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A proof of the Kauffman–Harary Conjecture

THOMAS W MATTMAN

PABLO SOLIS

We prove the Kauffman–Harary Conjecture, posed in 1999: given a reduced, alternat-
ing diagram D of a knot with prime determinant p , every nontrivial Fox p–coloring
of D will assign different colors to different arcs.
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1 Introduction

In 1999, Louis Kauffman and Frank Harary published a paper [5] detailing a graph-
theoretic approach to the study of knot theory. In the paper they state a conjecture
(Alternation Conjecture 6.2) that has come to be known as the Kauffman–Harary
Conjecture:

Conjecture 1 (Kauffman–Harary Conjecture) Let D be a reduced, alternating dia-
gram of the knot k having prime determinant p . Then, every nontrivial p–coloring
of D assigns different colors to different arcs.

This provides a nice connection between two knot invariants, the determinant, which
is relatively easy to calculate, for example, using the Alexander polynomial, and the
least number of colors required on a minimal diagram of a knot, an invariant which
is, in general, very difficult to evaluate. The conjecture asserts that in the case of
an alternating knot, if the determinant is prime, then the least number of colors over
minimal diagrams is simply the crossing number. Conjecture 1 is known to hold for
rational knots by Kauffman and Lambropoulou [7] and Person et al [12], pretzel knots
by Asaeda, Przytycki and Sikora [2], and many Turk’s head knots by Dowdall et al [4].
Our goal in this paper is to prove the conjecture for all alternating knots of prime
determinant.

In order to give an overview of our approach we recall some basic ideas about coloring.
Let k be an alternating knot of prime determinant p . A (Fox) p–coloring of a
diagram D of k is an assignment of integers mod p to the arcs of D such that the
equation 2x�y � z � 0 mod p holds at each crossing, x being the color of the over
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arc, while y and z are the colors of the two under arcs. It’s convenient to encode this
requirement as an n� n matrix C 0 , the crossing matrix, where n is the number of
crossings in D . Each row of C 0 corresponds to a crossing and has one 2 entry and
two �1’s, the other entries being 0. The columns of C 0 then correspond to arcs of D
and colorings to vectors X such that C 0X � E0 modulo p .

Now, every constant vector X D .c; c; c; : : : ; c/ gives a coloring, but if we move to the
minor C defined by removing the last row and column of C 0 , we will have a way of
identifying nontrivial colorings. It turns out that jdet C jD det k , the knot’s determinant,
which is a knot invariant. As det k D p , a prime, C is invertible over the rationals. We
define the coloring matrix LD pC�1 as the classical adjoint of C . In Section 3, we
argue that each column of L includes entries that are not zero modulo p . The argument
depends on the observation that, as k is alternating and has prime determinant, it is a
prime knot.

As no column of L is zero modulo p , there will be heterogeneous colorings of D ,
where a coloring is heterogeneous if it assigns different colors to different arcs. To
complete the argument, we use the fact that the nullity of C is one to conclude that if
one nontrivial coloring is heterogeneous, then they all are.

The structure of our paper is as follows. In Section 2, we briefly discuss colorability
and crossing matrices and present preliminary definitions and notation used throughout
the paper. We also prove two lemmas, one showing that appending a zero to a vector
in C ’s null space gives a vector in C 0 ’s null space, while the other demonstrates that
taking the mirror reflection of an alternating diagram corresponds to transposing the
crossing matrix. In Section 3, we introduce the coloring matrix L and develop the
properties of colorings constructed from its columns. This culminates in a proof that
every column of L includes entries that are not zero modulo the determinant. Finally,
in Section 4, we prove the conjecture.

2 Preliminaries

In this section, we review basic results on colorability; references for this material
include Livingston [8], Mo [9], and Przytycki [13]. We end the section with two
lemmas.

Following [8], a diagram of a knot is a planar representation with gaps left to show
where the knot crosses under itself; for example, see Figure 1 below. Let Œk� denote
the set of diagrams of a knot k . We say that a diagram is reduced if it has no nugatory
crossings (see Adams [1, Chapter 3], for example). Let Œkr � denote the subset of Œk�
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consisting of all reduced diagrams. We say k is n–crossing if some D 2 Œk� has n

crossings and no other D02 Œk� has fewer than n crossings. It’s known (by Kauffman [6],
Murasugi [10] and Thistlethwaite [14]) that if k is an n–crossing alternating knot, then
every D in Œkr � is alternating and has n crossings and n arcs.

We will now define p–coloring where p is an integer greater than 1, k is a knot, and
D 2 Œk�. Let x , y , z denote integers which label the over arc and two under arcs,
respectively, at a crossing of D . The crossing satisfies the condition of p–colorability if

(1) 2x�y � z � 0 mod p .

We say k is p–colorable if there is some D2 Œk� such that the arcs of D can be labeled,
or colored, with the numbers 0; : : : ;p� 1 so that at least two numbers are used and
every crossing satisfies the condition of p–colorability. The numbers 0; : : : ;p� 1 are
called colors. The colors assigned to the arcs such that at each crossing the condition
of p–colorability is satisfied, make up a p–coloring of D . A p–coloring where every
arc is assigned the same color is called a trivial coloring.

Let D 2 Œkr � be an n–crossing diagram of the knot k . A labeling of D is a particular
indexing of the crossings fc1; : : : ; cng and of the arcs fa1; : : : ; ang. Given D and some
labeling, we define the crossing matrix C 0 as

(2) C 0ij D

8̂<̂
:

2 if aj is the over arc at crossing ci ,

�1 if aj is an under arc at crossing ci ,

0 otherwise.

Owing to (1) and (2), it follows that a p–coloring can be represented by a vector X 0

such that C 0X 0 � E0 mod p .

The matrix C 0 provides a straightforward way to compute the determinant of a knot. In
particular, let C be any .n� 1/� .n� 1/ minor of C 0 . We say C is a minor crossing
matrix. The determinant of the knot k is the absolute value of the determinant of C :
det k D jdet C j. It follows that k is p–colorable if and only if gcd.p; det k/ > 1.
Given C 0 , there are n2 choices for C , but, to avoid ambiguity, we will reserve the
symbol C for the minor crossing matrix obtained by removing the last column and
last row of C 0 . In this paper we will be investigating det k –colorings of diagrams of k

and, for simplicity, we will usually just say “coloring” when the value det k is clear
from the context.

We conclude this section with two lemmas. The first shows that, by appending a zero,
a vector in the null space of C can be “extended” to a coloring.
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Lemma 2.1 Let k be a knot with reduced diagram D 2 Œkr � and minor crossing
matrix C . A vector X such that CX � E0 mod det k , can be extended to a coloring of
the diagram D by adding a zero as the last entry. That is,

(3) C 0
�

X

0

�
� E0 mod det k :

Proof It is clear why the first n� 1 entries of the product in (3) should be 0 mod
det k . The last entry is also 0 because the last row of C 0 can be expressed in terms
of the first n� 1 rows. Indeed, if k is an alternating knot and ri are the rows of its
crossing matrix then rj D�

P
i¤j ri . More generally, Livingston [8] shows that, for

any knot, each row of the crossing matrix can be expressed as a linear combination of
the other rows. Thus, the last entry of (3) is also zero.

Our second lemma shows a connection between the crossing matrices of two diagrams
related by a mirror reflection. Fix a specific diagram D 2 Œkr � of an alternating knot k

and use the following procedure to label its arcs and crossings: After orienting the
knot, pick an arc, and label it a1 . Following the orientation, label the next arc a2 . The
crossing that has a1 and a2 as under arcs is labeled c1 . Continuing in this way, the
i –th arc we reach is labeled ai and the crossing that has ai�1 and ai as under arcs is
labeled ci�1 . Finally, the crossing between arcs an and a1 is labeled cn , where n is
the number of crossings in D . We call such a labeling an oriented labeling.

For an oriented labeling of an alternating diagram with n arcs, the expression 2aj �

ai � aiC1 , where i < n, which can be read off the i –th row of the crossing matrix,
expresses that aj ; ai ; aiC1 are the arcs present in crossing ci . For i D n, we have
2aj�a1�an . Similarly, 2cl�cj�cj�1 , for j > 1, can be read off the j –th column of
the crossing matrix, and expresses that the arc aj is an over arc at the crossing cl , and
is an under arc at the crossings cj , cj�1 . For j D 1, the expression is 2cl � c1� cn .

Given D , its mirror image Dm is the diagram obtained by reversing all the crossings;
that is, we change the over crossings to under crossings and vice versa. Oriented
labelings of D correspond to oriented labelings of Dm : for a crossing of D with over
arc aj and under arcs ai , aiC1 , the corresponding crossing in Dm has ai as the over
arc, and aj�1; aj as the under arcs. (Here we are taking indices modulo n, the crossing
number. We will frequently do this in what follows.)

In summary, the arc ai of Dm is an over arc at crossing cj�1 , and, as always, ai is an
under arc at crossings ci�1 and ci . Thus, the crossing ci in D given by 2aj�ai�aiC1

transforms to the arc ai in Dm given by 2cj�1� ci�1� ci . More concisely, aj and
ci in D correspond to cj�1 and ai in Dm , respectively. This leads to the following
lemma.
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Lemma 2.2 Let k be an alternating knot. Let C 0 be a crossing matrix for D 2 Œkr �.
Then the matrix C 0| is a crossing matrix for Dm .

Proof Give D an oriented labeling. Permute the rows of C 0| by sending the i –th
row to the .i � 1/–st row (for each i > 2) and the first row to the n–th row; call this
matrix D . As in the discussion above, D is the crossing matrix for an oriented labeling
of Dm . However, the set of crossing matrices of a diagram is closed under row and
column permutations, so C 0| is also a crossing matrix for Dm .

3 The main result on the coloring matrix

Let k be an alternating knot of prime determinant and D 2 Œkr �. Whichever D we
choose, jdet C j D det k , a knot invariant, so that C has prime determinant and is
therefore invertible over the rationals. We define L D det k � C�1 and call L the
coloring matrix. In this section we will prove that every column of L contains entries
that are not zero modulo det k .

Our strategy is to argue by contradiction. We will show that if there is a column of
zeroes, then there must be a “pseudo coloring” Y 0 . This is a way of labeling the
arcs of D such that the coloring condition (1) fails at exactly two crossings, one,
call it the C1–crossing, where 2x�y � z D 1 and another, the �1–crossing, where
2x�y�zD�1. We then investigate the properties of Y 0 eventually deducing that Y 0

exists only if D is the diagram of a connected sum of two knots. (The distinguished
C1– and �1–crossings appear in distinct components.) This is a contradiction; since
k is alternating and has prime determinant, it is in fact prime.

We begin with some of the properties of the coloring matrix. The entries of L are
signed minors of C and, therefore, integers. Note that CL and LC both give the
zero matrix mod det k . In particular, if wi is the i –th column of L, then Cwi �

E0

mod det k . We will use contradiction to show that wi 6�
E0 mod det k .

Lemma 3.1 Let k be an n–crossing alternating knot and let D 2 Œkr �. If the j –th
column of L is E0 mod det k , then there is a pseudo coloring Y 0 of k such that Y 0 has
all positive entries and C 0Y 0 D ej � en .

Proof Let LD .w1 � � �wn�1/ be the coloring matrix of an alternating knot k . For
some j < n we have wj �

E0 mod det k . Equivalently, the j –th column of C�1 has
all integer entries. Let Y be the j –th column of C�1 , ie, Y D .1= det k/wj . Then,
from the equation C C�1 = I , we infer that C Y D ej . Set

Y 0 D

�
Y

0

�
:
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As in the proof of Lemma 2.1, we find that

(4) C 0Y 0 D ej � en;

where we now consider ej to be a vector of Rn . Let T denote the vector of all 1’s, that
is, a trivial coloring. To ensure that Y 0 has all positive entries we note that C 0T D E0,
hence C 0.Y 0CmT /D ej � en . So, choose m large enough to ensure that Y 0CmT

has all positive entries, and take that to be Y 0 .

Remark The pseudo coloring Y 0 described by the lemma is not a trivial coloring. A
trivial coloring would give C 0Y 0 D E0.

Figure 1: From left to right: a diagram D of an alternating knot, “filling in"
the gaps, the graph GD

By “filling in” the gaps of the diagram D of an alternating knot, we have a regular
projection of the knot k . We will view this as a four valent planar graph GD by placing
vertices at each crossing. As in Figure 1, we make a directed graph by orienting the
“under arc” edges away from the crossing vertex and the “over arc” edges towards the
vertex. This choice of orientation will prove useful in what follows.

In particular, it ensures that there is an Euler circuit. Indeed, each vertex of GD has
in-degree two and out-degree two. Since D is the diagram of a knot, GD is a connected
graph and it follows that GD has a directed Euler circuit, ie, a closed path that runs
through each edge exactly once, and passes through each vertex twice. (For example,
see West [15, Theorem 1.4.24].) Fix an Euler circuit E in GD and a starting edge e1 .
Following E , the next edge will be e2 and so on. We then write

E D .e1; : : : ; e2n/

and subpaths of the Euler circuit will be denoted as subsequences of consecutive
elements from the sequence above.
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Let Y 0 be a pseudo coloring as in Lemma 3.1. As we remarked above, Y 0 is not a
trivial coloring and therefore has a largest color h and a smallest color l with 0< l < h.
We can carry the coloring of D over to a coloring of the edges of the digraph GD . Call
an edge with color h an h–edge. Recall that there is a unique crossing, which we will
call the C1–crossing, where 2x�y � z D 1. Similarly, the �1–crossing will refer to
the unique crossing where 2x�y � z D�1. Every other crossing is a 0–crossing, ie,
2x�y � z D 0. We will also call refer to the corresponding vertices of GD as C1– ,
0– or �1–crossings.

We will now investigate subpaths of the Euler circuit E made up exclusively of h–edges.

h ˛

z

y

h

Figure 2: Possible colors at an ˛–crossing (˛ D �1 , 0 , or 1) where an
h–edge terminates. Set y D h�� . Since ˛D 2h�y�z , then zD hC��˛ .

Let us pick an h–edge and follow E starting with this h–edge. The possible colors
of edges at the vertex where the h–edge ends are as illustrated in Figure 2. We may
assign one of the outgoing edges the color h� � (with � � 0). The other will have
color hC ��˛ . There are three possibilities in order for the 2x�y� z D ˛ condition
to hold (˛ D 0;˙1):

� �1–crossing: over arc of color h, one of the under arcs of color h� � , and the
other under arc of color hC �C 1> h, which is impossible.

� 0–crossing: over arc of color h, one of the under arcs of color h� � , the other
under arc of color hC � , which works provided � D 0.

� C1–crossing: over arc of color h, one of the under arcs of color h�� , the other
under arc of color hC �� 1, which works for � D 0 or � D 1. These amount to
the same situation: over arc h; one of the under arcs h; and the other under arc
h� 1.

We thus see that an h–edge points to the C1–crossing or to one of the 0–crossings,
but never to the �1–crossing. Moreover, if it points to a 0–crossing then the other
edges incident to this vertex will each receive the color h (we’ll call such a 0–crossing
and the corresponding vertex in GD an h–vertex); if it points to the C1–crossing then
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one of the outgoing edges receives color h� 1 whereas the remaining edges receive
color h. In this way, following the Euler circuit E starting from an h–edge, one visits
h–edges incident to h–vertices until one reaches an edge incident to the C1–crossing.
Here there are two possibilities. Either the next edge is the h� 1 edge and the visiting
of consecutive h–edges ends here or the next edge is an h–edge and the visiting of
consecutive h edges continues.

We remark that any subpath of the Euler circuit which visits only h–edges (we’ll call
it an h–path for short) and visits the C1–crossing twice, must end at this crossing. As
a matter of fact, its next edge would be the h� 1 edge incident to the C1–crossing.
Consider then the longest such h–path, call it H . By shifting the labels of the edges if
necessary we have

H D .e1; : : : ; enH
/� .e1; : : : ; enH

; enHC1; : : : ; e2n/DE:

Note that enH
is necessarily directed towards the C1–crossing.

We now argue that each h–edge of E is contained in H .

Assume to the contrary that enHCl is an h–edge. Then resuming the Euler circuit E

as of this edge, either all remaining edges are h–edges – which would imply that e2n

is an h–edge which would contradict H being the longest h–path – or there are edges
other than h–edges between enHCl and e2n . But we have already noticed that the
progression from an h–edge to an edge with a less color goes through the unique
C1–crossing vertex to its h� 1 edge. However, this step has already been taken; it
is .enH

; enHC1/. Since in an Euler circuit each edge is visited exactly once, then we
conclude that there are no h–edges past enH

.

Let us now observe that e1 is the unique h–edge at its initial vertex v1 . Indeed, the
edges corresponding to the over arc cannot receive color h, for H is the longest h–path,
and it is straightforward to check that the other edge originating at v1 is also not an
h–edge. Consequently, the vertices with outgoing h–edges are v1 , h–vertices, and the
C1–crossing.

Let us call H the portion of the knot diagram D which gives rise to the h–path H

of E . That is, H is the set of h–arcs (ie, arcs of color h) of D (see Figure 3). We will
now argue that H factors out of D thereby showing that the knot under consideration is
not prime. Let a1 be the arc of H which gives rise to e1 2H and choose an orientation
of the knot so that starting at a1 one progresses into H . The previous paragraph allows
us to conclude that if we follow this orientation of D starting on an h–arc, then we
remain on h–arcs until we reach either the C1–crossing or the crossing corresponding
to v1 .
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C1–crossing

h� 1

a1 v1

h� 1

e1

v1

Figure 3: The subpath H of the Euler circuit (at right) and associated com-
ponent H of D (at left). All the black edges and arcs are h–edges and
h–arcs.

Starting then at a1 and following the orientation of the knot we eventually come back
to a1 so at some point we must have left H . The only way of leaving H is through
the C1–crossing or the v1 crossing. As we have chosen an orientation for a1 directed
away from the v1 crossing, then, reasoning along the same lines as we did for proving
there were no h–edges outside H , we only leave H once, at the C1–crossing,

If this portion of the diagram (starting with a1 and continuing until we leave H) did not
go over all the h–arcs of H then starting at any one of the h–arcs left out we eventually
come back to a1 . Only this time we never left H for the only crossings available
are those corresponding to h–vertices and possibly the over arcs of the C1–crossing.
This implies the arc preceding a1 is also an h–arc which in turn implies that the
corresponding vertex v1 in GD has two h–edges stemming from it; but this possibility
was ruled out above. The contradiction shows that there are no h–arcs omitted when we
start at a1 and follow the orientation until we leave H . In other words, H corresponds
to a summand of the knot under study. Moreover, by extending H just beyond the
C1–crossing if necessary, it is a summand that includes at least one crossing. As D
was a reduced diagram, if follows that H constitutes a nontrivial summand. Repeating
the reasoning above for the least color l we conclude that there is a second nontrivial
summand distinct from the preceding one. We have thus proven the following result.

Proposition 3.2 A knot with a diagram endowed with a Y 0 pseudo coloring is not a
prime knot.

Finally, we prove our main result on the coloring matrix.
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Proposition 3.3 Let k be an alternating knot with a prime determinant p and D 2 Œkr �.
Then, every column of the coloring matrix L includes entries that are not zero mod-
ulo p .

Proof Suppose, to the contrary, that some column of L is zero modulo p . Then, by
Lemma 3.1 there is a pseudo coloring Y 0 and by Proposition 3.2 this implies k is
composite.

However, an alternating knot of prime determinant is prime. To see this, let k1#k2

denote the connected sum of knots k1 and k2 , and let �k.t/ be the Alexander polyno-
mial of the knot k . Now, det k D j�k.�1/j and �k1#k2

.t/D�k1
.t/�k2

.t/ (eg, see
Murasugi [11, Chapter 6]). From this it follows that det.k1#k2/D det k1 � det k2 . To
complete the argument, note that the determinant of a nontrivial alternating knot is
not one. For example, the determinant is bounded below by the crossing number (see
Burde and Zieschang [3, Proposition 13.30]).

4 The proof of the Conjecture

In this section, we prove Conjecture 1. Let k be an alternating knot of prime determinant
and D 2 Œkr �. We will say a coloring of D is heterogeneous if it assigns different colors
to different arcs. Thus, we can prove the conjecture by showing that every nontrivial
coloring of D is heterogeneous. There are two steps in the argument. First we show
that if one coloring of D is heterogeneous, then they all are. We conclude the argument
by showing that there is such a heterogeneous coloring.

For the first part, we introduce the idea of a fundamental coloring. We say D has one
fundamental coloring if given any two distinct nontrivial colorings X1 and X2 there
are integers a; b such that X2 � aT C bX1 mod det k where T is the trivial coloring,
a vector of all 1’s. There are two immediate consequences.

Lemma 4.1 Let k have prime determinant and suppose D 2 Œk� has one fundamental
coloring. If a nontrivial coloring assigns different colors to two particular arcs of D ,
then every nontrivial coloring will do so. Thus, if D has a heterogeneous coloring, then
every nontrivial coloring of D is heterogeneous.

So, in order to complete the first part of the argument, it will be enough to show that a
diagram of a knot of prime determinant has one fundamental coloring.

Proposition 4.2 Let k be a knot with prime determinant and D 2 Œkr �. Then D has
one fundamental coloring.
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Proof Let k have determinant p and D have n crossings. We will show that the
colorings of D are determined by the colors of two specific arcs in D .

Since det k D p , the determinant of the minor crossing matrix is det C = ˙p . With
elementary row operations, and the Euclidean algorithm for finding the gcd of two
integers, we can put C in triangular form with integers on the diagonal. Its determinant
is then the product of the diagonal entries; all must be ˙1 except for one, which is
˙p . It follows that, mod p , the rank of C is n� 2; we’ll write dim im C D n� 2.
Then the nullity, or dimension of the null space, is one; dim ker C D 1.

This means that the dimension of the mod p null space of the crossing matrix C 0 is
two. Indeed, dim im C 0 � dim im C D n� 2, so dim ker C 0 � 2. On the other hand,
the trivial coloring assigning 1 to every arc is not in ker C but is in ker C 0 mod p , so
1D dim ker C < dim ker C 0� 2. Therefore, the null space of C 0 mod p has dimension
two.

We can now demonstrate that there is one fundamental coloring. As the nullity of C 0 is
two, every coloring is determined by the coloring of two specific arcs of D . Consider
two nontrivial colorings of D , X1 induced by coloring the two arcs x1 and y1 and X2

induced by the colors x2 and y2 . We can show that there is one fundamental coloring
by finding a and b so that X2 � aT C bX1 . Let

a�
y1x2�x1y2

y1�x1

and b �
y2�x2

y1�x1

:

(Since X1 is nontrivial, y1 6� x1 and y1�x1 has an inverse mod p .) Then

x2 � a � 1C b �x1 and y2 � a � 1C b �y1;

as required.

Combining Lemma 4.1 and Proposition 4.2 we have completed the first part of our
argument:

Corollary 4.3 Let k be a knot with prime determinant and D 2 Œkr �. If D has one
heterogeneous coloring, then any nontrivial coloring is heterogeneous.

Remark The corollary applies not only to alternating knots, but to any knot of prime
determinant.

It remains to show that there is a heterogeneous coloring.

Proposition 4.4 Let k be an alternating knot with prime determinant. If D 2 Œkr �,
then D admits a heterogeneous coloring.
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Proof Let k be an n–crossing alternating knot with prime determinant p . Construct
an oriented labeling for D and the crossing matrix C 0 . Then, by Lemma 2.2, C 0| is a
crossing matrix for Dm and the minor crossing matrix for Dm is likewise C | . (Note
that Dm is also a reduced diagram of an alternating knot of determinant p .) Let Lm

denote the coloring matrix of Dm ; elementary linear algebra shows Lm DL| . Now,
Proposition 3.3 demonstrates that all the columns of L| have nontrivial entries mod p .
So, for example, in the first column of L| there is a nonzero entry: .L|/i1 6� 0. That
is, using Lemma 2.1, the first column extends to a coloring that distinguishes ai and
an in Dm .

Then, by Lemma 4.1 and Proposition 4.2, all nontrivial colorings distinguish ai and
an in Dm . Hence .L|/ij 6� 0 for j D 1; : : : ; n� 1. That is, the i –th row of L| ,
or equivalently, the i –th column of L consists only of nonzero entries modulo p .
Therefore, the i –th column of L extends to a coloring differentiating an from all other
arcs in D :

(5) X 0 D

0BBB@
.L/i1
:::

.L/i.n�1/

0

1CCCA
Now, since an oriented labeling can start at any arc, the arc labeled with an is arbitrary.
Hence, by repeating the above argument while shifting the oriented labeling, we can
exhibit a coloring differentiating any arc from all other arcs. But, by Proposition 4.2, k

has one fundamental coloring, so, by Lemma 4.1, every nontrivial coloring differentiates
the same arcs. Therefore the coloring given in (5) must be heterogeneous.

Together, Corollary 4.3 and Proposition 4.4 prove the conjecture.

Acknowledgement We thank the referee for many helpful comments that greatly
improved the exposition.
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