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Khovanov homology for signed divides

OLIVIER COUTURE

The purpose of this paper is to interpret polynomial invariants of strongly invertible
links in terms of Khovanov homology theory. To a divide, that is a proper generic
immersion of a finite number of copies of the unit interval and circles in a 2–disc,
one can associate a strongly invertible link in the 3–sphere. This can be generalized
to signed divides: divides with C or � sign assignment to each crossing point.
Conversely, to any link L that is strongly invertible for an involution j , one can
associate a signed divide. Two strongly invertible links that are isotopic through an
isotopy respecting the involution are called strongly equivalent. Such isotopies give
rise to moves on divides. In a previous paper [2], the author finds an exhaustive list
of moves that preserves strong equivalence, together with a polynomial invariant for
these moves, giving therefore an invariant for strong equivalence of the associated
strongly invertible links. We prove in this paper that this polynomial can be seen as
the graded Euler characteristic of a graded complex of Z2 –vector spaces. Homology
of such complexes is invariant for the moves on divides and so is invariant through
strong equivalence of strongly invertible links.

57M27

Introduction

A divide � is the image of a proper generic immersion of a finite number of intervals
and circles into the unit 2–disc D2 of R2 . To a divide � , N A’Campo [1] associates a
link L.� / in the unit 3–sphere of the tangent space T D2 :

L.� /D f.p; v/ 2 T D2
W p 2 �; v 2 Tp�; kpk

2
Ckvk2 D 1g:

This link has natural orientation and is strongly invertible with respect to the involution
j .p; v/D .p;�v/.

Couture and Perron [3] give a generalization of divides. Let .x;y/ be coordinates in
D2 such that the restriction to � of the projection �1W .x;y/ 7! x is a Morse function.
A Morse signed divide (MS–divide) relative to �1 stands for such a divide with C or
� sign assignment to each double point of � . Furthermore, if there exists a 2 �0; 1Œ

such that all maxima (resp. minima) of �1j� project on a (resp. �a) and all double
points in �� a; aŒ, the MS–divide is called ordered (OMS–divide).
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We also define a link associated with a MS–divide (see Couture and Perron [3]), which
is strongly invertible with respect to the involution j .p; v/D .p;�v/. If all signs are
positive, this link is no more than the link of the divide without signs. The interest of
OMS–divides rather than MS–divides is to obtain an immediate braid presentation of
the link from the divide.

Strongly invertible links are closely related to OMS–divides. Let L be an oriented
link in S3 and j be an involution of .S3;L/ with nonempty fixed point set, which
preserves the orientation of S3 and reverses the orientation of L. Then .L; j / is
called a strongly invertible link. As we said above, the link of a divide is strongly
invertible for the implicit strong inversion j .p; v/D .p;�v/. Two strongly invertible
links .L; j / and .L0; j 0/ are strongly equivalent if there exists an isotopy 't , t 2 Œ0; 1�

of S3 sending L to L0 such that '1 ı j D j 0 ı'1 .

Isotopies through MS–divides give rise to strong equivalence of associated links. Also,
one can find in Couture [2] an (exhaustive) list of elementary moves on MS–divides
that preserve strong equivalence classes of the associated links. As a particular case,
given a MS–divide, we can always construct another one using these moves which is an
OMS–divide. Besides, we can transpose the moves on MS–divides directly to moves
on OMS–divides. Two OMS–divides obtained one from the other by those moves on
OMS–divides are called M–equivalent (see the list of moves in Section 1.3). Then as
an essential result of [2], we have:

Theorem (Couture [2]) (1) Every strongly invertible link is strongly equivalent to
the link of an OMS–divide.

(2) The links of two OMS–divides are strongly equivalent if and only if the OMS–
divides are M–equivalent.

As the Jones polynomial is invariant under Reidemeister moves on links diagrams,
there exists a Laurent polynomial for an OMS–divide with integral coefficients (see
Couture [2]), which is invariant under M–equivalence and so invariant under strong
equivalence of strongly invertible links. Modulo 2, this polynomial coincides with the
Jones polynomial of the link. The purpose of this paper is to interpret the polynomial
of an OMS–divide as the graded Euler characteristics of a graded complex of Z2 –
vector spaces (Proposition 3.16). Besides, if we call the Khovanov homology of an
OMS–divide the homology of this complex, then we have a stronger result:

Theorem 3.17 Khovanov homology of OMS–divides is invariant under M–equiva-
lence.

Corollary 3.18 Khovanov homology is an invariant for strong equivalence of strongly
invertible links.
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Eventually, Khovanov homology of OMS–divides is a refinement of the polynomial
invariant of OMS–divides.

This paper is dedicated to Bernard Perron.

1 Divides and OMS–divides

1.1 Divides and links of divides

A divide of the unit 2–disc D2 of R2.' C/ is the image � of a proper generic
immersion 
 :

(1-1) 
 W .J; @J /! .D2; @D2/; J D
� rG

jD1

Ij

�
t

� sG
jD1

Sj

�
;

where Ij and Sj are respectively copies of Œ0; 1� and S1 D fz 2 C W jzj D 1g and
generic means that the only singularities of 
 are ordinary double points and � D

 .J / intersects @D2 transversally. Every 
 .Ij / (resp. 
 .Sj /) is called interval (resp.
circular) branch.

Let S.D2/D f.p; v/ 2 T D2 W jpj2Cjvj2 D 1g be the unit sphere of the tangent space
T D2 ' D2 �C . To a divide, A’Campo [1] associates a link L.� / in S.D2/:

(1-2) L.� /D f.p; v/ 2 S.D2/ W p 2 �; v 2 Tp� g:

This link has a natural orientation induced by the two possible orientations of the
branches of � and is strongly invertible for the involution j .p; v/D .p;�v/ of S.D2/

with axis Fix.j / D @D2 � f0g (see Section 1.3 below). Each interval branch of �
leads to a strongly invertible component of L.� / and each circular branch of � to
two components of L.� / interchanged by j .

1.2 OMS–divides

Let � be a divide. Let �.xC iy/D x be the projection on real axis. Suppose there
exists .a; b/ 2 �0; 1Œ� �0; 1Œ, a2C b2 < 1 such that

(1) � � fxC iy 2 D2 W �b < y < bg and the restriction �j� is a Morse function;

(2) all double points of � are contained in �� a; aŒ� �� b; bŒ;

(3) all maxima (resp. minima) of �j� , called vertical tangent points, project onto a

(resp. �a).
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Then � is called an ordered Morse divide. Double points and vertical tangent points
will be called singular points of � . Now let � be a function that associates a C or �
sign with each double point of � . Then .�; �/ is called an ordered Morse signed divide
(OMS–divide) relative to the projection �.xC iy/D x (see Couture and Perron [3]).

Let’s associate an oriented j –strongly invertible link L.�; �/ with an OMS–divide
.�; �/. This link coincides with L.� / except in solid tori TDp \S.D2/'Dp �S1

over small discs Dp around negative double points p of .�; �/ where we change the
two j –symmetric crossings from over to under. More precisely, in such a solid torus
TDp\S.D2/, the link is defined according to Figure 1. If �DC for all double points
then L.�; �/D L.� /.

--

�1C�

�2C�

�2

�1

Dp

�

�1

�2

�2C�

�1C�
L.�; �/

TDp

Figure 1: The link L.�; �/ over a negative double point

Besides, from a divide � one can construct an OMS–divide .� 0; �/ by a succession
of moves and isotopies, such that L.� 0; �/ and L.� / are isotopic [3] by an isotopy
that respects the involution j (see Section 1.3 below for a more precise definition).

Remark 1.1 For simplicity, we will only consider an OMS–divide .�; �/ in Œ�a; a��

Œ�b; b�, omitting its trivial part outside this rectangle. After rescaling, we also suppose
that aD b D 1. Since we will often consider diagrams of local parts of OMS–divides
.�; �/, we distinguish end points of � , ie points of � in f�1; 1g � Œ�1; 1� without
vertical tangent by a big point (see Figure 2).

Moreover, we will simply write � instead of .�; �/ if no ambiguity occurs in the
context.
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+ +

--

�1 1

L j

Figure 2: A representative OMS–divide for the strongly invertible knot 52

1.3 M–Equivalence for OMS–divides

Two OMS–divides � and � 0 are M–equivalent if we obtain one from the other
by isotopy through OMS–divides and a finite sequence of the moves described in
Figure 3 or symmetric situations with respect to horizontal and vertical directions (see
Couture [2]). Let j be an orientation preserving involution of S3 with nonempty fix

+

+

-- +
+

+

+

+

+

++

++

+--

--

--

----

--

--
+

--
--

II III
+

III
--

IVI V
--

V
+

VI
+

VI
--

--

Figure 3: Moves of M–equivalence

point set (ie Fix.j / is a trivial knot according to the solution of Smith conjecture; see
Morgan and Bass [4]). An oriented link L� S3 is j –strongly invertible if j sends
L to itself with opposite orientation. The couple .L; j / is called a strongly invertible
link. With the link of an OMS–divide, we implicitly associate natural orientation and
involution j .p; v/D .p;�v/ as in Section 1.1: such a link is strongly invertible.

Two strongly invertible links .L; j / and .L0; j 0/ are called strongly equivalent1 if
there exists and isotopy 't , t 2 Œ0; 1� of S3 sending L to L0 such that '1 ıj D j 0 ı'1 .
One can easily prove that M–equivalent OMS–divides give rise to strongly equivalent
strongly invertible links. Conversely, let’s recall the following crucial theorem relating
OMS–divides with strongly invertible links.

Theorem 1.2 (Couture [2]) (1) Every strongly invertible link is strongly equiva-
lent to the link of an OMS–divide.

(2) The links of two OMS–divides are strongly equivalent if and only if the OMS–
divides are M–equivalent.

1The same link L may have two strong inversions j and j 0 such that .L; j / and .L; j 0/ are not
strongly equivalent.
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2 The polynomial of an OMS–divide

Let’s denote by ‚0 and ‚1 the local splittings of an OMS–divide .�; �/ in a neighbor-
hood of a double point or vertical tangent point described in Figure 4 (‚0 “smoothes”
the OMS–divide whereas ‚1 introduces horizontal cusps).

‚0

�
‚1 ‚0 ‚1 ‚0 ‚1

Figure 4: Local splittings

Definition 2.1 (1) We extend the notion of OMS–divide: a cuspidal divide � WD
.�; �/ is a signed diagram like an OMS–divide except that it has a finite number
of horizontal cusps (as in the result of type ‚1 splittings). For instance, a
partially (or totally) transformed OMS–divide through ‚0 and ‚1 is a cuspidal
divide.

(2) Let .�; �/ be an OMS–divide (or more generally a cuspidal divide) with dou-
ble and vertical tangent points numbered by p1; : : : ;pn . Let Œk� be the word
k1k2 � � � kn , ki 2 f0; 1g. A state .S; ‚Œk�/ of .�; �/ is the combination of
� a succession of local splittings ‚Œk� D .‚k1

; : : : ; ‚kn
/ at p1; : : : ;pn ;

� the cuspidal divide SD‚Œk�.�; �/ without double points nor vertical tangent
points obtained by transforming � through ‚Œk� .

For simplification, we will often identify the cuspidal divide S with the state
.S; ‚Œk�/. We denote by St.�; �/ the set of all states of .�; �/.

One can define a j –strongly invertible link L��; �� associated with a cuspidal divide
.�; �/ exactly in the same way we have done for OMS–divide. However, such a link is
generally unoriented precisely because of the introduction of cusps. Each local splitting
at a double point of .�; �/ corresponds to simultaneously smoothing two symmetric
crossing points of the corresponding representative closed braid diagram of L.�; �/ [3]
whereas each local splitting at a vertical tangent point corresponds to smoothing a
crossing point through the axis of the inversion j (see Figure 5).

Let � WD .�; �/ be an OMS–divide. Let nD nCCn�Cn0 be the number of singular
points of � where nC , n� are respectively the numbers of positive and negative double
points, and n0 the number of vertical tangent points. Let’s call

(2-1) w.� /D 2nC� 2n�C n0

the writhe of � (ie the writhe of the representative closed braid diagram of L.�; �/ [3]
with 2nCC 2n�C n0 crossings obtained from .�; �/).
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‚0‚0

‚0
‚1

‚1

‚1
‚1

‚

L

L

j

j

Figure 5: The links L.�; �/ and L.‚.�; �// , ‚D‚1110010

For a state S 2 St.�; �/, let cl.S/ be the number of closed connected components
and op.S/ be the number of open connected components (ie with two end points).
Let rC.S/, r�.S/ and r0.S/ be the numbers of ‚1 local splittings (see Figure 4) for
positive double points, negative double points and vertical tangent points respectively
to obtain S from .�; "/. Let’s set

(2-2) i.S/D rC.S/� r�.S/C r0.S/; k.S/D w.� /C 2i.S/� r0.S/:

Definition 2.2 (cf [2]) The polynomial of an OMS–divide � (and more generally of
a cuspidal divide) is the Laurent polynomial (of the variable

p
t ) defined by:

(2-3) W� .t/D
X

S2St.�;�/

.�1/i.S/.
p

t/k.S/
�

1

t
C t

�cl.S/ �
1
p

t
C
p

t

�op.S/�1

Proposition 2.3 (cf [2]) The polynomial of an OMS–divide is invariant under M–
equivalence of OMS–divides and so is an invariant for strong equivalence of strongly
invertible links.

Definition 2.4 A state S with C or � assignment to each connected component is
called an enhanced state, and is denoted by zS . The set of enhanced states of .�; �/ is
denoted by eSt.�; �/, and S is called the underlying state of zS .

Let zS be an enhanced state with underling state S . The numbers i. zS/ WD i.S/ and
k. zS/ WD k.S/ in (2-2) do not depend on the signs of the components. The subset of
enhanced states zS of .�; �/ such that i. zS/D i is denoted by eSti.�; �/.
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Let’s denote by ıcl. zS/ (resp. ıop. zS/) the difference between the number of positive
and negative closed (resp. open) components of zS . Then we define the degree j . zS/

of the enhanced state zS , which depends on the signs of the components of S by

(2-4) j . zS/D k. zS/C 2ıcl. zS/C ıop. zS/:

We can now reformulate the polynomial of an OMS–divide � :

(2-5) W� .t/D

p
t

1C t

X
zS2eSt.� /

.�1/i.
zS/.
p

t/j.
zS/

Remark 2.5 j . zS/ always has the same parity as half the number of end points of � .
We also have the inequalities:

(2-6) �n� � i. zS/� nCC n0; 2nC� 4n�C n0 � k. zS/� 4nC� 2n�C 2n0:

3 Categorification

3.1 Complex associated with an OMS–divide

In this section, we define a graded complex of Z2 –vector spaces2 associated with a
divide. We follow here Viro’s approach of Khovanov homology for links [5], based on
the Kauffman state model for the Jones polynomial: the polynomial of a divide also
have been defined in [2] by state model.

Let � WD .�; �/ be an OMS–divide (or a cuspidal divide). For i 2 Z, let ŒŒ� ��i D
Z2f

eSti.� /g be the finite dimensional Z2 –vector space generated by enhanced states
zS of � such that i. zS/D i (if i < �n� or i > nCC n0 , ŒŒ� ��i D f0g). Degree j . zS/

defines a grading on ŒŒ� ��i and we denote

ŒŒ� ��D
�
ŒŒ� ��i

�
i2Z ŒŒ� ��i D

M
j2Z

ŒŒ� ��i;j(3-1)

ŒŒ� ��i;j D Z2f
zS 2 Sti.� / W j . zS/D j g:where

Now we define a differential on ŒŒ� �� to obtain a (finite) complex of graded Z2 –vector
spaces.

2Here we choose Z2 –vector spaces for simplification to avoid signs. One can easily generalize taking
for instance Z–modules or Q–vector spaces.
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Definition 3.1 Let zS1 , zS2 2
eSt.�; �/. We say that zS2 is adjacent to zS1 ( zS1 zS2 )

if:

(1) S1 and S2 coincide outside a neighborhood Dp of a singular point p of .�; �/;

(2) One can pass from zS1 to zS2 by one of the following transformations T in Dp :
� T D‚1 ı‚

�1
0

if p is a positive double point or a vertical tangent point of
.�; �/;

� T D‚0 ı‚
�1
1

if p is a negative double point;

(3) Signs rules described in Figures 6, 7, 8 are fulfilled, signs of other components
being unchanged. (In these figures, black color is used for open components and
gray for closed components, a dotted line means that the points are related in
the state outside Dp . Lack of dotted line means that the points are not related
outside Dp ).

If zS2 is adjacent to zS1 then

(3-2) j . zS1/D j . zS2/; i.S1/D i.S2/� 1:

+

+

--

+

+

--

+

+

+

+

--

+

+

--

-- +

+ --

-- --

-- +

+ --

-- --

-- --

+

+

--

--

+

+

--

--

+

+

--

+

+

+

+

--

--

--

+

-- --

+ +

--

--
Dp D p

T D
‚1 ı‚

�1
0

TC1
TC2 TC3

TC4

TC5

Figure 6: Case of a splitting at a positive double point p (�.p/DC)

The differential d D .di/i2Z on ŒŒ� ��, di W ŒŒ� ��i ! ŒŒ� ��iC1 is now defined in the
following way: the matrix of di has coefficients defined by the incidence numbers
. zS1W

zS2/, zS1 2
eSti.� /, zS2 2

eStiC1.� /:

(3-3) . zS1 W
zS2/D

(
1 if zS1 zS2;

0 else.

From (3-2), d respects the degree j , ie

di D

M
j

di;j W

M
j

ŒŒ� ��i;j !
M

j

ŒŒ� ��iC1;j :
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+

+

+

--

--

--

--

+

+

--

+
+

--
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+

--

--

+

+

--

--

+

+

--

--

+

+

--

--

+

+

--

+

+

----

--

++

--

--

--

--

--

+

+

+

+

--

--

+

--+

Dp D
p

T D
‚0 ı‚

�1
1

T �
1

T �
2

T �
3

T �
4

T �
5

Figure 7: Case of a splitting at a negative double point p (�.p/D�)

+

_

+

+

+ _

_

+

_ _

+

_

+

+

+ _

_

+

_ _

Dp D p

T D
‚1 ı‚

�1
0

T6

T7 Dp D p

T D
‚1 ı‚

�1
0

T6

T7

Figure 8: Case of a splitting at a vertical tangent point p

Remark 3.2 We have dual roles for TC
1

and T �
1

, TC
2

and T �
3

, TC
3

and T �
2

, TC
4

and T �
5

, TC
5

and T �
4

in Figure 6 and Figure 7. To go further about duality property,
we could have introduced “negative tangent points” to interpret dual arrows of T6 and
T7 in Figure 8. However, we didn’t choose this option, since such “negative tangent
points” can be replaced by:

-- --

Also, we can see that TCi and T �i , i 2 f1; 2; 3; 4g give rise to analogous situations.

Proposition 3.3 The complex

.ŒŒ� ��; d/D
�
ŒŒ� ��i ; di

�
i2Z D

�M
j2Z

ŒŒ� ��i;j ;
M
j2Z

di;j

�
i2Z

is a finite complex of graded Z2 –vector spaces (each ŒŒ� ��i is finitely graded by
degree j ).
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Proof It suffices to verify all such diagrams

(3-4)

zS1
///o/o/o

�� �O
�O
�O

zS2

��
�O
�O
�O

zS 0
2

///o/o/o zS3

corresponding to splitting two singular points are commutative. Since we have Z2 –
vector spaces, commutative diagrams induce the relations diC1di D 0. Notice that
from the previous remark, we can strongly reduce the number of cases to check (see
also the proof of Proposition 3.5).

3.2 Alternative point of view

Here we present an alternative (more algebraic) way to see the complex .ŒŒ� ��; d/, in
terms of Frobenius algebra: we can link complexes of OMS–divides with 1C1–TQFT
(or more precisely with some 1C 1–TQFT with symmetry property).

Let A WD Z2fv�; vCg be the graded Z2 –vector space generated by two elements v�
and vC such that deg.v�/D�1 and deg.vC/D 1. We define a commutative product
�1W A˝A!A, a unit �1W Z2!A and a nondegenerate symmetric bilinear pairing
ˇ1W A˝A! Z2 by:

(3-5)

�1.vC˝ vC/D vC; �1.vC˝ v�/D �1.v�˝ vC/D v�; �1.v�˝ v�/D 0

�1.0/D 0; �1.1/D vC

ˇ1.vC˝ vC/D 0; ˇ1.vC˝ v�/D ˇ1.v�˝ vC/D 1; ˇ1.v�˝ v�/D 0:

The form ˇ1 induces a duality isomorphism A '
 ! A� and A is a commutative

Frobenius algebra with adjoint coproduct ı1W A!A˝A and counit "1W A! Z2 :

(3-6)
ı1.vC/D vC˝ v�C v�˝ vC

ı1.v�/D v�˝ v�

"1.vC/D 0

"1.v�/D 1:

Let �1W A˝A!A˝A be the flip morphism: �1.a˝ a0/D a0˝ a, and AW A!A
the identity morphism. The morphisms �1; ı1; �1; "1 are homogeneous with respective
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degrees �1;�1; 1; 1 and satisfy the relations of associativity, commutativity, coasso-
ciativity, co-commutativity:8̂<̂

:
�1 ı�1 D �1

�1 ı .�1˝A/D �1 ı .A˝�1/

�1 ı .�1˝A/DA

8̂<̂
:
�1 ı ı1 D ı1

.ı1˝A/ ı ı1 D .A˝ ı1/ ı ı1

."1˝A/ ı ı1 D .A˝ "1/ ı ı1 DA

(3-7)

ı1 ı�1 D .�1˝A/ ı .A˝ ı1/:and

The vector space A˝A has an induced structure of graded commutative Frobenius
algebra with product, coproduct, unit and co-unit:

(3-8)
�˝

1
D .�1˝�1/ ı .A˝�˝A/

ı˝
1
D .A˝�˝A/ ı .ı1˝ ı1/

�˝
1
D �1˝ �1

"˝
1
D "1˝ "1:

Let B WDZ2fw�; wCg be the graded Z2 –vector space generated by two elements w�
and wC , deg.w�/D�2, deg.wC/D 2. Let’s consider respectively the injection and
surjection {W B!A˝A and � W A˝A! B defined by:

(3-9)
{.wC/D vC˝ vC

{.w�/D v�˝ v�

�.vC˝ vC/D wC

�.vC˝ v�/D �.v�˝ vC/D 0

�.v�˝ v�/D w�:

Then B canonically inherits from A˝A of a structure of graded commutative Frobenius
algebra with product, coproduct, unit and co-unit �2; ı2; �2; "2 with respective degrees
�2;�2; 2; 2 satisfying

(3-10) �2 D � ı�
˝

1
ı .{˝ {/ ı2 D .� ˝�/ ı ı

˝

1
ı { �2 D � ı �

˝

1
"2 D "

˝

1
ı {:

The morphisms { and � are adjoint with degree �2. We denote by �2W B˝B!B˝B
the flip morphism �2.b˝ b0/D b0˝ b , and BW B! B the identity morphism.

For each (nonenhanced) state S of � , let’s number all open components with p 2

f1; : : : ; op.S/g and all closed components with q 2 f1; : : : ; cl.S/g. Then for an en-
hanced state zS with underlying state S ,we define the tensor product

(3-11) t. zS/D

op.S/O
pD1

v˙op.p/˝

cl.S/O
qD1

w˙cl.q/ 2A˝op.S/
˝B˝cl.S/

where ˙op.p/ and ˙cl.q/ are the C or � signs of the p–th open and the q–th closed
components of zS respectively. The degree of t. zS/ does not correspond to the degree
j . zS/ of zS :

(3-12) deg.t. zS//D ıop. zS/C 2ıcl. zS/D j . zS/� k. zS/D j . zS/� k.S/:
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So we introduce the following definition:

Definition 3.4 (Translation of the degree of a graded vector space) Let VDLj2Z Vj

be a graded Z2 –vector space. The translated graded Z2 –vector space Vf`g is defined
by Vf`gj D Vj�` .

Now we translate the degree of t. zS/ by k.S/ and we define

(3-13) C.� /D .Ci.� //i2Z where Ci.� /D
M

S2St.� /
i.S/Di

.A˝op.S/
˝B˝cl.S//fk.S/g:

Proposition 3.5 The map t W eSt.� /! C.� / defined by (3-11) extends to an isomor-
phism of complexes: t W ŒŒ� ��! C.� /.

Proof The incidence relations T˙i , 1� i � 5 of Figures 6, 7 induce morphisms of
Z2 –vector spaces denoted by Ti , which have degree �2:

(3-14)
T1 D ı1 ı�1 T3 D �1 ı .A˝�1/ ı .A˝ {/ T5 D �2

T2 D
�
A˝�/ ı .A˝ ı1/ ı ı1 T4 D ı2:

The incidence relations T6;T7 of Figure 8 induce morphisms denoted by the same
letters T6;T7 , which have degree �1:

(3-15) T6 D � ı ı1 T7 D �1:

More precisely, we have:

T1W A˝A ! A˝A
vC˝ vC 7!

�
vC˝ v�
Cv�˝ vC

vC˝ v�
v�˝ vC

�
7! v�˝ v�

v�˝ v� 7! 0

T3W A˝B ! A
vC˝ wC 7! vC
v�˝ wC 7! v�
vC˝ w�
v�˝ w�

�
7! 0

T5W B˝B ! B
wC˝ wC 7! wC
wC˝ w�
w�˝ wC

�
7! w�

w�˝ w� 7! 0

T2W A ! A˝B
vC 7! vC˝ w�
v� 7! v�˝ w�

T4W B ! B˝B
wC 7! wC˝ w�Cw�˝ wC
w� 7! w�˝ w�

(3-16)

T6W A ! B
vC 7! 0

v� 7! w�

T7W A˝A ! A
vC˝ vC 7! vC
vC˝ v�
v�˝ vC

�
7! v�

v�˝ v� 7! 0
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Using these morphisms, we transfer the differential on ŒŒ� �� to a differential on C.� /.
Notice according to Remark 3.2 that T1 is self-adjoint and that T2 and T3 (resp. T4 and
T5 ) are adjoint. Moreover, T2 and T4 are injective whereas T3 and T5 are surjective.
Also T7 is surjective. The relation d ıd D 0 (induced by commutative diagrams (3-4)
in the proof of Proposition 3.3) is recovered using the following relations:

� Symmetry properties:

T1 ı�1 D �1 ıT1 D T1 T4 D �2 ıT4

.A˝T2/ ı�1 D .�1˝B/ ı .A˝T2/ T5 D T5 ı�2

�1 ı .A˝T3/D .A˝T3/ ı .�1˝B/ T7 D T7 ı�1

� Commutativity properties corresponding to the splitting of two double points:

.T1˝A/ ı .A˝T1/D .A˝T1/ ı .T1˝A/ .T4˝B/ ıT4 D .B˝T4/ ıT4

.A˝T2/ ıT1 D .T1˝B/ ı .A˝T2/ T5 ı .T5˝B/D T5 ı .B˝T5/

T1 ı .A˝T3/D .A˝T3/ ı .T1˝B/ T4 ıT5 D .B˝T5/ ı .T4˝B/

T1 ıT1 D .A˝T3/ ı .�1˝B/ ı .A˝T2/D 0

.T2˝B/ ıT2 D .A˝�2/ ı .T2˝B/ ıT2 D .A˝T4/ ıT2

T3 ı .T3˝B/D T3 ı .T3˝B/ ı .A˝�2/D T3 ı .A˝T5/

T2 ıT3 D .T3˝B/ ı .A˝�2/ ı .T2˝B/

D .T3˝B/ ı .A˝T4/D .A˝T5/ ı .T2˝B/

� Commutativity properties corresponding to the splitting of a double point and a
vertical tangent point:

T4 ıT6 D .T6˝B/ ıT2 T7 ı .A˝T3/D T3 ı .T7˝B/

T6 ıT3 D T5 ı .T6˝B/ T2 ıT7 D .T7˝B/ ı .A˝T2/

T2 ıT7 D .A˝T6/ ıT1 T7 ıT1 D 0D T3 ı .A˝T6/

� Commutativity properties corresponding to the splitting of two vertical tangent
points:

T1 ı .A˝T7/D .A˝T7/ ı .T1˝A/:

Remark 3.6 The units and counits �1; �2; "1; "2 of A and B correspond respectively
to the creation of a positive open component, the creation of a positive closed component,
the destruction of a negative open component and the destruction of a negative closed
component. Besides, A˝ "2 and B ˝ "2 are left inverses of T2 and T4 whereas
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A˝ �2 , B˝ �2 and A˝ �1 are right inverses of T3 , T5 and T7 . In Section 4, we
will often refer to these morphisms and to the following ones:

x�1W Z2 ! A
1 7! v�

x�2W Z2 ! B
1 7! w�

x"1W A ! Z2

vC 7! 1

v� 7! 0

x"2W B ! Z2

wC 7! 1

w� 7! 0

which correspond respectively to the creation of a negative open component, the creation
of a negative closed component, the destruction of a positive open component and the
destruction of a positive closed component, and to the following composed morphisms:

� D �1"1W A ! A
vC 7! 0

v� 7! vC

� D x�1"2W B ! A
wC 7! 0

w� 7! v�

3.3 Review of basic facts about complexes

Let C WD .C; d/D .Ci ; di/i2Z be a complex of Z2 –vector spaces. We denote by H.C/
its homology

(3-17) H.C/D .Hi/i2Z; Hi D Ker di= Im di�1:

A complex is acyclic if its homology is null.

Definition 3.7 (Shift of the grading of a complex) Let .C; d/ D .Ci ; di/i2Z be a
complex of Z2 –vector spaces. We define the complex

.C; d/Œk�D .CŒk�; d Œk�/ by CŒk�i D Ci�k and d Œk�i D di�k :

(If .C; d/ D �Lj2Z Ci;j ;
L

j2Z di;j

�
i2Z is a complex of graded Z2 –vector spaces,

then we can translate both the grading of the complex and the degree of the vector
spaces:

.C; d/Œk�f`g D .C; d/f`gŒk�
CŒk�f`gi;j D Ci�k;j�`; d Œk�f`gi;j D di�k;j�` ):is defined by

A morphism of complexes of Z2 –vector spaces f W .C0; d0/! .C1; d1/ is a sequence
f D .fi/i2Z of linear maps fi W C0

i ! C1
i such that3: f d0 D d1 f (ie for all i ,

d1
i fi D fiC1 d0

i ).

3Since we are working with field Z2 , commutativity and anticommutativity coincide so that we have
equivalently d1f Cfd0 D 0 .

Algebraic & Geometric Topology, Volume 9 (2009)



2002 Olivier Couture

Definition 3.8 For a morphism of complexes f W .C0; d0/! .C1; d1/, the cone of f
is the complex denoted by Cone.f /D .Ci ;Di/i2Z and defined by

(3-18) Ci D C0
i ˚ C1

i�1 D C0
i ˚ .C1Œ1�/i ; Di D

�
d0

i 0

fi d1
i�1

�
:

(Notice that .C0; d0/ is a quotient-complex and .C1; d1/Œ1� a subcomplex of .C;D/).

A morphism of complexes f W .C0; d0/! .C1; d1/ induces an isomorphism in homol-
ogy if and only if Cone.f / is acyclic. This is the case if f is a homotopy equivalence
of complexes, ie there exist a morphism of complexes gW .C1; d1/! .C0; d0/ and
sequences h0 D .h0

i /i2Z; h
1 D .h1

i /i2Z of linear maps (homotopies) h0
i W C0

iC1
! C0

i

and h1
i W C1

iC1
! C1

i such that

gf D idC h0d0
C d0h0 and fg D idC h1d1

C d1h1:(3-19)

.ie 8i gifi D idC h0
i d0

i C d0
i�1h0

i�1 and figi D idC h1
i d1

i C d1
i�1h1

i�1/:

Remark 3.9 As a particular case, if h0 D 0, the complex .C0; d0/ is called a strong
deformation retract of .C1; d1/, with inclusion map f , retraction g and homotopy
map h1 . Besides, up to changing h1 to a new homotopy h, we can always suppose
that hhD 0, hf D 0 and ghD 0. We will assume these properties are always satisfied
in the definition of strong deformation retraction.

Proposition 3.10 Let . xC1; xd1/ be a strong deformation retract of .C1; d1/ with re-
traction r , inclusion j and homotopy map h such that hhD 0, rhD 0, hj D 0. Let
f W .C0; d0/ ! .C1; d1/ be a morphism of complexes. Then Cone.rf / is a strong
deformation retract of Cone.f / with

retraction RD

�
id 0

0 r

�
;

inclusion J D

�
id 0

hf j

�
;

homotopy H D

�
0 0

0 h

�
such that HH D 0, RH D 0 and HJ D 0.

Proof Immediate.
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A double complex .C; d; @/ is a sequence of complexes .Ck ; dk/k2Z of Z2 –vector
spaces and morphisms of complexes .@k/k2Z :

� � �
@k�1

�!.Ck ; dk/
@k

�!.CkC1; dkC1/
@kC1

�! .CkC2; dkC2/
@kC2

�! � � �

such that for all k 2 Z, @kC1@k D 0. A morphism of two double complexes is a
sequence of morphisms of complexes f D .f k/k2Z :

� � �
x@k�1

�! . xCk ; xdk/
x@k

�! . xCkC1; xdkC1/
x@kC1

�! . xCkC2; xdkC2/
x@kC2

�! � � �???yf k

???yf kC1

???yf kC2

� � �
@k�1

�! .Ck ; dk/
@k

�! . xCkC1; dkC1/
@kC1

�! .CkC2; dkC2/
@n�1

�! � � �

such that for all k 2 Z, f kC1x@k D @kf k . We also have notions of homotopy
equivalence and strong deformation retraction for double complex. A morphism
of double complexes f W . xC; xd ; x@/! .C; d; @/ is a homotopy equivalence (of double
complexes) if there exists a morphism of double complexes gW .C; d; @/! . xC; xd ; x@/ and
homotopy maps xhD .xhk/k2Z , hD .hk/k2Z (sequences of morphisms of complexes)
xhk W . xCkC1; xdkC1/! . xCk ; xdk/ and xhk W .CkC1; dkC1/! .Ck ; dk/ such that for all k

gkf k
D idC xhkx@k

Cx@k�1xhk�1 and f kgk
D idC hk@k

C @k�1hk�1:

If xhD 0, . xC; xd ; x@/ is called a strong deformation retract of the double complex .C; d; @/
with inclusion f and retraction g . Again, up to changing the homotopy h, we assume
that it satisfies: hhD 0, hf D 0 and ghD 0.

Now we extend the definition of cone to a finite sequence of morphisms of complexes.
A double complex .C; d; @/ is @–finite if .Ck ; dk/ is trivial except for a finite number
of values of k .

Definition 3.11 Let

.C0; d0/
@0

�!� � �
@n�1

�!.Cn; dn/

be a @–finite double complex. Let’s denote

z@0
i W C0

i ! C1
i ˚ C2

i�1
˚ � � �˚ Cn

i�nC1

u 7! .@0
i .u/; 0; : : : ; 0/:

Then the cone of .@0; : : : ; @n�1/ is the complex defined by

(3-20) Cone.@0; : : : ; @n�1/D Cone.z@0;Cone.@1; : : : ; @n�1//:
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Suppose that f D .f k/0�k�n is a morphism from a x@–finite double complexes . xC; xd ; x@/
to a @–finite .C; d; @/:

. xC0; xd0/
x@0

�!� � �
x@n�1

�!. xCn; xdn/ and .C0; d0/
@0

�!� � �
@n�1

�!.Cn; dn/:

Let’s set Fi D f
0

i ˚f
1

i�1
˚ � � �˚f n

i�n . Then f induces a morphism of complexes

C.f /D .Fi/i2ZW Cone.x@0; : : : ; x@n�1/ �! Cone.@0; : : : ; @n�1/:

If f k are isomorphisms, C.f / is also an isomorphism.

Proposition 3.12 If . xC; xd ; x@/ is a x@–finite double complex, .C; d; @/ a @–finite double
complex and f W . xC; xd ; x@/! .C; d; @/ a homotopy equivalence with inverse g , then

C.f /W Cone.x@0; : : : ; x@n�1/ �! Cone.@0; : : : ; @n�1/

is a homotopy equivalence of complexes with inverse C.g/. So C.f / induces an
isomorphism in homology.

Furthermore if . xC; xd ; x@/ is a strong deformation retract of .C; d; @/ with inclusion
map f and retraction g then Cone.x@0; : : : ; x@n�1/ is a strong deformation retract of
Cone.@0; : : : ; @n�1/ with inclusion map C.f / and retraction C.g/, and so C.f /

induces an isomorphism in homology.

Proof Let xhD .xhk/1�k<n and hD .hk/0�k<n be homotopies associated with f and
g . Then we have:

xhk�1
iC1
xdk
i D
xdk�1
i
xhk�1

i
xhk

i
x@k

i C
x@k�1

i
xhk�1

i C idD gk
i f

k
i

hk�1
iC1

dk
i D dk�1

i hk�1
i hk

i @
k
i C @

k�1
i hk�1

i C idD f k
i gk

i

Let H D .Hi/i2Z be the sequence of linear maps defined by

Hi W C0
iC1
˚ C1

i ˚ � � �˚ Cn
i�nC1

�! C0
i ˚ C1

i�1
˚ � � �˚ Cn

i�n

.x0;x1; : : : ;xn/ 7�! .h0
i .x1/; h

1
i�1
.x2/; : : : ; h

n�1
i�nC1

.xn/; 0/

and xH D . xHi/i2Z defined analogously on . xC; xd ; x@/. Then if xD and D are the differ-
entials of Cone.x@0; : : : ; x@n�1/ and Cone.@0; : : : ; @n�1/, we have

FG D idCHDCDH and GF D idC xH xDC xD xH :
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3.4 Fundamental splitting lemmas

Let .�; �/ be an OMS–divide or a cuspidal divide. Let p be a double point or a
vertical tangent point of � . Let � 0 and � 1 be the cuspidal divides obtained from
� by applying ‚0 and ‚1 at p respectively. Then each enhanced state of � can be
identified with either an enhanced state of � 0 or � 1 ie

(3-21) eSt.� /
1�1
' eSt.� 0/t eSt.� 1/:

Consequently, ŒŒ� 0�� and ŒŒ� 1�� can be seen as sub–vector spaces of ŒŒ� �� up to transla-
tions of the grading i and the degree j . More precisely, we have:

Lemma 3.13 Let d be the differential of ŒŒ� ��.

(1) If p is a positive double point then d induces the differentials d0 and d1 of
ŒŒ� 0��f2g and ŒŒ� 1��f4g and a morphism

ŒŒ� 0��f2g
d�

�!ŒŒ� 1��f4g

such that ŒŒ� ��D Cone.d�/.

(2) If p is a negative double point then d induces the differentials d0 and d1 of
ŒŒ� 0��f�2g and ŒŒ� 1��f�4g and a morphism

ŒŒ� 1��f�4g
d�

�!ŒŒ� 0��f�2g

such that ŒŒ� ��D Cone.d�/Œ�1�.

(3) If p is vertical tangent point, then d induces the differentials d0 and d1 of
ŒŒ� 0��f1g and ŒŒ� 1��f2g and a morphism

ŒŒ� 0��f1g
d�

�!ŒŒ� 1��f2g

such that ŒŒ� ��D Cone.d�/.

Proof Suppose that p is a positive double point of � . Then � 0 and � 1 have one
positive double point less than � so that the writhes of � , � 0 and � 1 are related by

w.� /D w.� 0/C 2D w.� 1/C 2

Let zS be an enhanced state of eSti.� / with degree j D j . zS/. If zS is obtained from �

using ‚0 (resp. ‚1 ) at p , then zS can be seen as an enhanced state of eSti.� 0/ with
degree j � 2 (resp. of eSti�1.�

1/ with degree j � 4). Besides, if zS0 2
eSti.� / and

zS1 2
eStiC1.� / are adjacent enhanced states of degrees j then it involves three cases:
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� Either eS 0 2
eSti.�

0/ and eS 1 2
eStiC1.�

0/ are adjacent enhanced states of
� 0 with degrees j � 2, so the differential d0 of ŒŒ� 0��f2g coincides with the
restriction of d to ŒŒ� 0��f2g; or

� zS0 2
eSti�1.�

1/ and zS1 2
eSti.�

1/ are adjacent enhanced states of � 1 with
degrees j �4, so the differential d1 of ŒŒ� 1��f4gŒ1� coincides with the restriction
of d to ŒŒ� ��f4gŒ1�; or

� zS0 2
eSti.�

0/ with degree j � 2 and zS1 2
eSti.�

1/ with degree j � 4, then
d induces a map d�W ŒŒ� 0��f2g ! ŒŒ� 1��f4g which is a morphism of complexes
since from the proof of Proposition 3.3 dd D 0 implies d�d0 D d1d� .

Hence ŒŒ� ��D Cone.d�/. Similar arguments hold for the two other cases.

More generally, consider k D kCCk�Ck0 double vertical tangent points p1; : : : ;pk

such that the kC first ones are positive double points, the next k� ones negative double
points and the last k0 ones vertical tangent points. For each words Œa�D a1a2 � � � akC ,
ai 2 f0; 1g, Œb�D b1b2 � � � bk� , bi 2 f0; 1g, Œc�D c1c2 � � � ck0

, ci 2 f0; 1g, let Œa�Œb�Œc�
be the word obtained by concatenation of Œa�; Œb�; Œc� and denote by .� Œa�Œb�Œc�; �Œa�Œb�Œc�/
the cuspidal divide obtained from .�; �/ by performing:8̂̂<̂

:̂
‚ai

splitting at pi for 1� i � kC

‚bi
splitting at pi for kC < i � kCC k�

‚ci
splitting at pi for kCC k� < i � k D kCC k�C k0:

Let 1Œa� , 1Œb� and 1Œc� be the numbers of occurrences of 1 in Œa�, Œb� and Œc� and
gr.Œa�Œb�Œc�/ D 1Œa� � 1Œb�C 1Œc� . By restriction, the differential d of ŒŒ� �� coincides
with the differential d Œa�Œb�Œc� of ŒŒ� Œa�Œb�Œc���. By iterating Lemma 3.13, using same
arguments, just following the incidence relations, we have:

Lemma 3.14 For each `, �k� � `� kCC k0 , we can identify the complex

.C`;D`/D
M

gr.Œa�Œb�Œc�/D`

ŒŒ� Œa�Œb�Œc���
˚
2.1Œa�� 1Œb�C kC� k�/C 1Œc�C k0

	
with a subquotient-complex of ŒŒ� ��, with differential

D`
D

M
gr.Œa�Œb�Œc�/D`

d Œa�Œb�Œc�:
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The differential d induces a structure of double complex

�C�k� ;D�k�
� ��k�

����!
�C�k�C1;D�k�C1

� ��k�C1

������! � � �

�kCCk0�1

��������!
�CkCCk0 ;DkCCk0

�
such that ŒŒ� ��D Cone

�
��k� ; : : : ; �kCCk0�1

�
Œ�k��.

In the sequel, such a double complex will be called a splitting diagram of ŒŒ� ��.

3.5 Khovanov homology of OMS–divides

Definition 3.15 We call Khovanov homology H.� / of an OMS–divide (or a cuspidal
divide) � D .�; �/ the homology of the complex ŒŒ� ��D

�
ŒŒ� ��i

�
i2Z :

(3-22)
H.� /D �Hi.� /

�
i2Z; Hi.� /D

M
j2Z

Hi;j .� /;

Hi;j .� /D Ker di;j= Im di�1;j :

Proposition 3.16 If � D .�; �/ is an OMS–divide, then the polynomial W� and the
graded Euler characteristics of H.� / are related by

(3-23) W� .t
2/D

t

1C t2
�gr.H.� //D t

1C t2

X
i2Z

.�1/i dimgrHi.� /

where the graded dimension is dimgrHi.� /D
P

j2Z tj dimZ2
Hi;j .� /:

Proof Immediate from formula (2-5).

We can now formulate our main theorem:

Theorem 3.17 Khovanov homology of OMS–divides is invariant under M–equiva-
lence.

Combined with Theorem 1.2, we obtain:

Corollary 3.18 Khovanov homology of OMS–divides is an invariant for strong equiv-
alence of strongly invertible links.

Section 4 is devoted to the proof of this theorem. Notice that from Proposition 3.16,
Theorem 3.17 is a refinement of Proposition 2.3.
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3.6 Examples

(1) Figure 9 shows a divide for the link 31 and its splitting diagram.

+ [[ [[
[[ [[

[[ [[
[[ [[⊕

T1

T7

T6

T2

f3g

f5g

f4g

f6g

Divide for 31

Figure 9

The associated complex and homology entries are:

.A˝A/f3g d0

!.A˝A/f5g˚Af4g d1

!.A˝B/f6g

i n j 1 3 5 7 9

0 Z2 Z2

1 Z2 Z2

2 Z2 Z2

(2) Figure 10 shows a divide for the link 41 and its splitting diagram.

--
[[ [[ [[ [[

[[ [[

[[ [[
[[ [[[[ [[

[[ [[

[[ [[

 

 

 

 Divide for 41

f�2g f�1g

f�1g

f1g

f1g f2g

T1

T7

T7

T7

T7

T1

T7

T7

T1

T6

T6

T2

Figure 10

The associated complex and homology entries are:

.A˝3/f�2g
d�1

! .A˝3/˚ .A˝2
˚A˝2/f�1g

d0

!.A˝2
˚A˝2/f1g˚A d1

!.A˝B/f2g

i n j �5 �3 �1 1 3 5

�1 Z2 Z2

0 Z2 .Z2/
2 Z2

1 Z2 Z2

2 Z2 Z2
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4 Invariance under M–equivalence

4.1 Invariance under type I moves

Let � and z� be OMS–divides which differ only by a type I move (see Figure 11).

+ +� D z� D

Figure 11: Type I move

Proposition 4.1 The complexes ŒŒ� �� and ŒŒ z� �� have the same homology.

Let’s denote by � st
�
resp. z� st

�
, s; t 2 f0; 1g the cuspidal divides obtained by per-

forming ‚s ,‚t splittings respectively at the C double point and the vertical tangent
point of �

�
resp. of z�

�
in Figure 11, without changing any other singular point of

these divides. From Lemma 3.14, we have splitting diagrams given in Figure 12.

[[

[[
[[

[[

[[

[[
[[

[[

[[

[[
[[

[[

[[

[[
[[

[[

ŒŒ� 00��f3g D

ŒŒ z� 00��f3g D

f3g

f3g

d0�

d�0

zd0�

zd�0

ŒŒ� 01��f4g D

ŒŒ� 10��f5g D

ŒŒ z� 01��f4g D

ŒŒ z� 10��f5g D

f4g

f5g

f4g

f5g

d�1

d1�

zd�1

zd1�

ŒŒ� 11��f6g D

ŒŒ z� 11��f6g D

f6g

f6g

Figure 12: Splitting diagram for type I move

Notice that ŒŒ� 00��D ŒŒ z� 00��. In other words we have:

Lemma 4.2 Let’s denote

�0
D

�
d0�

d�0

�
; �1

D
�

d�1 d1�
�
; z�0

D

�
zd0�

zd�0

�
and z�1

D
�
zd�1 zd1�

�
:
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Then ŒŒ� ��D Cone.�0; �1/ and ŒŒ z� ��D Cone.z�0; z�1/:

(4-1)
ŒŒ� 00��f3g

�0

�! ŒŒ� 01��f4g˚ ŒŒ� 10��f5g
�1

�! ŒŒ� 11��f6g

Î

ŒŒ z� 00��f3g
z�0

�! ŒŒ z� 01��f4g˚ ŒŒ z� 10��f5g
z�1

�! ŒŒ z� 11��f6g

Let’s consider the “creation and destruction” morphisms (see Remark 3.6)

ŒŒ� 11��f6g
�1
�! ŒŒ� 10��f5g ŒŒ� 01��f4g

x�1
�! ŒŒ z� 10��f5g ŒŒ z� 10��f5g

z"1
�! ŒŒ� 01��f4g

ŒŒ z� 11��f6g
z�1
�! ŒŒ z� 10��f5g ŒŒ z� 01��f4g

zx�1
�! ŒŒ� 10��f5g ŒŒ� 10��f5g

"1
�! ŒŒ z� 01��f4g

defined by Figure 13.

+

+

--

--

 

   

  
 

  

 
  
 

a
b

a
b

�1

z�1

a

b

b

a

b

a

a

b

x�1

zx�1

b

a

a

b

b

a
c

c
a

b

z"1

"1

b

a

a

b

0

0

if c DC

if c D�

if c DC

if c D�
a; b; c 2 f�;Cg

8<:
8<:

Figure 13

Lemma 4.3 The two sequences

(4-2)
0 �! ŒŒ� 11��f6g

�1
�!ŒŒ� 10��f5g

"1
�!ŒŒ z� 01��f4g �! 0

0 �! ŒŒ z� 11��f6g
z�1
�!ŒŒ z� 10��f5g

z"1
�!ŒŒ� 01��f4g �! 0

are exact and d1� , zx�1 , zd1� and x�1 are respectively splitting morphisms of �1 , "1 , z�1

and z"1 :

(4-3)
d1��1 D id; "1

zx�1 D id; �1d1�C zx�1"1 D idC �1d1�zx�1"1

zd1�z�1 D id; z"1x�1 D id; z�1
zd1�Cx�1z"1 D idC z�1

zd1�x�1z"1

Moreover

(4-4) "1d�0 D zd0� and z"1
zd�0 D d0�:

Algebraic & Geometric Topology, Volume 9 (2009)



Khovanov homology for signed divides 2011

Proof The morphisms d1� and zd1� correspond to T7 , d�0 and zd�0 to T1 or T2 , d0�

and zd0� to T6 or T4 (see (3-16)). Then the result is an consequence of the comments
and the definitions made in Remark 3.6 (see also Figure 6 and Figure 8). Indeed, with
the notation of this remark, relations (4-3) correspond to

T7 ı .A˝ �1/D id "1 ı x�1 D id

.A˝ �1/ ıT7C .A˝ .x�1"1//D idC .A˝ �1/ ıT7 ı .A˝ .x�1"1//

and relations (4-4) to ."1˝A/ ıT1 D T6 or ."1˝B/ ıT2 D T4 .

Proof of Proposition 4.1 Consider the diagram

ŒŒ� 00��f3g ŒŒ� 01��f4g˚ ŒŒ� 10��f5g ŒŒ� 11��f6g

ŒŒ z� 00��f3g ŒŒ z� 01��f4g˚ ŒŒ z� 10��f5g ŒŒ z� 11��f6g

OO

id

��

F

��

zF

OO OO

0

��

�0
//

z�0
//

�1
//

z�1
//

H

dd

zH

dd

H D

�
0

�1

�
zH D

�
0

z�1

�
where

F D

�
0 "1

x�1C z�1
zd1�x�1 z�1

zd�1"1

�
zF D

�
0 z"1

zx�1C �1d1�zx�1 �1d�1z"1

�
:

From Lemmas 4.2 and 4.3, we have

F�0
D z�0 z�1F D 0 zFF D idCH�1 �1H D id

zF z�0
D�0 �1 zF D 0 F zF D idC zH z�1 z�1 zH D id:

Hence vertical arrows define a homotopy equivalence. From Proposition 3.12, ŒŒ� ��D
Cone.�0; �1/ and ŒŒ z� ��D Cone.z�0; z�1/ have the same homology.

4.2 Invariance under type II move

Let � and �0 be OMS–divides which differ only by a type II move (see Figure 14).

--+� D �0 D

Figure 14: Type II move
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Proposition 4.4 The complexes ŒŒ� �� and ŒŒ�0�� have the same homology.

Let � st , s; t 2 f0; 1g be the cuspidal divides obtained by performing ‚s and ‚t

splittings respectively at the C and the � double points of � in Figure 14 without
changing any other singular point. From Lemma 3.14 we have a splitting diagram
given by Figure 15.

[[

[[
[[ [[

[[

[[
[[[[ ⊕ŒŒ� 01��f2g D f2g

d0�

d�1

ŒŒ� 00��D

ŒŒ� 11��D

d�0

d1�

ŒŒ� 10��f2g D f2g

Figure 15: Splitting diagram for type II move

We remark that ŒŒ� 00��D ŒŒ�0�� and we have the following lemma:

Lemma 4.5 ŒŒ� ��D Cone.�0; �1/Œ�1� where

ŒŒ� 01��f�2g
�0

�! ŒŒ� 00��˚ ŒŒ� 11��
�1

�! ŒŒ� 10��f2g �0
D

�
d0�

d�1

�
�1
D
�
d�0 d1�

�
:

Let’s consider the “destruction and creation” morphisms of complexes (see Remark
3.6) defined by Figure 16.

+

--

+

"2W ŒŒ�
11�� �! ŒŒ� 01��f�2g �2W ŒŒ�

10��f2g �! ŒŒ� 11��

a b

a b

0
a b

a b a b

a; b 2 f�;Cg

Figure 16

Lemma 4.6 The sequence

0 �! ŒŒ� 10��f2g
�2
�!ŒŒ� 11��

"2
�!ŒŒ� 01��f�2g �! 0

is exact and d1� , d�1 are respectively splitting morphisms of �2 , "2 :

(4-5) "2d�1 D id; d1��2 D id; d�1 "2C �2 d1�
D idC �2 d1�d�1"2:

Proof The morphism d�1 corresponds to T2 or T4 and the morphism d1� to T3 or
T5 in (3-16). The lemma is a direct consequence of the comments and the definitions
made in Remark 3.6 (see also Figure 6 and Figure 7).
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Proof of Proposition 4.4 Consider the diagram

ŒŒ� 01��f�2g ŒŒ� 00��˚ ŒŒ� 11�� ŒŒ� 10��f2g

ŒŒ� 00��D ŒŒ�0��

�0
//

H 0

gg
�1

//

H 1

gg

R

OO

J

��

J D

�
id

�2d�0

�
RD

�
id d0�"2

�
where

H 0
D
�
0 "2

�
H 1
D

�
0

�2

�
From the previous two lemmas, ŒŒ�0�� is a strong deformation retract of ŒŒ� �� D
Cone.�0; �1/Œ�1� with retraction R, inclusion J , and homotopy .H 0;H 1/:

R�0
D 0; �1J D 0; H 0�0

D id; RJ D id; JRD idC�0H 0
CH 1�1; �1H 1

D id:

Hence from Proposition 3.12 they have the same homology.

4.3 Invariance under type III move

In this section, we only consider the case of move IIIC . The case of III� can be
checked in a similar way: we have dual situations as is said in Remark 3.2 and in the
proof of Proposition 3.5.

Let �1 and �2 be OMS–divides which differ only by a type IIIC move (see Figure 17).

+

++

+

+

+�1 D �2 D

Figure 17: Type IIIC move

Proposition 4.7 The complexes ŒŒ�1�� and ŒŒ�2�� have the same homology.

Let � stu
1

, s; t;u 2 f0; 1g be the cuspidal divides obtained by performing ‚s , ‚t and
‚u splittings at the double points shown on the figure of �1 (see Figure 17). From
Lemma 3.14, we have the splitting diagram of ŒŒ�1�� shown in Figure 18.
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[[

[[

[[

[[

[[

[[

[[

[[ [[

[[

[[

[[

[[

[[

[[

[[
�

�

�

�

�

�

�

�

�

�

 

 ŒŒ� 000
1

��f6g D

f6g

ŒŒ� 100
1

��f8g D

ŒŒ� 010
1

��f8g D

ŒŒ� 001
1

��f8g D

f8g

f8g

f8g ŒŒ� 110
1

��f10g D

ŒŒ� 101
1

��f10g D

ŒŒ� 011
1

��f10g D

f10g

f10g

f10g

ŒŒ� 111
1

��f12g D f12g

d�00

d0�0

d00�

d1�0

d10�

d�10

d01�

d�01

d0�1

d11�

d1�1

d�11

Figure 18: Splitting diagram for type IIIC move

Let’s denote C0 D ŒŒ� 000
1

��f6g, C3 D ŒŒ� 111
1

��f12g, C1 D yC1˚ {C1 and C2 D yC2˚ {C2

yC1
D ŒŒ� 100

1 ��f8g˚ ŒŒ� 010
1 ��f8g {C1

D ŒŒ� 001
1 ��f8gwhere

yC2
D ŒŒ� 110

1 ��f10g˚ ŒŒ� 101
1 ��f10g {C2

D ŒŒ� 011
1 ��f10g:

Lemma 4.8 ŒŒ�1��D Cone.�0; �1; �2/ where

C0 �0

�! C1 �1

�! C2 �2

�! C3

and �0
D

0B@d�00

d0�0

d00�

1CA �1
D

0B@d1�0 d�10 0

d10� 0 d�01

0 d01� d0�1

1CA �2
D
�
d11� d1�1 d�11

�
:

Now we can use the same arguments as in Section 4.2. The morphism d0�1 (correspond-
ing to T2 and T4 ) is injective and d�11 (corresponding to T3 and T5 ) is surjective.
Let "2W

{C2! {C1 be the “destruction” morphism of complexes and �2W C3! {C2 be
the “creation” morphism of complexes (see Figure 19).

+a b

c

d

"2

8̂<̂
:

0

a b
c

if d DC

if d D�

a b
c

�2 a b
c

a; b; c; d 2 f�;Cg

Figure 19

Lemma 4.9 The sequence

0 �! C3 �2
�! {C2 "2

�! {C1
�! 0

is exact and d�11 , d0�1 are respectively splitting morphisms of �2 and "2 :

(4-6) d�11�2 D id; "2d0�1
D id; d0�1"2C �2d�11

D idC �2d�11d0�1"2:
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Proof We have a similar situation as in Lemma 4.6: d0�1 corresponds to T2 or T4

and d�11 corresponds to T3 or T5 in (3-16). The lemma is a direct consequence of
the comments and the definitions made in Remark 3.6 (see also Figure 6).

Lemma 4.10 Let ı D d�01"2d01�W ŒŒ� 010
1

��f8g ! ŒŒ� 101
1

��f10g.

The following sequence is a double-complex:

.C0; d0/
b�0

�!. yC1; yd1/
b�1

�!. yC2; yd2/ where y�0
D

�
d�00

d0�0

�
y�1
D

�
d1�0 d�10

d10� ı

�
:

Proof Since �1�0 D 0, we obtain from Lemma 4.9

y�1 y�0
D

�
d1�0d�00C d�10d0�0

d10�d�00C ıd0�0

�
D

�
0

d10�d�00C d�01"2d01�d0�0

�
;

d10�d�00
C d�01"2d01�d0�0

D d�01d00�
C d�01"2d0�1d00�

D 0:

Lemma 4.11 Let yC D Cone.y�0; y�1/. Then the complex yC is a strong deformation
retract of ŒŒ�1�� and so they have the same homology.

Proof Consider the diagram

C0 yC1 yC2

C0 yC1˚ {C1 yC2˚ {C2 C3

y�0
//

y�1
//

�0
//

�1
// �2

//

OO

id
��

J 1

��
R1

OO

J 2

��
R2

OO

H 1

bb

H 2

ee

J 1
D

0B@id 0

0 id

0 "2d01�

1CA R1
D

�
id 0 0

0 id 0

�
H 1
D

0B@0 0 0

0 0 0

0 0 "2

1CAwhere

J 2
D

0B@ id 0

0 id

�2d11� �2d1�1

1CA R2
D

�
id 0 0

0 id d�01"2

�
H 2
D

0B@ 0

0

�2

1CA :
From Lemma 4.9, we easily verify the relations:

J 1 y�0
D�0; J 2 y�1

D�1J 1; �2J 2
D 0; R1�0

D y�0; R2�1
D y�1R1;

R1J 1
D id; R2J 2

D id;J 1R1
D idCH 1�1; J 2R2

D idCH 2�2
C�1H 1;

0D idC�2H 2:
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So downward arrows define an inclusion map, upward ones a retraction and H1;H2

homotopy maps of double complexes. We can apply Proposition 3.12: yC is a deforma-
tion retract of ŒŒ�1�� so they have the same homology.

Proof of Proposition 4.7 Up to isotopy, the drawn part of � 000
1

on Figure 18 is
symmetric with respect to horizontal direction. Also the drawn part of � 100

1
is

symmetric to the one of � 010
1

as well as the drawn part of � 110
1

is symmetric to
the one of � 101

1
. The morphisms d�00 and d0�0 (resp. d10� and d�10 ) clearly

play symmetric roles. Besides, the morphisms ıW ŒŒ� 010
1

��f8g ! ŒŒ� 101
1

��f10g and
d1�0W ŒŒ� 100

1
��f8g ! ŒŒ� 110

1
��f10g also play symmetric roles. Since the drawn parts

of �1 and �2 in Figure 17 also are symmetric with respect to horizontal direction,
we deduce that the complexes ŒŒ�1�� and ŒŒ�2�� both have the same homology as the
complex yC .

4.4 Invariance under type IV moves

Let �1 and �2 be OMS–divides which differ only by a type IV move (see Figure 20).

+

+

+

+�1 D �2 D

Figure 20: Type IV move

Proposition 4.12 The complexes ŒŒ�1�� and ŒŒ�2�� have the same homology.

Before proving this proposition, we first introduce the following intermediate result.

Lemma 4.13 Let � and z� be two cuspidal divides which differ only in the way
depicted in Figure 21 (or the symmetric situation with respect to horizontal direction).

+� D z� D

Figure 21

Then ŒŒ z� ��f6gŒ1� is a strong deformation retract of ŒŒ� ��.

Proof With the same arguments as in the previous sections, using Lemma 3.14 we
have a splitting diagram of ŒŒ� �� as in Figure 22.
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[[

[[

[[

[[

[[

[[

[[

[[ [[

[[

[[

[[

[[

[[

[[

[[ŒŒ� 000��f4gD f4g

d�00

d0�0

d00�

ŒŒ� 010��f5gD

ŒŒ� 001��f5gD

f5g

f5g

ŒŒ� 100��f6gD f6g
d1�0

d10�

d�10

d01�

d�01

d0�1

ŒŒ� 110��f7g D f7g

ŒŒ� 101��f7gD

ŒŒ� 011��f6gD

f7g

f6g

d11�

d1�1

d�11

ŒŒ� 111��f8gD f8g

Figure 22: Splitting diagram of ŒŒ� ��

Let’s denote:

C0
D ŒŒ� 000��f4g {C1

D ŒŒ� 001��f5g {C2
D ŒŒ� 011��f6g C3

D ŒŒ� 111��f8g

yC1
D ŒŒ� 100��f6g˚ ŒŒ� 010

1 ��f5g yC2
D ŒŒ� 110��f7g˚ ŒŒ� 101

1 ��f7g:

Then ŒŒ� ��D Cone.�0; �1; �2/ where

C0 �0

�! yC1
˚ {C1 �1

�! yC2
˚ {C2 �2

�! C3

�0
D

0B@d�00

d0�0

d00�

1CAD
0@ y�0

d00�

1A �1
D

0B@d1�0 d�10 0

d10� 0 d�01

0 d01� d0�1

1CAD  y�1 U

L d0�1

!

�2
D
�
d11� d1�1 d�11

�
D
�
y�2 d�11

�
:and

Consider the creation/destruction morphisms of complexes (see Figure 23):

ŒŒ� 100��f6g
�
! ŒŒ� 000��f4g ŒŒ� 110��f7g

�2
! ŒŒ� 010��f5g ŒŒ� 101��f8g

�2
! ŒŒ� 011��f5g

ŒŒ� 010��f5g
�
! ŒŒ� 000��f4g ŒŒ� 101��f7g

�1
! ŒŒ� 100��f5g ŒŒ z� ��f6g

�1
! ŒŒ� 001��f5g

ŒŒ� 101��f7g
�2
! ŒŒ� 010��f5g ŒŒ� 001��f5g

x"1
! ŒŒ z� ��f6g

Let’s define � 0 D .idC �d�00/� W ŒŒ� 010��f5g ! ŒŒ� 000��f4g and

yH 1
D

�
0 �1

�2 �2

�
yH 0
D
�
� � 0

�
:

Then we have a short exact sequence

0 �! yC2
yH 1

�! yC1
yH 0

�! C0
�! 0

such that y�1 and y�0 are splitting morphisms of yH 1 and yH 0 :

(4-7) y�1 yH 1
D id; yH 0 y�0

D id; y�0 yH 0
C yH 1 y�1

D idC yH 1 y�1 y�0 yH 0:
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+

--

+

++

+

+

  
 

a

b

c

a

b

c

�

�

8<:
8<:

0

a

b

0

a

b

if c DC

if c D�

if c DC

if c D�

a

b

a

b

a

b

�2

�1

�2

a

b

a

b

a

b

a

a

a
b

�2

�1

x"1

a

a8<:
a

0 if b D�

if b DC

a; b; c 2 f�;Cg

Figure 23

Moreover, for the compositions

ŒŒ z� ��f6g
�1
�! {C1 d0�1

�! {C2 and {C1 U
�! yC2

yH 1

�! yC1 L
�! {C2

we have

(4-8) d0�1�1 D 0 L yH 1U D d01��2d�01
D 0:

Let’s define homotopies H 0W yC1˚ {C1!C0 , H 1W yC2˚ {C2! yC1˚ {C1 and H 2W C3!

yC2˚ {C2 by

H 0
D
�
yH 0 0

�
H 1
D

0B@ yH 1 0

0

0 0 0

1CA H 2
D

0B@ 0

0

�2

1CA
and consider the injection J and retraction R

C0 yC1˚ {C1 yC2˚ {C2 C3

ŒŒ z� ��f6g

R

OO

J
���0

// �1
// �2

//

H 0

ee

H 1

aa

H 2

ee

RD
�
0 0 x"1

�
.idC�0H 0/D

�
x"1d00�� x"1d00�� 0 x"1

�
where

J D .idCH 1�1/

0B@ 0

0

�1

1CAD
0B@�1d�01�1

�2d�01�1

�1

1CA :
(see Figure 24 for the retraction R).
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+

--

--

--

--
 

    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

  
 

a

b

c

a

b

c

a
c

x"1d00��

x"1d00�� 0

x"1

8<:(
(

0

0

0

if .a; b; c/D .C;C;�/
if .a; b; c/D

�
.C;�;�/
.�;C;�/

else

if .a; b; c/D .C;C;�/
else

if c DC

else

a

a; b; c 2 f�;Cg

a c

a

c

a

c

x"1d00��

x"1d00�� 0

x"1

�
�
�

0

0
a

0

if .a; c/D .�;�/
else
if .a; c/D .C;�/
else

if c DC

else

Figure 24: The retraction R

From (4-7) and (4-8), we easily verify the relations:

R�0
D 0; �1J D 0; H 0J D 0; RH 1

D 0; H 0H 1
D 0; H 1H 2

D 0

RJ D id; JRD idC�0H 0
CH 1�1; idC�1H 1

CH 2�2
D 0; idC�2H 2

D 0:

Then ŒŒ z� ��f6gŒ1� is a strong deformation retract of ŒŒ� �� D Cone.�0; �1; �2/ from
Proposition 3.12.

Proof of Proposition 4.12 Let � s
1

(resp. � s
2

), s 2 f0; 1g be the cuspidal divides
obtained by performing ‚s splittings at the left hand C double point of �1 (resp. �2 )
in Figure 20. Let’s also denote, according to Lemma 4.13, the cuspidal divides z� 1

1

(resp. z� 1
2

) obtained by “retracting” � 1
1

(resp. � 1
2

) (see Figure 25). Notice that

+ +

+ +

� 0
1 D � 1

1 D
z� 1
1
D

� 0
2 D � 1

2 D
z� 1
2
D

Figure 25

ŒŒ� 0
1
��D ŒŒ� 0

2
�� and ŒŒ z� 1

1
��D ŒŒ z� 1

2
��. From Lemma 3.14, the differential d1 on ŒŒ�1�� (resp.

d2 on ŒŒ�2��) gives us the following cone:

ŒŒ�1��D Cone
�
ŒŒ� 0

1 ��f2g
d�

1
!ŒŒ� 1

1 ��f4g
� �

resp. ŒŒ�2��D Cone
�
ŒŒ� 0

2 ��f2g
d�

2
!ŒŒ� 1

2 ��f4g
� �
:

From Lemma 4.13, there exist strong deformation retractions

ŒŒ� 1
1 ��

R1

�!
 �
J1

ŒŒ z� 1
1 ��f6gŒ1� ŒŒ� 1

2 ��
R2

�!
 �
J2

ŒŒ z� 1
2 ��f6gŒ1�:
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So from Proposition 3.10, Cone.R1d�
1
/ (resp. Cone.R2d�

2
/ ) is a strong deformation

retract of ŒŒ�1��
�
resp. ŒŒ�2��

�
. Hence it suffices to show that R1d�

1
D R2d�

2
. Let’s

consider the splitting diagram of ŒŒ� 0
1
��D ŒŒ� 0

2
�� as Cone.D0;D1;D2/ (see Figure 26).

[[

[[

[[

[[

[[

[[

[[

[[ [[

[[

[[

[[

[[

[[

[[

[[[[ [[ [[ [[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[
 

 

 

 

 

 

 

 
f6gD f6gD

0

f8gD

f7gD

f7gD

f8g

f7g

f7g

D1

f9gD

f8gD

f8gD

f9g

f9g

f8g

D2
f10gD f10g

Figure 26

Now R1d�
1

and R2d�
2

corresponds to the diagram of Figure 27.

[[ [[ [[[[ [[ [[ [[ [[ [[[[ [[ [[

[[ [[

[[ [[ [[[[ [[ [[ [[ [[ [[[[ [[ [[⊕⊕⊕⊕

⊕⊕⊕⊕
d�

1
d�

1
d�

1
d�

2
d�

2
d�

2

f8g f7g f7g f8g f7g f7g

f10g f9g f9g f10g f9g f9g

R1 R2

f10g

D

Figure 27

By combining Figure 24 with Figure 6 we easily verify that R1d�
1
DR2d�

2
.

4.5 Invariance under type V moves

Let �0 and �C (resp. �� ) be OMS–divides which differ only by a type V˙C (resp.
type V˙�) move (see Figure 28).

--

�0 D �C D resp. �� D

 !

Figure 28: Type V moves
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Proposition 4.14 The complexes ŒŒ�0��, ŒŒ�C�� and ŒŒ���� have the same homology.

Proof From Lemma 3.14, we can see ŒŒ�C�� as the cone of the surjective morphism as
in Figure 29.

[[ [[ [[ [[ŒŒ� 0
C��f1g D f1g

d�C ŒŒ� 1
C��f2g D

Figure 29: Splitting diagram for type VC move

Let’s consider the creation/destruction morphisms �1W ŒŒ�
1
C��f2g ! ŒŒ� 0

C��f1g (right
inverse of d�C ), x�1W ŒŒ� ��! ŒŒ� 0

C��f1g and "1W ŒŒ�
0
C��f1g ! ŒŒ� �� defined in Figure 30.

+

--

a

a

�1

x�1

a

a

b

a

"1

�
0

a

if b DC

if b D�
a; b 2 f�;Cg

Figure 30

Let j D .idC �1d�/x�1 and r D "1 . Then from the following diagram

ŒŒ� 0
C��f1g ŒŒ� 1

C��f2g

ŒŒ�0��

j
��

r

OO

d�
C //

�1

``

d�Cj D 0; rj D id;where

j r D idC �1d�C; d�C�1 D id

we deduce using Proposition 3.12 that ŒŒ�0�� is a strong deformation retract of ŒŒ�C��D
Cone.d�C/. So they have the same homology.

On the other hand, from Lemma 3.14, ŒŒ����D Cone.�0; �1/Œ�1�:

ŒŒ� 10
� ��f�3g

�0

!ŒŒ� 00
� ��f�1g˚ŒŒ� 11

� ��f�2g
�1

!ŒŒ� 01
� ��f3g �0

D

�
d�0�
d1�
�

�
�1
D
�
d0�
� d�1�

�
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[[ [[
[[ [[

[[ [[
[[ [[

  

    

  

� 

 

�
 

�
 

 ŒŒ� 10
� ��f�3gD f�3g

d�0�

d1�
�

ŒŒ� 00
� ��f�1gD

ŒŒ� 11
� ��f�2gD

f�1g

f�2g

d0�
�

d�1�

ŒŒ� 10
� ��D

Figure 31: Splitting diagram for type V� move

Let’s consider the morphisms

ŒŒ� 00
� ��f�1g

�
! ŒŒ� 10

� ��f�3g; ŒŒ� 11
� ��f�2g

�
! ŒŒ� 10

� ��f�3g;

ŒŒ� 01
� ��

�1
! ŒŒ� 00

� ��f�1g; ŒŒ� 01
� ��

�2
! ŒŒ� 11

� ��f�2g

defined in Figure 32.

--+

++

b

a

�

a

(
0
a

�1

if b DC

if b D�

a

a b

a �2

�

(

a

0
a

if b DC

if b D�

a; b 2 f�;Cg

Figure 32

Then from the diagram

ŒŒ� 10
� ��f�3g ŒŒ� 00

� ��f�1g˚ ŒŒ� 11
� ��f�2g ŒŒ� 01

� ��

ŒŒ�0��

R

OO

J

��
�0

// �1
//

H 0

ee

H 1

gg

where J D

�
�1

�2

�
; RD

�
0 x"2

�
; H 0

D
�
� .idC �d�0/�

�
and H 1

D

�
�1

�2

�
we deduce that ŒŒ�0�� is a strong deformation retract of ŒŒ���� D Cone.�0; �1/Œ�1�.
They have the same homology.
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4.6 Invariance under type VI moves

Let � and �C (resp. �� ) be OMS–divides which differ only by a type VIC (resp.
type VI� ) move (see Figure 33).

+ --
----

�0 D �C D

 
resp. �� D

!

Figure 33: Type VI moves

Proposition 4.15 The complexes ŒŒ�0��, ŒŒ�C�� and ŒŒ���� have the same homology.

We will break down the proof in two steps: the result is an immediate consequence of
the following two lemmas.

Lemma 4.16 Let � and z� be cuspidal divides as depicted in Figure 34.

--� D z� D

Figure 34

Then ŒŒ z� �� is a strong deformation retract of ŒŒ� ��.

Proof Let’s apply Lemma 3.14 to ŒŒ� ��. We have a splitting diagram as depicted in
Figure 35.

[[

[[

[[

[[

[[

[[

[[

[[ [[

[[

[[

[[

[[

[[

[[

[[ 

�

�

�

�

��

�

�

 
ŒŒ� 100��f�2gD f�2g

d1�0

d10�

d�00

ŒŒ� 110��f�1gD

ŒŒ� 101��f�1gD

ŒŒ� 000��D

f�1g

f�1g

d11�

d�10

d1�1

d�01

d0�0

d00�

ŒŒ� 111��D

ŒŒ� 010��f1gD

ŒŒ� 001��f1gD

f1g

f1g

d�11

d01�

d00�

ŒŒ� 011��f2gD f2g

Figure 35: Splitting diagram of ŒŒ� ��

Let’s denote:

C0
D ŒŒ� 100��f�2g C1

D ŒŒ� 110��f�1g˚
�
ŒŒ� 101��f�1g˚ ŒŒ� 000��

�
C2
D ŒŒ� 111��˚

�
ŒŒ� 010��f1g˚ ŒŒ� 001��f1g

� C3
D ŒŒ� 011��f2g

�0
D

0B@d1�0

d10�

d�00

1CA �1
D

0B@d11� d1�1 0

d�10 0 d0�0

0 d�01 d00�

1CA �2
D
�
d�11 d01� d0�1

�
:

Algebraic & Geometric Topology, Volume 9 (2009)



2024 Olivier Couture

Then ŒŒ� ��D Cone.�0; �1; �2/Œ�1� where

C0 �0

�! C1 �1

�! C2 �2

�! C3:

Let’s consider the creation / destruction morphisms

ŒŒ� 101��f�1g
�
�!ŒŒ� 100��f�2g ŒŒ� 111��

�
�!ŒŒ� 110��f�1g ŒŒ� 011��f2g

�2
�!ŒŒ� 111��

ŒŒ� 000��
�
�!ŒŒ� 100��f�2g ŒŒ� 010��f1g

�1
�!ŒŒ� 000�� ŒŒ z� ��

�1
�!ŒŒ� 110��f�1g

ŒŒ� 001��f1g
�2
�!ŒŒ� 101��f�1g ŒŒ� 110��f�1g

x"1
�!ŒŒ z� ��

as depicted in Figure 36.

--

+

+

+

+

--

+a

b

c

ab

c

�

�

�
�

0
a

b

0
a

b

if c DC

if c D�

if c DC

if c D�

a; b; c 2 f�;Cg

a c

a

b
a

b

�

�1

�2

�
0
a

a b
a

b

if c DC

if c D�

a

a

a c

�2

�1

x"1

a

a�
0

a
if c DC

if c D�

Figure 36

We define homotopies H 0W C1! C0 , H 1W C2! C1 and H 2W C3! C2 :

H 0
D
�
0 .1C �d�00/� �

�
; H 1

D

0B@ � 0 0

�2d00��1d�10� �2d00��1 �2

�1d�10� �1 0

1CA ; H 2
D

0B@�2

0

0

1CA
together with retraction and inclusion maps RW C1! ŒŒ z� �� and J W ŒŒ z� ��! C1 :

RD
�
x"1 0 0

�
.idC�0H 0/D

�
x"1 x"1d1�0�d�00� x"1d1�0�

�
J D .idCH 1�1/

0B@�1

0

0

1CAD
0B@ �1

�2d00��1d�10�1

�1d�10�1

1CA
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such that we have the diagram:

C0 C1 C2 C3

ŒŒ z� ��

�0
// �1

// �2
//

R

OO

J

��

H 0

ee

H 1

ee

H 2

ee

We easily verify that

R�0
D 0; �1J D 0; H 0J D 0; RH 1

D 0; H 0H 1
D 0; H 1H 2

D 0;

RJ D id; JRD idC�0H 0
CH 1�1; idC�1H 1

CH 2�2
D 0; idC�2H 2

D 0:

Then from Proposition 3.12, ŒŒ z� �� is a strong deformation retract of ŒŒ� ��.

Lemma 4.17 We have strong deformation retractions rC (resp. r� ) with injection jC
(resp. j� ) pictured in Figure 37.

--

[[ [[ [[ [[
+

[[ [[ [[ [[ŒŒ�0��D
jC

rC
ŒŒ z�C��D resp. ŒŒ�0��D

j�

r�
ŒŒ z����D

! 

Figure 37

Proof From Lemma 3.14, ŒŒ z�C��D Cone.dC/ and ŒŒ�����D Cone.d�/Œ�1� where dC
and d� are shown in Figure 38.

[[ [[ [[ [[ [[ [[[[ [[f2g
dC

f4g f�4g
d�

f�2g

Figure 38

For ŒŒ�C��, using Proposition 3.12, we deduce the strong deformation retraction from
the following diagram of Figure 39 since dC�2D id, rC�2D 0, dCjCD 0, rCjCD id
and jCrC D idC �2dC .

Similarly for ŒŒ���� we deduce the strong deformation retraction from the diagram of
Figure 40 since "2d�D id, r�d�D0, "2j�D0, r�j�D id and j�r�D idCd�"2 .
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[[ [[

[[ [[

[[ [[
--

+

rC jC

rC D "2; jC D .idC �2dC/x�2

f2g
dC

�2

f4g

c

�2

x�2

"2

8<: 0 if c DC

if c D�

Figure 39

[[ [[[[ [[
+

[[ [[

f�4g
d�

"2

r� D x"2.idC d�"2/; j� D �2

r� j�

f�2g

c
"2

�2

x"2

8<: 0 if c DC

if c D�

c
8<:0 if c D�

if c DC

Figure 40
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