MUev.�/ is an isomorphism. Hence bMUev.�/ Š MU� ,
and for a compact manifold B the group bMU .B/ is an MU�–module. We set
yR.B/ WDbMU�.B/˝MU� R and define the structure maps R; I; a by tensoring the

corresponding structure maps for bMU . Here we identify R�.B/ŠMU�.B/˝MU� R

and �.B;RR/Š�.B;MUR/˝MU� R. The only nontrivial point to show is that the
sequence

R.B/
cR
!�.B;RR/=im.d/

a
! yR.B/

I
!R.B/! 0

is exact. Let us reformulate this as the exactness of

(2-2) 0!�.B;RR/=cR.R.B//! yR.B/!R.B/! 0 :

We start from the exact sequence

0!�.B;MUR/=c.MU�.B//!bMU .B/!MU�.B/! 0 :

Tensoring by R gives

TorMU�
1 .MU�.B/;R/! .�.B;MUR/=c.MU�.B///˝MU� R

!bMU.B/˝MU� R!MU�.B/˝MU� R! 0 :

Since the tensor product is right exact we have

.�.B;MUR/=c.MU�.B///˝MU� RŠ�.B;RR/=cR.R.B// :

We conclude the exactness of (2-2) from Landweber’s Theorem 2.1 which states that
TorMU�

1
.MU�.B/;R/Š 0.

2.3.2 Let pW V !A be a proper submersion which is smoothly MU–oriented (see
Definition 4.27) by op . Recall that yR.V /DbMU .V /˝MU� R.

Definition 2.6 We define the pushforward map p!W
yR.V /! yR.A/ by p!.x˝ z/ WD

p!.x/˝ z .

We must show that the pushforward is well defined. Let u 2MU.�/ŠbMUev.�/. We
must show that p!.x[u/˝ z D p!x˝uz . This indeed follows from the special case
of the projection formula Lemma 4.39, p!.x[u/D p!.x/[u.

The smooth MU–orientation op of the proper submersion p gives rise to a form
A.op/ 2 �.V;RR) which we describe in detail in Lemma 4.29. The next theorem
states that the natural and expected properties of a pushforward hold true.
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Theorem 2.7 The following diagram commutes:

�.V;RR/=im.d/R
V =A A.op/^ :::

��

a // yR.V /

p!

��

I //

R

))
R�.V /

p!

��

�.V;RR/R
V =A A.op/^ :::

��
�.A;RR/=im.d/

a
// yR.A/

I
//

R

55
R�.A/ �.A;RR/

Furthermore, we have the projection formula

p!.p
�x[y/D x[p!y ; x 2 yR.A/ ; y 2 yR.V / :

The pushforward is compatible with pullbacks, ie for a Cartesian diagram

W

q

��

F // V

p

��
B

f // A

q! ıF� D f � ıp!W
yR.V /! yR.B/ ;we have

where q is smoothly MU–oriented by f �op .

If C ! V is a second proper submersion with smooth MU–orientation or , then the
composition s WD p ı r has the composed orientation os WD op ı or (see Definition
4.32), and we have

s! D p! ı r!W
yR.C /! yR.A/ :

Proof This follows immediately by tensoring with idR the corresponding results of
the pushforward for the extension of .MU; c/. These are all proven in Section 4.4.

Corollary 2.8 Let .R1;g1/ and .R2;g2/ be two Landweber exact formal group laws
with corresponding cohomology theories Ri.B/ WDMU.B/˝MU�Ri . Let �W R1!R2

be a natural transformation of MU–modules. Then � lifts to a natural transformation
of smooth cohomology theories as in [5, Definition 1.5] or [4, Definition 1.3], y�.B/ WD
idcMU .B/˝� .

In particular, we have a (multiplicative) smooth complex orientation bMU .B/! yK.B/

from smooth complex cobordism to smooth K–theory.

Here, we use again that yK.B/ is uniquely determined as a multiplicative extension of
K–theory [5].
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3 Normal G –structures and cobordism theories

3.1 Representatives of the stable normal bundle

3.1.1 In the present paper we construct geometric models of smooth extensions of
cobordism cohomology theories associated to the families G.n/ of classical groups like
U.n/, SO.n/, Spin.n/, or Spinc.n/. We use the notation MG.B/ and are in particular
interested in the case where B is a smooth manifold. A cycle for MGn.B/ is a proper
smooth map W ! B with a normal G–structure such that dim.B/� dim.W / D n.
The relations are given by bordisms.

Cycles for the smooth extension will have in addition a geometric normal G –structure.
In order to make a precise definition we introduce a rather concrete version of the
notion of the stable normal bundle.

3.1.2 Let X be a space or manifold. For k 2N we denote by Rk
X the (total space of

the) trivial real vector bundle X �Rk!X . Let f W A!B be a smooth map between
manifolds.

Definition 3.1 A representative of the stable normal bundle of f is a real vector
bundle N !A together with an exact sequence

0! TA
.df;˛/
����! f �TB˚Rk

A!N ! 0 ;

where we fix only the homotopy class of the projection to N .

There is a natural notion of an isomorphism of representatives of stable normal bundles.
For an integer l 2N it is evident how to define the l –fold stabilization N.l/ WDN˚Rl

A

as representative of the stable normal bundle with corresponding short exact sequence.

3.1.3 Let qW C ! B be a smooth map which is transversal to f . Then we have a
Cartesian diagram

C �B A
Q //

F
��

A

f

��
C

q // B

of manifolds. If

0! TA
.df;˛/
����! f �TB˚Rk

A
u
�!N ! 0
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represents the stable normal bundle of f , then we define the pullback representative of
the stable normal bundle of F by

0! T .C �B A/
.dF;ˇ/
����! F�T C ˚Rk

C�BA


�!Q�N ! 0;

with ˇ WDQ�˛ ı dQ and  WDQ�u ı .F�dq˚ idRk
C�BA

/. Note that Q�.N.l//Š

.Q�N /.l/.

3.1.4 We now discuss the stable normal bundle of a composition. Let gW B! C a
smooth map and

(3-1)
0! TB

s
 

.dg;ˇ/
����! g�T C ˚Rl

B
v
�!M ! 0

be a representative of the stable normal bundle of g . Then we define

0! TA
.d.gf /; /
�������! .gf /�T C ˚Rl

A˚Rk
A
w
�!N ˚f �M ! 0

as the associated representative of the stable normal bundle of g ı f . Here  WD
.f �ˇ ı df; ˛/ and w WD .u ı .f �s˚ idRk /; f �v ı pr.gf /�T C˚0˚Rk /, where s is the
split indicated in (3-1). This split is unique up to homotopy (since the space of such
splits is convex) so that the homotopy class of w is well defined.

3.2 G –structures and connections on the stable normal bundle

3.2.1 Let G be a Lie group with a homomorphism G! GL.n;R/ and consider an
n–dimensional real vector bundle �!X .

Definition 3.2 A G –structure on � is a pair .P; �/ of a G –principal bundle P !X

and an isomorphism of vector bundles �W P �G Rn �!� .

Definition 3.3 A geometric G –structure on � is a triple .P; �;r/, where .P; �/ is a
G –structure and r is a connection on P .

Note that the trivial bundle Rn
X has a canonical G –structure with P DX �G!X .

3.2.2 In order to define a cobordism theory we consider a sequence of groups G.n/,
n2M for an infinite submonoid M of .N�0;C/ which fit into a chain of commutative
diagrams

G.n/

��

// GL.n;R/

��
G.nC k/ // GL.nC k;R/ :
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Typically, MDN or MD 2N . This is in particular used in order to define stabilization.
In order to define the multiplicative structure we require in addition

G.n/�G.m/

��

// GL.n;R/�GL.m;R/

��
G.nCm/ // GL.nCm;R/ :

Examples are O.n/, SO.n/, Spin.n/, or Spinc.n/. In the present paper we are in
particular interested in the complex cobordism theory MU . In this case we have
MD 2N and we set G.2n/D U.n/. By abuse of notation we will use the symbol G

to denote such a family of groups, and by M G the corresponding cobordism theory.

3.2.3 Let f W A! B be a smooth map between manifold.

Definition 3.4 A representative of a normal G–structure on f is given by a pair
.N;P; �/, where N is a representative of the stable normal bundle, and .P; �/ is a
G.n/–structure on N , where n WD dim.N /, n 2M.

For notational convenience, we write N instead of the short exact sequence with
quotient N which is also contained in the data of a representative of the stable normal
bundle.

Definition 3.5 A representative of a geometric normal G –structure on f is given by a
quadruple .N;P; �;r/, where N is a representative of the stable normal bundle of f ,
and .P; �;r/ is a geometric G.n/–structure on N , where n WD dim.N /, n 2M.

There are natural notions of isomorphisms of representatives of normal G –structures
or geometric normal G–structures. In the following we discuss the operations “sta-
bilization”, “pullback”, and “composition” on the level of representatives of normal
G –structure and geometric normal G –structures.

3.2.4 Let .N;P; �/ be a representative of a normal G –structure on f W A! B and
consider l 2M. The stabilization N.l/ is N ˚Rl

A . It has a canonical .G.n/�G.l//–
structure with underlying principal bundle P �G.l/!A. We get a G.nC l/–structure
with the underlying principal bundle

P .l/ WD .P �G.l//�G.n/�G.l/G.l C n/ :

Definition 3.6 We define the stabilization of .N;P; �/ by

.N;P; �/.l/ WD .N.l/;P .l/; �.l// :
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Let .N;P; �;r/ is a representative of a geometric normal G–structure, then the
connection r induces a connection r.l/ on P .l/.

Definition 3.7 We define the stabilization of .N;P; �;r/ by

.N;P; �;r/.l/ WD .N.l/;P .l/; �.l/;r.l// :

3.2.5 We now consider the pullback and use the notation introduced in Section 3.1.3.
If .P; �/ is a G.n/–structure on N , then .Q�P;Q��/ is a G.n/–structure on Q�N .

Definition 3.8 We define the pullback of a normal G –structure by

q�.N;P; �/ WD .Q�N;Q�P;Q��/ :

Definition 3.9 We define the pullback of a geometric normal G –structure by

q�.N;P; �;r/ WD .Q�N;Q�P;Q��;Q�r/ :

3.2.6 We now discuss the composition. Continuing with the notation of Section 3.1.4
we consider

A
f
! B

g
! C

and representatives of normal G –structures .N;P; �/ and .M;Q;  / on f and g . The
sum N˚f �M has a natural G.n/�G.m/–structure with underlying .G.n/�G.m//–
bundle P �A f

�Q, and therefore a G.nCm/–structure with underlying bundle

R WD .P �A f
�Q/�G.n/�G.m/G.nCm/

with isomorphism �W R�GL.nCm/RnCm ŠN ˚f �M .

Definition 3.10 We define the composition of representatives of normal G –structures
by

.M;Q;  / ı .N;P; �/ WD .N ˚f �M;R; �/ :

If rP and rQ are connections on P and Q, then we get an induced connection rR

on R.

Definition 3.11 We define the composition of representatives of geometric normal
G –structures by

.M;Q;  ;r/ ı .N;P; �;r/ WD .N ˚f �M;R; �;rR/ :
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3.2.7 The following assertions are obvious.

Lemma 3.12 (1) On the level of representatives of normal G –structures or geomet-
ric normal G –structures, pullback and composition commute with stabilization.

(2) On the level of representatives of normal G–structures or geometric normal
G –structures, pullback and composition are functorial.

(3) On the level of representatives of normal G–structures or geometric normal
G –structures, pullback and composition commute with each other.

3.3 A cycle model for MG

3.3.1 Let us fix a family of groups G and M as in Section 3.2.2. It determines a
multiplicative cohomology theory which is represented by a Thom spectrum MG. The
map G.n/! GL.n;R/ induces a map of classifying spaces BG.n/! BGL.n;R/.
Let �n! BG.n/ denote the pullback of the universal Rn –bundle. Then for n 2M
we define MGn

WD BG.n/�n , where for a vector bundle �!X we write X � for its
Thom space. The family of spaces MGn , n � 0, fits into a spectrum with structure
maps

†d MGn
Š BG.n/�n˚Rd

BG.n/ ! BG.nC d/�nC1 ŠMGnCd ; n; nC d 2M

where we use the canonical Cartesian diagram

�n˚Rd
BG.n/

//

��

�nCd

��
BG.n/ // BG.nC 1/ :

The ring structure is induced by

MGn
^MGm

Š BG.n/�n ^BG.m/�m Š .BG.n/�BG.m//�n��m

! BG.nCm/�nCm ŠMGnCm ;

for n;m 2M, using the canonical Cartesian diagram

�n � �m //

��

�nCm

��
BG.n/�BG.m/ // BG.nCm/ :
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For l …M we set MGl WD†l�dM Gd , where d � l is maximal with d 2M. The
corresponding structure maps and multiplication maps are given as suspensions of the
maps described above.

If A is a manifold (or more generally a finite CW-complex), then the homotopy theoretic
definition of the cobordism cohomology group is

MGn.A/ WD limk Œ†
kAC;MGnCk � ;

where the limit is taken over the stabilization maps

Œ†kAC;MGnCk �! Œ††kAC; †MGnCk �! Œ†kC1AC;MGnCkC1� ;

and AC is the union of A and a disjoint base point. Temporarily we use the boldface
notation of the homotopy theoretic definition of the cobordism cohomology theory. For
details we refer to Switzer [23] or Stong [22].

3.3.2 We now present a cycle model of the G –cobordism theory. Let A be a smooth
manifold.

Definition 3.13 A precycle .p; �/ of degree n 2 Z over A consists of a smooth map
pW W !A from a smooth manifold W of dimension dim.W /D dim.A/� n, and a
representative � of a normal G –structure on p (see Definition 3.4). A cycle of degree
n 2 Z over A is a precycle .p; �/ of degree n, where p is proper.

There is a natural notion of an isomorphism of precycles.

3.3.3 Let c WD .p; �/ be a precycle over A and qW B!A be transverse to p .

Definition 3.14 We define the pullback q�c WD .q�p; q��/, a precycle over B .

The pullback is functorial by Lemma 3.12.

3.3.4 We now consider precycles c D .p; �/ over A and d D .q; �/ over C with
underlying maps pW B!A and qW A! C .

Definition 3.15 We define the composition

d ı c WD .q ıp; � ı �/

using Definition 3.10.

The composition d ı c is a precycle over C . The composition is associative and
compatible with pullback.
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3.3.5 Let c WD .p; �/, pW W !A, and d WD .q; �/, qW V ! B be precycles over A

and B . Then we can form the diagram:

W �V

Q

��

// V

q

��
W

p

��

W �Boo

P
��

r // B

A A�Bs
oo

Definition 3.16 We define the product of the precycles c and d to be the precycle
c � d WD s�c ı r�d over A�B .

Note that there is an equivalent definition based on the diagram:

W �V

��

// W

p

��
V

q

��

A�Voo

��

// A

B A�Boo

It follows from the functoriality of the composition and its compatibility with the
pullback that the product of precycles is associative.

3.3.6 We consider a precycle b WD ..f;p/; �/ over R�A.

Definition 3.17 The precycle b is called a bordism datum if f is transverse to f0g2R
and pjff�0g is proper. We define the precycle @b WD i�b , where i W A ! R � A,
i.a/ WD .0; a/.

3.3.7 Let c D .p; �/ be a precycle and l 2N .

Definition 3.18 We define the l –fold stabilization of the precycle c by c.l/ WD

.p; �.l// (see Definition 3.6).
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3.3.8 We now come to the geometric picture of the cobordism theory MG . We
consider a smooth manifold A and let ZM G.A/ denote the semigroup of isomorphism
classes of cycles over A with respect to disjoint union. Recall that a relation � on a
semigroup is compatible with the semigroup structure if a�b implies that aCc�bCc

for all c .

Definition 3.19 Let “�” be the minimal equivalence relation which is compatible
with the semigroup structure and satisfies:

(1) If b is a bordism datum, then @b � 0.

(2) If l 2N , then c.l/� c .

We let MG.A/ WDZMG.A/=� denote the quotient semigroup.

3.3.9 Let 0 denote the cycle of degree n given by the empty manifold. The following
Lemma will be useful in calculations.

Lemma 3.20 Let c be a cycle which is equivalent to 0. Then there exists a bordism
datum b and l � 0 such that c.l/Š @b .

We leave the proof to the interested reader.

3.3.10 We now describe the functoriality, the product, orientations, and the integration
on the level of cycles.

(1) (Functoriality) Let f W B ! A be a smooth map and x 2MG.A/. We can
represent x by a cycle c D .p; �/ such that p and f are transverse. Then f �x
is represented by f �c .

(2) (Product) Let c and d be cycles for x 2M Gn.A/ and y 2MGm.B/. Then
x�y 2MGnCm.A�B/ is represented by the cycle c�d (see Definition 3.16).
We get the interior product using the pullback along the diagonal.

(3) (Integration) Let d be a cycle over A with underlying map qW V !A. In this
situation we have an integration map

q!W M G.V /!M G.A/ :

If x 2MG.V / is represented by the cycle c , then q!.x/ is represented by the
cycle d ı c (see Definition 3.15).
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(4) (Suspension) Let i W �!S1 denote the embedding of a point. For each d 2M,
the trivial bundle Rd

� represents the stable normal bundle which of course has
a canonical G.d/–structure. In this way i is the underlying map of a cycle
fig 2ZMG1.S1/ which represents a class Œi � 2MG1.S1/.
For a manifold A we define M Gk.A/ ! M GkC1.S1 � A/, x 7! fig � x ,
which on the level of cycles is represented by c 7! fig � c . This transformation
is essentially the suspension morphism (not an isomorphism, since we neither
use reduced cohomology nor the suspension of A).

3.3.11 In order to show that the operations defined above on the cycle level descend
through the equivalence relation � the following observations are useful. Let b D

..f;p/; �/ be a bordism datum over A with underlying map .f;p/W W ! R �A.
Assume that qW B!A is transverse to p and pjffD0g . Then we can form the bordism
datum .idR � q/�b over B which will be denoted by q�b . Note that

q�@b Š @q�b :

Let e be a cycle over B . Then we can form b� e which we can interpret as a bordism
datum over B �A. Note that

@.b � e/Š @b � e :

Let d be a cycle with underlying map A! B . Let prW R�B! B be the projection.
Then we can form the bordism datum pr�d ı b over B . Note that

@.pr�d ı b/Š d ı @b :

Finally, if c is a cycle over W , then we can form the bordism datum b ı c over B ,
and have

@.b ı c/Š @b ı c :

3.3.12 We now have a geometric and a homotopy theoretic picture of the G –cobordism
theory which we distinguish at the moment by using roman and boldface letters.

Proposition 3.21 There is an isomorphism of ring-valued functors MG.A/ŠMG.A/
on compact manifolds. This isomorphism preserves the product and is compatible with
pushforward.

Proof This follows from the Pontryagin–Thom construction. Since this construction
for cobordism cohomology (as opposed to homology) seems not to be so well known
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let us shortly indicate the main ideas. For concreteness let us consider the case of
complex cobordism MU and even 2n. We have

MU2n.A/Š colimi Œ†
2iA;MU2nC2i � :

Let hW †2iA!MU2nC2i represent some class in MU2n.A/. Recall that MU2nC2i
D

BU.nC i/�nCi is the Thom space the universal bundle �nCi! BU.nC i/. The latter
is itself the colimit of Thom spaces

BU.nC i/�nCi Š colimk GrnCi.CnCiCk/�nCi

of tautological bundles �nCi over the Grassmannians GrnCi.CnCiCk/ of .nC i/–
dimensional subspaces in CnCiCk . We can assume that h factors over some Thom
space GrnCi.CnCiCk/�nCi , and that the induced map

S2i
�A

p
!†2iA

f
! GrnCi.C

nCiCk/�nCi

is smooth and transverse to the zero section of �nCi , where p is the canonical projection.
The preimage of the zero section is a submanifold W �S2i�A of codimension 2nC2i .
We let f W W ! A be induced by the projection. We use the standard embedding
S2i ! R2iC2 in order to trivialize the bundle TS2i ˚RS2i Š S2i �R2iC2 . The
embedding W ,! S2i �A thus induces naturally an embedding

T W ! T .A�S i/jW Š f
�TA˚TS2i

jW ! f �TA˚R2iC2
W :

Moreover, the differential of h identifies the normal bundle N WDf �TA˚R2iC2
W =TW

with the pullback hj�
W
�nCi˚CW , which has a canonical complex structure. In this

way we get the normal bundle sequence

0! T W ! f �TA˚R2iC2
M !N ! 0

and the U –structure � D .N;P; �/ on N . Note that f W W !A is proper so that we
get a cycle .f; �/ of degree n. One now proceeds as in the case of bordism homology
and shows that the class Œf; �� 2MU2n.A/ only depends on the class Œh� 2MU2n.A/.
In this way we get a map MU2n.A/!MU2n.A/.

Conversely one starts with a cycle .f; �/ of degree n. One observes that up to stabi-
lization and homotopy the normal bundle sequence

0! T W ! f �TA˚Rk
W !N ! 0

comes from an embedding of i W W ,! Sk�1 �A such that f D prA ı i . Then we let
W ! BU.nC .nC k/=2/ be a classifying map of N (necessarily, dimR N D nC k

is even). It gives rise to a map of Thom spaces W N ! BU.nC i/�.nCk/=2 . We finally
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precompose with the clutching map †kA!W N in order to get a map hW †kA!

MUnCk .

One checks that this construction gives the inverse map MUn.A/ ! MUn.A/. A
further standard argument checks that these maps are compatible with the abelian group
and ring structures and the pushforward.

In view of Proposition 3.21 we can drop the boldface notation for the homotopy theoretic
cobordism.

3.4 Power series and genera

3.4.1 The basic datum for a multiplicative smooth extension of a generalized co-
homology theory h is a pair .h; c/, where cW h! HR is a natural transformation
from h into the ordinary cohomology with coefficients in a graded ring R over R.
The transformation c induces in particular a homomorphism of coefficients h�!R� .
Our construction of smooth extensions of cobordism theories is based on a description
of c in terms of characteristic numbers of stable normal bundles.

A ring homomorphisms cW MG�! R� is called a G–genus. One can classify SO
and U –genera in terms of formal power series (see Hirzebruch, Berger and Jung [13]
and Theorem 3.22). Genera for other cobordism theories can be derived from transfor-
mations like M Spin!M SO. Since the details in the real and complex case differ
slightly, in the present paper we restrict to our main example G WDMU , ie MD 2N�0 ,
G.2n/ D U.n/. It is easy to modify the constructions for other cases like M Spinc ,
M SO or Spinc .

3.4.2 Let R be a commutative Z–graded algebra over R with 1 2R0 . By RŒŒz�� we
denote the graded ring of formal power series, where z has degree 2. Let � 2RŒŒz��0

be a power series of the form 1C �1zC �2z2C � � � (note that deg.�i/ D �2i ). To
such a power series we associate a genus r� W MU�!R� as in [18, Section 19].

Theorem 3.22 [13] The correspondence �! r� gives a bijection between the set
RŒŒz��0 and R–valued U –genera.

In the following we describe the associated natural transformation r� W MU.A/ !
H.A;R/ of cohomology theories on the level of cycles, following the procedure as
described in [18].
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3.4.3 We define the power series K� 2 RŒŒ�1; �2; : : : ; ��
0 (where �i has degree 2i )

such that

K�.�1; �2; : : :/D

1Y
iD1

�.zi/

holds if we replace �i by the elementary symmetric functions �i.z1; : : :/.

3.4.4 Note that G.2k/DU.k/ (see Section 3.2.2). Let N !W be an n–dimensional
real vector bundle for n even with a G.n/–structure .P; �/. Then we have Chern
classes cj .N / WD cj .P / 2H 2j .W;R/.

Definition 3.23 We define the characteristic class

�.N / WDK�.c1.N /; c2.N /; : : :/ 2H 0.A;R/ :

The following properties are well-known (see Hirzebruch, Berger and Jung [13]).

Lemma 3.24 (1) Let Rk
A have the trivial G.k/–structure. Then �.Rk/A D 1 for

all k � 0.

(2) If M is a second bundle with a G.m/–structure, and N ˚M has the induced
G.nCm/–structure, then we have �.N ˚M /D �.N /[�.M /.

(3) If f W B ! A is a continuous map, then we have f ��.N / D �.f �N /, if we
equip f �N with the induced G.n/–structure.

3.4.5 Consider a cycle c D .p; �/ 2 ZMU.A/ of degree n with underlying map
pW W !A and normal U –structure � D .N;P; �/. Then p is a proper map which is
oriented for the ordinary cohomology theory HR. In particular, we have an integration
p!W H

�.W;R/!H�Cn.A;R/.

Definition 3.25 We define

zr�.c/ WD p!.�.N // 2H n.A;R/ :

3.4.6 The following Lemma implies half of Theorem 3.22. What is missing is the
argument that every R–valued U –genus comes from a formal power series.

Lemma 3.26 The map zr� descends through � and induces a natural transformation
r� W MU.A/!H.A;R/ of ring-valued functors.
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Proof Using the first and second property in Lemma 3.24 one checks that zr�.c/D
zr�.c.l//.

Assume that b D ..f; q/; �/ with underlying map .f; q/W W !R�A and � D

.M;Q; �/ is a bordism datum. Then we get the Cartesian diagram

V
i //

p

��

W

.f;q/

��
f0g �A // R�A :

Set N WDi�M . Therefore p!.�.N // D p!.�.i
�M // D p!.i

��.M // D 0 by the
bordism invariance of the pushforward in ordinary cohomology and the third property
of Lemma 3.24. Thus the transformation r� is well defined.

It is natural since for f W B!A which is transverse to p we have a Cartesian diagram

F�N

��

// N

��
f �V

q

��

F // V

p

��
B

f // A ;

the bundle F�N represents the stable normal bundle of q , and

q!.�.F
�N //D q!.F

��.N //D f �p!.�.N //

by the projection formula. This implies that f �zr�.c/D zr�.f �c/.

We claim that the transformation is also multiplicative. To this end we consider a cycle
d D .q; �/ with underlying map qW V ! B and normal G –structure �D .M;Q; �/.
Then the underlying proper map of c�d 2ZMU.A�B/ is p� qW W �V !A�B ,
and the bundle N � M represents its normal G –structure. We thus have

.p� q/!.�.N � M //D .p� q/!.�.N /��.M //D p!.�.N //� q!.�.M // :

This implies

zr�.c � d/D zr�.c/�zr�.d/ :
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3.4.7 The most important example for the present paper is given by the ring MUR WD
MU� ˝Z R. The MU�–module MUR is Landweber exact. Hence, for a compact
manifold or finite CW–complex A we have H�.A;MUR/ŠMU�.A/˝MU�MUR and
therefore a canonical natural transformation r W MU�.A/!H�.A;MUR/, x 7! x˝1.
This transformation is a genus r D r� for a certain power series � 2MURŒŒx��0 . We
refer to [13] for further details on � .

4 The smooth extension of MU

4.1 Characteristic forms

4.1.1 Let � 2 RŒŒz��0 be as in Section 3.4.2 and G be the family of groups Section
3.2.2 associated to U.n/, n � 0.. We first lift the construction of the characteristic
class �.N / 2H 0.A;R/ of vector bundles N !A with G.n/–structure to the form
level.

Let .P;  ;rN / be a geometric G.n/–structure on N!A. By Rr
N

2�2.A;End.N //

we denote the curvature of the connection rN . The fiberwise polynomial bundle
morphism detW End.N /!RA extends to detW �ev.A;End.N //!�ev.A/. As usual
we define the Chern forms ci.r

N / 2�2i.A/ by

1C c1.r
N /C c2.r

N /C � � � D det
�

1C
1

2� i
Rr

N

�
:

Definition 4.1 If N ! A is a real vector bundle with a geometric G.n/–structure,
then we define

�.rN / WDK�.c1.r
N /; c2.r

N /; : : : / 2�0.A;R/ :

4.1.2 The properties stated in Lemma 3.24 lift to the form level by well-known prop-
erties of the Chern–Weil calculus.

Lemma 4.2 (1) Let k � 0 and Rk
A have the trivial G.k/–structure with the trivial

connection. Then we have �.rRk
A/D 1.

(2) If M ! A is a second bundle with a geometric G.m/–structure and assume
that N ˚M has the induced geometric G.nCm/–structure, then we have
�.rN˚M /D �.rN /^�.rM /.

(3) Assume that f W B!A is a smooth map. Then we have f ��.rN /D�.rf
�N /,

if we equip f �N with the induced geometric G.n/–structure.
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4.1.3 We now define the cycles for our cohomology groups.

Definition 4.3 A geometric precycle over A is a pair .p; �/ of a smooth map pW V !

A and a geometric normal G –structure � (see Definition 3.5). A geometric precycle is
a cycle if p is proper.

Usually we will denote geometric precycles by zc , where c denotes the underlying
precycle. Since a principal bundle always admits connections, every precycle can be
refined to a geometric precycle. If � D .N;P; �;r/, then we will write r� WD r .

4.1.4 Let ��1.A/ WD C�1.A; ƒ�T �A/ denote the differential forms with distri-
butional coefficients. We identify this space with the topological dual of the space
C1c .A; ƒn��T �A˝ƒA/, where ƒA ! A is the real orientation bundle and n D

dim.A/. For this identification we use cup product and integration of an n–form
with values in the orientation bundle over A. Finally, we define ��1.A;R/ WD
��1.A/˝R R using the algebraic tensor product.

A morphism of complexes inducing an isomorphism in cohomology is called a quasi-
isomorphism. It is well-known (see de Rham [20], or do this exercise using Lemma 4.11)
that the inclusion �.A/ ,! ��1.A/ is a quasi-isomorphism. Hence, �.A;R/ ,!
��1.A;R/ is a quasi-isomorphism, too.

4.1.5 Let pW V !A be a proper smooth oriented map. The orientation of p gives an
isomorphism p�ƒA

�
!ƒV . We then define the pushforward

p!W ��1.V /!��1.A/

of degree dim.A/� dim.V / by the formula

hp!!; �i D h!;p
��i ; ! 2��1.V / ; � 2�.A; ƒA/

holds true. By tensoring with the identity of R we get the map p!W ��1.V;R/!

��1.A;R/. Stokes’ theorem implies

p! ı d D d ıp! :

We get an induced map in cohomology such that the following diagram commutes:

(4-1)

H�.��1.V;R//
de Rham
Š

//

p!

��

H�.V;R/

p!

��
H�.��1.A;R//

de Rham
Š

// H�.A;R/ :
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4.1.6 Let zc D .p; �/ be a geometric cycle of degree n.

Definition 4.4 We define T .zc/ WD p!.�.r
�// 2�n

�1.A;R/.

This form is closed, and by (4-1) we have the following equality in de Rham cohomol-
ogy:

(4-2) ŒT .zc/�D p!.�.N //D zr�.c/ :

4.1.7 We now consider a bordism datum b D ..f; q/; �/ over a manifold A with
.f; q/W W !R�A. We build the composition

q! ı�ff�0gW �
k.W /!�kCl

�1 .A/ ;

where l WD dim.A/�dim.W /, and �U is the multiplication operation with the charac-
teristic function of the subset U . Stokes’ theorem implies in this case that

(4-3) d ı q! ı�ff�0g� q! ı�ff�0g ı d D .q0/! ı i� ;

where q0W W0!A is defined by the Cartesian diagram

W0
i //

q0

��

W

q

��
A

a 7!.0;a/ // R�A ;

ie q0 is the underlying map of @b .

Definition 4.5 Let zb WD ..f; q/; z�/ be a geometric refinement of b . We define

T .zb/ WD q! ı�ff�0g.�.r
z�// 2��1.A/ :

Equation (4-3) shows that

(4-4) dT .zb/D T .@zb/ :

4.2 The smooth extension of MU

4.2.1 In the present subsection we construct the smooth extension associated to the
pair .MU; r�/, where � 2RŒŒz��0 is as in Section 3.4.2, and r� is the associated natural
transformation MU.A/! H.A;R/. Recall the notions of a cycle and a geometric
cycle from Definition 3.13 and Definition 4.3. The cycles for the smooth extension
bMU of MU will be called smooth cycles.
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Definition 4.6 A smooth cycle of degree n is a pair yc WD .zc; ˛/, where zc is a geometric
cycle of degree n, and ˛ 2�n�1

�1.A;R/=im.d/ is such that

T .zc/� d˛ WD�.yc/ 2�n.A;R/ :

The point here is that T .zc/�d˛ is a smooth representative of the cohomology class
represented by T .zc/. The latter is in general a singular form. To be explicit note that
in the definition above,

im.d/ WD im.d W �n�2
�1.A;R/!�n�1

�1.A;R// ;

ie we allow differentials of forms with distribution coefficients.

4.2.2 There is an evident notion of an isomorphism of smooth cycles. We form the
graded semigroup ZbMU .A/ of isomorphism classes of smooth cycles such that the
sum is given by

.zc; ˛/C .zc0; ˛0/D .zcCzc0; ˛C˛0/ ;

where, as in the nongeometric case, zcCzc0 is given by the disjoint union.

4.2.3 We will define the smooth cobordism group bMU .A/ as the quotient of ZbMU .A/
by an equivalence relation generated by stabilization and bordism.

Definition 4.7 Let “�” be the minimal equivalence relation on ZbMU .A/ which is
compatible with the semigroup structure (see Section 3.3.8) and such that:

(1) For l 2M we have .zc; ˛/ � .zc.l/; ˛/, where zc.l/ is the l –fold stabilization
defined by .p; �/.l/ WD .p; �.l// (see Definition 3.7).

(2) For a geometric bordism datum zb we have .@zb;T .zb//� 0.

We define bMUn.A/ WD ZbMU
n
.A/=� as the semigroup of equivalence classes of

smooth cycles of degree n.

We will write Œzc; ˛� for the equivalence class of .zc; ˛/.

Lemma 4.8 bMU
n
.A/ is a group.

Proof Let Œzc; ˛�2bMU .A/. It suffices to show that it admits an inverse. Since MU.A/
is a group there exists a cycle c0 such that cC c0 � 0. By Lemma 3.20 we can assume
that c.l/C c0.l/ � @b for some bordism datum b and l 2 N . We extend b to a
geometric bordism datum zb by choosing a connection such that @zb Š zc.l/Czc0.l/ for
some geometric extension zc0 of c0 . Then we have Œzc0;T .zb/�˛�C Œzc; ˛�D 0.
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4.2.4 We now define the structure maps a;R; I (see Definition 2.2) of the smooth
extension bMU .

Definition 4.9 (1) We define RW bMU .A/!�dD0.A;R/ by R.Œzc; ˛�/ WD T .zc/�

d˛ .

(2) We define aW �.A;R/!bMU .A/ by a.˛/ WD Œ∅;�˛�.
(3) We define I W bMU .A/!MU.A/ by I.Œzc; ˛�/ WD Œc� (using the geometric model

Definition 3.19).

Lemma 4.10 These maps are well defined. We have R ı aD d .

Proof The only nonobvious part is the fact that R is well defined. To this end consider
a geometric bordism datum zb . Then we have

RŒ@zb;T .zb/�D T .@zb/� dT .zb/D 0

by Equation (4-4).

4.2.5 We now extend A 7! bMU .A/ to a contra-variant functor on the category of
smooth manifolds. Let f W B ! A be a smooth map. Then we must construct a
functorial pullback f �W bMU .A/ ! bMU .B/ such that the transformations R; I; a

above become natural.

Let .zc; ˛/ be a smooth cycle with zc D .p; �/, pW W !A. We can assume that p is
transverse to f . Otherwise we replace p by a bordant (homotopic) map and correct ˛
correspondingly so that the new pair represents the same class in bMU .A/ as .zc; ˛/.
Then we have the Cartesian diagram

B �A W

P
��

F // W

p

��
B

f // A :

The map P is the underlying map of a geometric cycle f �zc D .P; f ��/, where f ��
is the pullback of the geometric normal G –structure as defined in Definition 3.9. We
want to define f �Œzc; ˛� WD Œf �zc; f �˛�. The problem is that ˛ is a distribution. In order
to define the pullback f �˛ of a distributional form we need the additional assumption
that WF.˛/\N.f /D∅, where N.f /� T �A n 0A is the normal set to f given by

N.f / WD clof� 2 T �A n 0A 9 b 2 B such that f .b/D �.�/ and df .b/��D 0g

(where � W T �A!A is the projection), and WF.˛/ denotes the wave front set of ˛ .
The wave front set of a distributional form ˛ on A is a conical subset of T �A which
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measures the locus and the directions of the singularities of ˛ . For a precise definition
and for the properties of distributions using the wave front set needed below we refer to
Hörmander [15, Section 8]. Note that we can change ˛ by exact forms with distribution
coefficients without altering the class of .zc; ˛/. The idea is to show that one can choose
˛ such that WF.˛/\N.f / D ∅ holds. By [15, Theorem 8.2.4], in this case f �˛
is defined. It is independent of the choice again up to exact forms with distribution
coefficients. The details will be explained in the following lemmas.

Lemma 4.11 Let ˛ 2�n
�1.A/. Then there exists ˇ 2�n�1

�1.A/ such that WF.˛�
dˇ/�WF.d˛/.

Proof We choose a Riemannian metric on A. Then we can define the formal adjoint
ı WDd� of the de Rham differential and the Laplacian � WD ıdCdı . Since � is elliptic
we can choose a proper pseudo-differential parametrix P of �. This is a pseudo-
differential operator of degree �2 which is an inverse of � up to pseudo-differential
operators of degree �1 (smoothing operators). A pseudo-differential operator on A

is called proper if the restriction of the two projections from the support (a subset of
A�A) of its distribution kernel to the two factors A are proper maps.

Then we form G WD ıP . This pseudo-differential operator satisfies dGCGd D 1CS ,
where S is a proper smoothing operator. We thus can set ˇ WDG˛ and have

˛� dˇ DGd˛�S˛ :

Since S˛ is smooth and WF.Gd˛/ �WF.d˛/ (a pseudo-differential operator does
not increase wave front sets) we see that WF.˛� dˇ/�WF.d˛/.

If ˛ 2��1.A;R/, then we can write for some s 2N

˛ D

sX
iD1

˛i ˝ ri

with ˛i 2�
n
�1 , and with linearly independent ri 2R. In this case the wave front set

of ˛ is by definition WF.˛/ WD
Ss

iD1 WF.˛i/. It is now easy to see that Lemma 4.11
extends to forms with coefficients in R.

Lemma 4.12 If .zc; ˛/, zc D .p; �/, is a smooth cycle, then we can choose ˛ such that
WF.˛/�N.p/.

Proof It is a general fact that the wave front set of the pushforward of a smooth
distribution along a map is contained in the normal set of the map. In view of Definition
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4.4 we have WF.T .zc// � N.p/. Since T .zc/� d˛ is smooth we have WF.d˛/ D
WF.T .zc//�N.p/, and by Lemma 4.11 we can change ˛ by an exact form such that
WF.˛/�N.p/.

4.2.6 A reformulation of the fact that f and p are transverse is that N.f /\N.p/D∅.
Using Lemma 4.12 we now take a representative of ˛ such that WF.˛/�N.p/. Then
f �˛ is a well defined distribution.

Definition 4.13 We define f �Œzc; ˛� D Œf �zc; f �˛�, where we take representatives
zc D .p; �/ and ˛ such that f and p are transverse and WF.˛/�N.p/.

Lemma 4.14 The pullback is well defined and functorial.

Proof First we show that the pullback is well defined with respect to the choice of ˛ .
Let ˇ 2��1.A;R/ and ˛0 WD ˛Cˇ be such that T .zc/�d˛0 is smooth. This implies
that WF.˛0/�N.p/, and hence WF.dˇ/�N.p/. By Lemma 4.11 we can modify
ˇ by a closed form such that WF.ˇ/�N.p/. Then f �˛0 D f �˛C df �ˇ .

It is easy to see that the pullback is additive and preserves stabilization. It remains to
show that it preserves zero bordism. Let zbD ..h; q/; �/ be a geometric bordism datum
over A with .h; q/W W !R�A. We define W0 WD h�1.f0g/ and assume that q and
qjW0

are transverse to f . We then have the geometric bordism datum .idR � f /
�zb

over B .

Let us define the normal datum of b by

N.b/ WD clo
˚
� 2 T �A n 0A 9 v 2W such that

E.v/D �.�/ and
�
dE.v/��D 0 or v 2W0 and dE.v/��jTvW0

D 0
�	
:

Then we have WF.T .zb// � N.b/. Again, since q and qjW0
are transverse to f

we have N.b/ \ N.f / D ∅ so that f �T .zb/ is well defined. Using the fact that
in a Cartesian diagram pushforward of distributions commutes with pullback we get
f �T .zb/DT .f �zb/. It follows that .f �@zb; f �T .zb//D .@f �zb;T .f �zb//. This implies
that the pullback is well defined on the level of equivalence classes.

We now show functoriality. Let gW C ! B be a second smooth map. If yx 2bMU .A/,
then we can choose the representing smooth cycle .zc; ˛/ with zc D .p; �/ such that
p is transverse to f and f ı g . In this case one easily sees that .f ı g/�.zc; ˛/ and
g�f �.zc; ˛/ are isomorphic cycles.
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4.2.7 We now have defined a functor A 7!bMU .A/ from smooth manifolds to graded
groups.

Lemma 4.15 The transformations R, I and a are natural.

Proof Straightforward.

4.2.8 We now define the outer product

� W bMU .A/˝bMU .B/!bMU .A�B/ :

Let yx 2 bMU .A/ be represented by .zc; ˛/, and let yy 2 bMU .B/ be represented by
.ze; ˇ/. In Definition 3.16 we have already defined the product of cycles c�e . Here we
enhance this definition to the geometric level. Write zc D .p; �/ and zd D .q; �/. Then
we define zc � zd WD .p� q; �˚�/, where the sum of geometric normal G structures
�˚� is defined similarly as in the nongeometric case.

Note that we have a graded outer product

� W ��1.A;R/˝��1.B;R/!��1.A�B;R/ :

Definition 4.16 We define the product of smooth cycles .zc; ˛/� .ze; ˇ/ by

.zc � ze; .�1/jyxjR.yx/�ˇC˛�T .e// ;

and we define the product yx � yy 2bMU .A�B/ to be the corresponding equivalence
class.

This cycle level definition needs a few verifications.

Lemma 4.17 (1) The outer product is well defined.

(2) It is associative, ie .yx � yy/�yz D yx � .yy �yz/, where yz 2bMU .C /.

(3) It is graded commutative in the sense that F�.yx � yy/D .�1/jyxjjyyj yy � yx , where
F W B �A!A�B is the flip F.b; a/ WD .a; b/.

(4) The product is natural, ie if f W C!A is a smooth map, then we have f �yx�yyD
.f � idB/

�.yx � yy/.

Proof We first show that the cycle level definition of the outer product passes through
the equivalence relation. It is obvious that the outer product is bilinear and preserves
stabilizations in both arguments. It remains to verify that it preserves zero bordisms.
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Let zb be a geometric bordism datum. Then we can form the geometric bordism datum
zb � ze (see Definition 3.16). We have T .zb � ze/D T .zb/�T .ze/ so that

.@zb;T .zb//� .ze; ˇ/D .@zb � ze;T .zb/�T .ze//

D .@.zb � ze/;T .zb � ze//

� 0 :

In order to see that the product also preserves zero bordism in the second entry we
rewrite

(4-5) .�1/jyxjR.yx/�ˇC˛�T .ze/
im.d/
� .�1/jyxjT .zc/�ˇC˛�R.yy/

and apply the same argument as above. Associativity, graded commutativity, and
naturality hold true on the level of smooth cycles. To see this, for commutativity we
use again (4-5), and the proof of associativity is based on similar calculations.

4.2.9 As usual, the outer product determines a graded commutative ring structure by
restriction to the diagonal.

Definition 4.18 We define the ring structure on bMU .A/ by yx [ yy WD ��.yx � yy/,
where �W A!A�A is the diagonal.

The following assertions are consequences of Lemmas 4.14 and 4.17.

Corollary 4.19 A 7!bMU .A/ is a contravariant functor from the category of manifolds
to the category of graded commutative rings.

Lemma 4.20 The transformations R and I are multiplicative, and a.˛/[ yx D

a.˛^R.yx//.

Proof Straightforward calculation.

4.2.10 Recall that we have fixed in Theorem 3.22, Lemma 3.26, Section 3.4.7 a graded
ring R over R and a formal power series � 2RŒŒz��0 which determines an R–valued
U –genus r� .

Theorem 4.21 The functor bMU together with the transformations R; I; a is a multi-
plicative smooth extension of the pair .MU; r�/.
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Proof We must verify the properties required in Definition 2.2 and Definition 2.3.
Most of them have been shown above. We are left with the commutativity of

(4-6)

bMU.B/

R

��

I // MU.B/

r�

��
�dD0.B;R/

dR // H.B;R/ :

and the exactness of

(4-7) MU.B/
r�
!�.B;R/=im.d/

a
!bMU .B/

I
!MU.B/! 0 :

The commutativity of the diagram (4-6) is a direct consequence of (4-2).

We now discuss exactness of (4-7). We start with the surjectivity of I . Let x 2MU.B/
be represented by a cycle c . Then we can choose a geometric refinement zc . We have
dT .zc/D 0, and by Lemma 4.11 there exists ˛ 2��1.B;R/ such that T .zc/� d˛ is
smooth. Therefore .zc; ˛/ is a smooth cycle, and we have x D I Œzc; ˛�.

We now discuss exactness at bMU .B/. It is clear that I ı a D 0. Let yx 2 bMU .B/,
be such that I.yx/ D 0. Then we can assume that yx is of the form Œ@zb; ˛� for some
geometric bordism datum zb . Hence yx D a.T .zb/�˛/.

We now show exactness at �.B;R/=im.d/. Let x 2 MU.B/ be represented by a
cycle c . Then we choose a geometric refinement zc , and by Lemma 4.11 a form
˛ 2��1.B;R/ such that T .zc/� d˛ is smooth. We have r�.x/D T .zc/� d˛ . Let
c D .p; �/ with pW V ! B , and consider the constant map hW V !R with value 1.
The geometric normal U –structure of .h;p/W V !R�B can also be represented by
� . Then zbD ..h;p/; �/ is a geometric bordism datum with @zbD∅ and T .zb/D T .zc/.
It follows that

a.d˛�T .zc//D Œ@zb;T .zb/� d˛�D Œ@zb;T .zb/�D 0 :

This proves that a ı r� D 0.

Let now ˛ 2�.A;R/ be such that a.˛/D 0. Then there exist geometric bordism data
zb0; zb1 such that @zb0Š @zb1 and T .zb0/�T .zb1/�˛ 2 im.d/. This already implies that
˛ is closed. We construct a geometric cycle zc such that T .zc/ D T .zb0/� T .zb1/ by
gluing the bordism data along their common boundary. Then Œ˛�D ŒT .zc/�D r�.Œc�/ in
de Rham cohomology.
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4.3 Smooth MU–orientations

4.3.1 As before we fix a graded ring R over R and a formal power series � 2
RŒŒz��0 . Let bMU be the smooth extension of .MU; r�/ as in Theorem 4.21 with
structure maps R; a; I . If qW V !A is a proper MU–oriented map, then we have an
integration q!W MU.V /!MU.A/ (see Section 3.3.10). Under the assumption that q

is a submersion we introduce the notion of a smooth MU–orientation and define the
integration map q!W

bMU .V /!bMU .A/.

4.3.2 Let qW V !A be a proper submersion.

Definition 4.22 A representative of a smooth MU–orientation of q is a pair Lc WD .zc; �/,
where zc is a geometric cycle with underlying map qW V !A and � 2��1.V;R/.

A representative of a smooth MU–orientation of q induces in particular an MU–
orientation of q .

4.3.3 We now introduce an equivalence relation � called stable homotopy on the set
of representatives of smooth MU–orientations of q .

Definition 4.23 We define the l –fold stabilization of .zc; �/ by .zc; �/.l/ WD .zc.l/; �/.

Let hi W A!R�A denote the inclusions hi.a/ WD .i; a/, iD0; 1. Consider a geometric
cycle zd D .p; �/ over R�A with underlying map p WD idR� qW R�V !R�A. It
gives rise to a closed form �.r�/ 2�0.R�V;R/. Let zci WD h�i

zd , zci D .q; �i/.

Definition 4.24 We call zd a homotopy between zc0 and zc1 .

Definition 4.25 We define the transgression form

z�.r�1 ;r�0/ WD

Z
Œ0;1��V =V

�.r�/ 2��1.A;R/=im.d/ :

Since the underlying cycle d of zd is a product, and since the space of geometric
refinements of d is contractible, the transgression form is well defined independent of
the choice of the homotopy (this is a standard argument in the theory of characteristic
forms). By Stokes’ theorem the transgression satisfies

(4-8) d z�.r�1 ;r�0/D �.r�1/��.r�0/ :

Definition 4.26 We call two representatives of a smooth MU–orientation .zci ; �i/

homotopic if there exists a homotopy zd from zc0 to zc1 , and �1� �0 D
z�.r�1 ;r�0/.
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4.3.4 We now define equivalence of representatives of smooth MU–orientations.

Definition 4.27 Let � be the minimal equivalence relation on the set of representatives
of smooth MU–orientations on q such that

(1) .zc; �/� .zc.l/; �/

(2) .zc0; �0/� .zc1; �1/, if .zc0; �0/ and .zc1; �1/ are homotopic.

A smooth MU–orientation of q is an equivalence class of representatives of smooth
MU–orientations which we will usually write as o WD Œzc; � �.

4.3.5 Let zc WD .q; �/ and Lc WD .zc; �/ be a representative of a smooth MU–orientation.

Definition 4.28 We define A. Lc/ WD �.r�/� d� 2�0.V;R/.

Lemma 4.29 The form A. Lc/ only depends on the smooth MU–orientation Œ Lc� repre-
sented by Lc .

Proof This immediately follows from (4-8) and the definition of homotopy.

Below we will write A.o/ WDA. Lc/, where o WD Œ Lc�.

4.3.6 In the following two paragraphs we define the operations of pullback and com-
position of smooth MU–orientations. We start with the pullback. Let f W B!A be a
smooth map which is transverse to q . Then we have the Cartesian diagram

W

Q

��

F // V

q

��
B

f // A :

Definition 4.30 We define the pullback of a representative of a smooth MU–orientation
of q by f �.zc; �/ WD .f �zc;F��/ (see Section 4.2.5) which is a representative of a
smooth MU–orientation of Q.

Lemma 4.31 The pullback is compatible with the equivalence relation. It induces a
functorial pullback of smooth MU–orientations. We have A.f �o/D F�A.o/.

Proof It is clear that the pullback is compatible with stabilization. Let zd be a homotopy
from zc0 to zc1 . Then .idR � f /

� zd is a homotopy from f �zc0 to f �zc1 . Furthermore,
one checks that z�.rf

��1 ;rf
��0/ D f � z�.r�1 ;r�0/. These formulas imply that

the pullback preserves homotopic representatives of smooth MU–orientations. We
conclude that the pullback is well defined on the level equivalence classes. Functoriality
and the fact that A.f �o/D F�A.o/ are easy to see.
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4.3.7 We now define the composition of smooth MU–orientations. Let pW A! B

be a second proper submersion, and let . zd ; �/, zd D .p; �/, be a representative of a
smooth MU–orientation of p . Let oq D Œzc; � � and op WD Œ zd ; � �. By zd ı zc we denote
the composition of geometric cycles which is based on Definition 3.11.

Definition 4.32 We define

op ı oq WD Œ zd ı zc;A.oq/^ q�� C � ^ q��.r�/� :

The definition requires some verifications.

Lemma 4.33 The composition of smooth MU–orientations is well defined, compatible
with pullback, and functorial.

Proof We first show that the composition is well defined. It is clear that the composition
is compatible with stabilization. Let zb be a homotopy from zc0 to zc1 . Then pr�

2
zd ı zb is

a homotopy from zb ı zc0 to zb ı zc1 , where pr2W R�B!B is the projection. We further
calculate (using the properties stated in Lemma 4.2)

.�1� �0/^ q��.r�/D z�.r�1 ;r�0/^ q��.r�/

D z�.r�ı�1 ;r�ı�0/ :

This calculation implies that the composition . zd ; �/ ı : : : preserves homotopic repre-
sentatives.

Let us now consider a homotopy ze from zd0 to zd1 We get a homotopy ze ızc from zd0 ızc

to zd1 ı zc . Furthermore we rewrite (note that we work modulo im.d/)

A.oq/^ q�� C � ^ q��.r�/D �.r�/^ q�� C � ^ q�A.op/ :

�.r�/^ q�.�1� �0/D �.r
�/^ q� z�.r�1 ;r�0/We have

D z�.r�1ı� ;r�0ı�/ :

Hence � � � ı .zc; �/ preserves homotopic representatives. This finishes the proof that the
composition is well defined.

4.3.8 The composition of smooth MU–orientations is associative and compatible with
pullback. For completeness let us state the second fact in greater detail. Let r W Q!B

be a map which is transverse to q and pıq . Then we have the composition of pullback
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diagrams
Q�B V //

��

V

q

��
Q�B A

��

s // A

p

��
Q

r // B :

In this situation we have

s�op ı r�oq D r�.op ı oq/ :

We leave the details of the straightforward proof to the reader.

4.4 The pushforward

4.4.1 Let pW V !A be a proper submersion with a smooth MU–orientation op WD

Œ zd ; � �, zd D .p; �/. In the following, .zc; ˛/ denotes a smooth cycle on V , and we use
the notation Z

V =A

WD p!W ��1.V;R/!��1.A;R/

for the integration of forms.

Definition 4.34 We define the pushforward on the level of cycles by

p!.zc; ˛/D . zd ı zc;

Z
V =A

.�.r�/^˛C � ^R.zc; ˛/// :

Lemma 4.35 For fixed . zd ; �/ the pushforward preserves equivalence of smooth cycles.
Furthermore, the induced map p!W

bMU .V /!bMU .A/ only depends on the equivalence
class Œ zd ; � � of representatives of the smooth MU–orientation.

Proof It is clear that the pushforward is additive and compatible with stabilization.
Let now zb be a geometric bordism datum over V . Let prW R � A ! A be the
projection and form .ze; �/ WD pr�. zd ; �/. Then ze ı zb is a bordism datum, and we have
T .ze ı zb/D

R
V =A �.r

�/^T .zb/. We calculate

p!.@zb;T .zb//D . zd ı @zb;

Z
V =A

�.r�/^T .zb//

D .@.ze ı zb/;T .ze ı zb// :

This equality implies that p! preserves zero bordisms.
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For a fixed representative . zd ; �/ of the smooth MU–orientation we now have a well
defined map p!W

bMU .V /!bMU .A/. Next we show that it only depends on the smooth
orientation represented by . zd ; �/. Again it is clear that stabilization of the representative
of the smooth orientation does not change p! . We now consider a homotopy zb from
. zd0; �0/ to . zd1; �1/. The idea of the argument is to translate this homotopy into a
bordism datum. To this end we first consider a model case. Let �W R!R be defined
by �.x/ WD x � x2 . Then ��1.fŒ0;1/g/D Œ0; 1�. We choose a representative of the
stable normal bundle of � with a geometric U –structure � such that z� D .�; �/ is a
geometric bordism datum.

Let pr1W R�A! R denote the projection. The composition zr WD pr�
1
z� ı zb is now

a bordism datum. Let � denote the representative of the geometric U –structure on
the normal bundle of r . We consider zr ı pr�

2
zc as a geometric bordism datum with

@.zr ı pr�
2
zc/D zd0 ı zcC . zd1 ı zc/

op , where . � /op indicates a flip of the orientation. Fix
zc D .q; �/ with qW U ! V and zdi D .p; �i/.

T .zr ı pr�2zc/D
Z

q�1r�1.Œ0;1/�V /=A

�.r�/^�.r�/

D

Z
V =A

�
z�.r�1 ;r�0/^

Z
U=V

�.r�/

�
On the other handZ

V =A

.�.r�1/��.r�0//^˛C .�1� �0/^R.zc; ˛/

D

Z
V =A

d z�.r�1 ;r�0/^˛C z�.r�1 ;r�0/^R.zc; ˛/

D

Z
V =A

z�.r�1 ;r�0/^ d˛C z�.r�1 ;r�0/^R.zc; ˛/

D

Z
V =A

�
z�.r�1 ;r�0/^

Z
U=V

�.r�/

�
:

These two equations together show that . zd1; �1/ ı .zc; ˛/� .d0; �0/ ı .zc; ˛/. Indeed�
zd0 ı zcC . zd1 ı zc/

op;

Z
V =A

.�.r�1/��.r�0//^˛C .�1� �0/^R.zc; ˛/

�
D .@.zr ı pr�2zc/;T .zr ı pr�2zc// :

4.4.2 We now establish the compatibility of the smooth pushforward with pushforward
of forms and of bordism classes.
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Lemma 4.36 The following diagram commutes.

�.V;R/=im.d/R
V =A A.op/^ :::

��

a // bMU.V /

p!

��

I //

R

++
MU.V /

p!

��

�.V;R/R
V =A A.op/^ :::

��
�.A;R/=im.d/

a
// bMU.A/

I
//

R

33MU.A/ �.A;R/

Proof Commutativity of the left square follows from partial integrationZ
V =A

.�.r�/^˛� � ^ d˛/D

Z
V =A

.�.r�/� d�/^˛ D

Z
V =A

A.op/^˛ :

For the right square we use

T . zd ı zc/D

Z
V =A

�.r�/^T .zc/;

which implies

R.p!.zc; ˛//D T . zd ı zc/� d

Z
V =A

.�.r�/^˛C � ^R.zc; ˛//

D

Z
V =A

.�.r�/^T .zc/��.r�/^ d˛� d� ^R.zc; ˛//

D

Z
V =A

.�.r�/� d�/^R.zc; ˛/

D

Z
V =A

A.op/^R.zc; ˛/ :

Commutativity of the middle square is a direct consequence of geometric description
of p!W MU.V /!MU.A/ (see Section 3.3.10).

4.4.3 Let pW V !A be as before with the smooth MU–orientation op WD Œ zd ; � �. We
furthermore consider a proper submersion qW A! B with a smooth MU–orientation
oq WD Œze; ��, ze D .q; �/. Let r WD q ı pW V ! B be equipped with the composed
smooth MU–orientation or WD oq ı op (see Definition 4.32)

Lemma 4.37 The pushforward is functorial, ie we have the equality

r! D q! ıp!W
bMU .V /!bMU .B/ :

Proof The equality holds on the smooth cycle level. The proof is a straightforward
calculation of both sides by inserting the definitions and using the right square in
Lemma 4.36.
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4.4.4 Let pW V ! A be a proper smoothly MU–oriented map as above, and let
f W B!A be a second smooth map so that we get a Cartesian diagram

W

P
��

F // V

p

��
B

f // A :

The map P has an induced smooth MU–orientation oP WD f
�op (see Definition 4.30).

Lemma 4.38 The pushforward commutes with pullback, ie we have the equality

P! ıF� D f � ıp!W
bMU .V /!bMU .B/ :

Proof The equality holds true on the level of smooth cycles .zc; ˛/ whose underlying
map is transverse to F . By definition we have oP D Œf

� zd ; f ���. Furthermore, it
follows immediately from the definitions that f �. zd ı zc/ D f � zd ı F�zc . The final
ingredient of the verification is the identity

f � ı

Z
V =A

� � � D

Z
W =B

ıF� � � � :

4.4.5 Let pW V !A be a smoothly MU–oriented proper submersion as above.

Lemma 4.39 The projection formula holds true, ie for x 2bMU .A/ and y 2bMU .V /
we have p!.p

�x[y/D x[p!y .

Proof We consider the diagram

V

p

��

.p;id/ //

idV

%%
A�V

pr2 //

q

��

V

p

��
A

� //

idA

99A�A
pr2 // A

where q WD idA �p has the induced orientation oq WD pr�
2
op . If we show that

(4-9) q!.x �y/D x �p!.y/ ;

then by the definition of the cup-product and applying Lemma 4.38 to the left Cartesian
square we get the result. Equation (4-9) holds true on the level of smooth cycles and is
straightforward to check.
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