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A combinatorial approach to surgery formulas
in Heegaard Floer homology

EAMAN EFTEKHARY

Using the combinatorial approach to Heegaard Floer homology, we obtain a relatively
easy formula for computation of the groups cHF.Yp=q.K/;Z=2Z/ , where Yp=q.K/

is the three-manifold obtained by p=q–surgery on a knot K inside a homology
sphere Y .

57M27; 57R58

1 Introduction

In [3], the author used the combinatorial description of Heegaard Floer homology (see
Sarkar and Wang [14] and Manolescu, Ozsváth and Sarkar [7] and also Manolescu,
Ozsváth, Szabó and Thurston [8]) to obtain a gluing formula for Heegaard Floer
homology, when two bordered three-manifolds with torus boundary are glued together.
In this paper, we apply the gluing formula of [3] to the special case of rational surgeries
on the knots inside homology spheres, and after simplifications, we derive a relatively
easy formula for the Heegaard Floer homology of these three-manifolds.

Let K be a knot inside the homology sphere Y . We may remove a tubular neighborhood
of K and glue it back in a different way to obtain the three-manifold Yp=q D Yp=q.K/,
which is the result of p=q–surgery on K . The core of the solid torus, which is the
tubular neighborhood of K , will represent a knot in Yp=q and will be denoted by
Kp=q . We may denote .Y;K/ by .Y1;K1/, as an extension of the above notation.
Let H�.K/ be the Heegaard Floer homology group bHFK.Y�;K�/ for � 2Q[f1g.
Note that bHFK is defined for knots inside rational homology spheres (see Ozsváth
and Szabó [10]) and that H0.K/D bHFL.Y;K/ is the longitude Floer homology of K

from the author’s paper [6]. In all these cases, we choose the coefficient ring to be
Z=2Z. If we choose a Heegaard diagram for Y �K and let �� denote a longitude
which has framing � 2 Z[f1g (with �1 D � the meridian for K ), one can choose
the curves �� so that the pairs .�1; �1/ and .�1; �0/ have a single intersection point
in the Heegaard diagram. Let .�; ?/ 2 f.1; 1/; .1; 0/g correspond to either of these
pairs. There are four quadrants around the intersection point of �? and �� . If we
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puncture three of these quadrants and consider the corresponding holomorphic triangle
map, we obtain an induced map H�!H? . To construct this map, if

H D .†;˛D f˛1; : : : ; ˛gg;ˇ0 D fˇ1; : : : ; ˇg�1g/

is a Heegaard diagram for Y �K , one may set

ˇ? D fˇ
?
1 ; : : : ; ˇ

?
g�1; �?g;

where ˇ?i is an isotopic copy of the curve ˇi . The triangle map is constructed from
the pointed Heegaard triple

.†;˛;ˇ�;ˇ?; three punctures/:

If the punctures are chosen as in Figure 1, the result would be two maps �; x�W H1.K/!
H1.K/ and two other maps  ; x W H1.K/! H0.K/ so that the following two se-

�? �� �? ��

Figure 1: For defining chain maps between C�.K/ and C?.K/ , the punctures
around the intersection point of �� and �? should be chosen as illustrated in
the above diagrams.

quences are exact (see Eftekhary [3, Lemma 3.2]):

H1.K/
�
�!H1.K/

x 
�!H0.K/

H1.K/
x�
�!H1.K/

 
�!H0.K/:and

The homology of the mapping cones of � (or x� ) and  (or x ) are H0.K/ and
H1.K/ respectively [3, Section 3]. Let �D  ı � and x�D x ı x� . With the above
notation fixed, we prove the following surgery formula:

Theorem 1.1 Let K be a knot in a homology sphere Y and let the complexes H� D
H�.K/, � 2 f1; 1; 0g and the maps �; x�; ; x between them be as above. The
homology of Yp=q.K/, the manifold obtained by p=q–surgery on K (for a pair of
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positive integers p; q with .p; q/ D 1), may be obtained as the homology of the
complex .H; d/ with

HD
� qM

iD1

H1.i/
�
˚

� jp�qjM
iD1

H1.i/
�
˚

� pM
iD1

H0.i/
�
;

where each H�.i/ is a copy of H� . Moreover, when p � q , the differential d is the
sum of the maps

�i
W H1.i/!H0.i Cp� q/; x�i

W H1.i/!H0.i/; i D 1; 2; : : : ; q;

 j
W H1.j /!H0.j /; x j

W H1.j /!H0.j C q/; j D 1; 2; : : : ;p� q;

where  i is the map  corresponding to the copy H1.i/ of H1 , etc. Whenever q > p

the differential d of the complex would be the sum of the maps

�i
W H1.i/!H0.i C q�p/; x�i

W H1.i/!H0.i/; i D 1; : : : ;p;

�j
W H1.j /!H1.j /; x�jCq

W H1.j C q/!H1.j /; j D 1; : : : ; q�p:

The surgery formulas given here do not make any reference to homological gradings, as
they are derived from splicing formulas of the author [3], and homological grading is not
discussed there. Working out the gradings in these two cases is an interesting problem
on its own. The decompositions according to Spinc –structures are also not discussed.
However, the investigations in the direction of finding a more explicit description
of the maps �; x�; and x in the author’s paper [4] results in understanding Spinc

decompositions. We thus refer the reader to [4] for this issue.

Surgery formulas for Heegaard Floer homology were first studied by Ozsváth and
Szabó [12; 10]. Their work was generalized to a complete description of the quasi-
isomorphism type of the Heegaard Floer complex associated with .Yn.K/;Kn/ in
terms of CFK1.Y;K/ by the author in [2]. The surgery formulas here are, however,
simpler for actual computations. They are also used by the author in the proof of the
main theorem of [1], which states that a prime homology sphere with trivial Heegaard
Floer homology can not contain an incompressible torus. Moreover, in [5] we use
these surgery formulas to show that if the rank of bHFK.Y;K/ for a knot K inside a
homology sphere Y is the same as the rank of bHF.Y /, then K is the unknot. This
follows from a comparison of surgery formulas presented here with those of Ozsváth
and Szabó [10].

Acknowledgements I would like to thank Matt Hedden for useful discussions which
resulted in correcting a mistake in an earlier version of this paper. I would also like
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to thank the referee for many useful comments and suggestions, which resulted in a
completely modified (and hopefully, easier to read) paper.

2 A remark about splicing formulas

Suppose that K is a null-homologous knot inside a homology sphere Y . Let H�.K/
be the group bHFK.Y�;K�IZ=2Z/ introduced in the introduction for � 2 f0; 1;1g.
The maps �; x�W H1.K/!H1.K/ and the maps  ; x W H1.K/!H0.K/ are defined
in [3] using a nice Heegaard diagram, ie a Heegaard triple in which all the regions,
except one bad region, are bigons, rectangles or triangles. However, the definition
of the maps given in the introduction does not make any reference to nice Heegaard
diagrams. We will prove in this section that the definition of these maps is independent
from the choice of the Heegaard diagram. We should check the independence of the
definition, as given in the introduction, from the particular diagram, as we change the
Heegaard diagram by isotopies, handle-slides, and stabilization (de-stabilization). We
follow the general strategy of Ozsváth and Szabó in [11] (in particular Sections 8.3 and
8.4). Then we will show that for a nice diagram, the definition given in the introduction
agrees with the one given by the combinatorial approach of [3].

Let us start the argument by fixing a Heegaard diagram

H0 D .†;˛D f˛1; : : : ; ˛gg;ˇ0 D fˇ1; : : : ; ˇg�1g/

for the knot complement Y �K . Set ˇ? D fˇ
?
1
; : : : ; ˇ?

g�1
; �?g, where ˇ?i is an

isotopic copy of the curve ˇi , and �? is chosen so that the Heegaard triple .†;˛;ˇ?/
corresponds to the three-manifold obtained from Y by ?–surgery on the knot K .
Choose the curves �0; �1 , and �1 so that each two of them have a unique transverse
intersection point. The orientation on K induces an orientation on the three curves
�0; �1 , and �1 . Fix ?; � 2 f0; 1;1g and choose the marked points u; v; w and z

on †�˛�ˇ?�ˇ� near the intersection point of �? and �� so that in Figure 1 the
three punctures on the left-hand-side are u; v and w , and the three punctures on the
right-hand-side are u; w and z . Note that the Heegaard diagrams .†;ˇ�;ˇ?Iu; v; w/,
and .†;ˇ�;ˇ?Iu; w; z/ represent identical Heegaard Floer homology groups, which
are both isomorphic to bHF.#g�1.S1�S2//, and the top generator ‚ in this Heegaard
Floer homology group may be used to define two holomorphic triangle maps.

Definition 2.1 For the Heegaard triple

H�;? D .†;˛;ˇ�;ˇ?Iu; v; w; z/
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as above, define the maps

�.H�;?/; x�.H�;?/WbHF.†;˛;ˇ�Iu; w/!bHF.†;˛;ˇ?Iu; w/

to be the holomorphic triangle maps corresponding to triply punctured Heegaard triples

.†;˛;ˇ�;ˇ?Iu; v; w/ & .†;˛;ˇ�;ˇ?Iu; w; z/;

respectively, defined using the top generator ‚ of bHF.†;ˇ�;ˇ?Iu; w/ (see Ozsváth
and Szabó [11] for more details). Here bHF.†;˛;ˇ�I v; z/ denotes the Heegaard Floer
homology of the Heegaard diagram .†;˛;ˇ�/, punctured at two points u; w (hat
theory). Let �.K/ D �.H1;1/; x�.K/ D x�.H1;1/;  .K/ D �.H1;0/ and x .K/ D
x�.H1;0/.

The group bHF.†;˛;ˇ�I v; z/ is denoted by H�.K/ in the introduction, and is indepen-
dent of the particular Heegaard diagram used for the definition. We thus have defined
the maps �.K/; x�.K/W H1.K/!H1.K/ and  .K/; x .K/W H1.K/!H0.K/.

Theorem 2.2 The definitions of the maps �.K/; x�.K/;  .K/ and x .K/ are inde-
pendent from the choice of the particular Heegaard 4–tuple

H D .†;˛;ˇ1;ˇ1;ˇ0/:

More precisely, suppose that another Heegaard 4–tuple

H 0 D .†0;˛0;ˇ 01;ˇ
0
1;ˇ
0
0/

is given and .�; ?/ with ?; � 2 f0; 1;1g is a pair of indices, and that fu; v; w; zg and
fu0; v0; w0; z0g are the corresponding marked points for the two Heegaard triples H�;?
and H 0�;? respectively. If the maps

{�W cHF.†;˛;ˇ�Iu; w/! cHF.†0;˛0;ˇ 0�Iu
0; w0/;

{?W cHF.†;˛;ˇ?Iu; w/! cHF.†0;˛0;ˇ 0?Iu
0; w0/

are the isomorphisms of the corresponding Heegaard Floer homology groups, we will
have

�.H�;?/ ı {� D {? ı�.H
0
�;?/; and x�.H�;?/ ı {� D {? ı x�.H

0
�;?/:

Remark This theorem should be compared with the naturality theorem of Ozsváth
and Stipsicz in [9].
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In order to prove the above theorem, we should study what happens while Heegaard
moves change one diagram to another. First of all, observe that once the Heegaard
diagram H0 D .†;˛;ˇ0/ for the knot complement Y �K and the pair of indices
�; ?2 f0; 1;1g are fixed, the two curves �� and �? are determined up to handle-slides
of these two curves over the curves in ˇ0 , and isotopies away from ˇ0 and the marked
points. This observation, and the argument of [11] in Sections 8.3 and 8.4 imply the
following proposition.

Proposition Suppose that the triples H�;? D .†;˛;ˇ�;ˇ?Iu; v; w; z/ and H 0�;? D

.†0;˛0;ˇ 0�;ˇ
0
?Iu
0; v0; w0; z0/ are two Heegaard diagrams as above corresponding to a

knot K � Y and a pair of indices �; ? 2 f0; 1;1g. Then H�;? may be changed by a
sequence of moves of the following types (and their inverses) to H 0�;? .

� Handle slide of �? or �� over one of the curves in ˇ0 (away from the marked
points).

� Handle slide of one of the curves in ˇ0 over another one of the curves in ˇ0

(away from the marked points).
� Handle slide of one of the curves in ˛ over another one of the curves in ˛ (away

from the marked points).
� Stabilization (and de-stabilization): taking the connected sum of † with a

standard torus, and adding the corresponding pair of curves to ˛ and ˇ0 .
� Isotopies of the Heegaard diagram, away from the marked points.

We will thus prove the previous theorem based on this proposition.

Proof of Theorem 2.2 It suffices to prove the theorem when the second diagram
is obtained from the first diagram by a single move of the types described in the
Proposition. Choose a pair of indices �; ? 2 f0; 1;1g. For simplicity let � D1 and
?D 1. Let us first assume that H 0

1;1
is obtained from H1;1 by a handle-slide of �1

over ˇ1
1

. Let �1 be the curve which is obtained from � D �1 by a handle-slide
over ˇ1

1
. Let us assume that the maps � D �.H1;1/ is defined as the triangle map

associated with the Heegaard triple .†;˛;ˇ1;ˇ1Iu; v; w/. We may choose �1 so
that it leaves in a small open neighborhood of �1 [ ı [ ˇ11 , where ı is an arc in
the complement of the curves in ˇ1[f�1g which connects �1 to ˇ1

1
and is used

for the handle-slide. Let �1; : : : ; �g�1 denote isotopic copies of ˇ1
1
; : : : ; ˇ1

g�1
. The

Heegaard triple H 0
1;1

may be described by †0 D†;˛0 D ˛;ˇ 01 D � and ˇ 01 D ˇ1 .
Moreover, the marked points u0; v0; w0 and z0 may be assumed to be the same as
u; v; w and z . We thus obtain a Heegaard 4–tuple

.†;˛;�D f�1; : : : ; �g�1; �1g;ˇ1;ˇ1Iu; v; w/;
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where the three punctures follow the model for � in Figure 2. Note that the Heegaard

u

v

w

�

�0

�1

Other curves and
handles are located
in the shaded area

Figure 2: The Heegaard 4–tuple used for definition of the maps � and x 

Floer homology group associated with the Heegaard diagram .†;�;ˇ1Iu; v; w/ is
the Heegaard Floer homology of #g.S1 � S2/. Let ‚ be the top generator of this
homology group. The triple .†;˛;�;ˇ1Iu; v; w/ gives a map

ˆWbHF.†;˛;�Iu; v; w/˝bHF.†;�;ˇ1Iu; v; w/!bHF.†;˛;ˇ1Iu; v; w/;

and we thus get a map ˆ. : ;‚/ from bHF.†;˛;�Iu; v; w/ to the Heegaard Floer
group bHF.†;˛;ˇ1Iu; v; w/. Here bHF of a Heegaard diagram is the Heegaard Floer
homology associated with that punctured Heegaard diagram (ie we count the disks
which miss the punctures). Note that ˆ. : ;‚/ is the natural isomorphism between
the two homology groups bHF.†;˛;�Iu; v; w/ and bHF.†;˛;ˇ1Iu; v; w/ (which
are both isomorphic to H1.K/). This isomorphism is the same map as {�1

1 in the
statement of the theorem. Similarly, we have a map

‰WbHF.†;˛;ˇ1Iu; v; w/˝bHF.†;ˇ1;ˇ1Iu; v; w/!bHF.†;˛;ˇ1Iu; v; w/;

associated with the triple .†;˛;ˇ1;ˇ1Iu; v; w/. Using the top generator ‚0 of
bHF.†;ˇ1;ˇ1Iu; v; w/DbHF.#g�1.S1 �S2// we obtain a map ‰. : ;‚0/, which is
precisely the map �.H1;1/ defined using the triple .†;˛;ˇ1;ˇ1/. There are two
other maps

ˆ0W cHF.†;�;ˇ1Iu; v; w/˝cHF.†;ˇ1;ˇ1Iu; v; w/! cHF.†;�;ˇ1Iu; v; w/;

‰0W cHF.†;˛;�Iu; v; w/˝cHF.†;�;ˇ1Iu; v; w/! cHF.†;˛;ˇ1Iu; v; w/;
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such that for any a 2bHF.†;˛;�Iu; v; w/ we have

(2-1) ‰.ˆ.a˝‚/˝‚0/D‰0.a˝ˆ0.‚˝‚0//;

by the associativity result of [11, Section 8.4]. Note that ˆ0.‚˝‚0/ D ‚00 , where
‚00 is the top generator in bHF.†;�;ˇ1Iu; v; w/DbHF.#g�1.S1 �S2//. Moreover,
‰0. : ; ‚00/ is the map �.H 0

1;1
/ defined using the triple .†;˛;�;ˇ1/. Since {1 is the

identity map, Equation (2-1) implies the claim of the theorem in this case. We may use
the same argument to show the theorem when �1 is changed by a handle-slide, and
more generally, to show the theorem once a different pair of indices ?; � 2 f0; 1;1g is
used. The independence from handle slides among elements of ˛, and handle slides
among elements of ˇ0 (as well as independence from isotopies) is completely similar.

Let us now suppose that H 0�;? is obtained from H�;? by stabilization. Suppose that
the Heegaard diagram

.†0 D†#T;˛0 D ˛[f˛0g;ˇ
0
� D ˇ�[fˇ

�
0g;ˇ

0
? D ˇ?[fˇ

?
0 g;u; v; w; z/

is obtained by taking the connected sum of the original Heegaard diagram with the
genus-one Heegaard diagram .T; ˛0; ˇ

�
0
; ˇ?

0
/, which is presented in Figure 3. Make the

z

˛

ˇ0
0

ˇ0

Figure 3: A Heegaard diagram .T; ˛D˛0; ˇ0Dˇ
1
0 ; ˇ

�
0Dˇ

�
0/ . The opposite

sides of the rectangle glue together to give the surface T .

connected sum so that the domain containing the marked point z in this later Heegaard
diagram is glued to the domain containing one of the punctures. The Heegaard Floer
complex associated with .†;˛;ˇ�Iu; v; w/ is naturally identified with the Heegaard
Floer complex associated with .†0;˛0;ˇ 0�Iu; v; w/. Similarly, the Heegaard Floer
complex associated with .†;˛;ˇ?Iu; v; w/ is naturally identified with the Heegaard
Floer complex associated with .†0;˛0;ˇ 0?Iu; v; w/. The domain of a holomorphic
triangle for the Heegaard triple .†0;˛0;ˇ 0�;ˇ

0
?Iu; v; w/ consists of the domain of a
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holomorphic triangle in the old Heegaard triple plus a region on T which is dashed in
Figure 3. These two domains correspond to isomorphic moduli spaces of holomorphic
triangles. Thus the map �.H�;?/ is precisely the same as the map �.H 0�;?/ under the
above identification of the domain and the target. This proves the independence under
stabilization (and destabilization), and completes the proof of the independence of the
definition of �.H?;�/ from the choice of Heegaard diagram. In particular, the maps
�.K/; x�.K/;  .K/ and x .K/ only depend on the knot K , and not on the particular
Heegaard data. The proof of the theorem for the maps x�.H?;�/ is identical.

We devote the last part of this section to showing that the map � D �.K/, as defined
in the introduction, is the same as the map defined in [3] combinatorially (which will
be denoted by �0 ), provided that a particular Heegaard triple is used. We recall the
definition of the map �0 D �0.K/ for reader’s convenience. See Figure 4.

 

The pentagon between
ˇ0, �1 and �

This region contains 1–handles and
complications of the intersection pattern

u v

w

�

�i

Figure 4: The Heegaard diagram used for defining �0 . Any pair of circles
in the diagram denotes a 1–handle. The red (solid) curves denote ˇ0 , the
black (dashed) curves denote ˛ , , the blue (solid) curve denotes �1 , and the
green (solid and bold) curve denotes �D �1 . All the regions adjacent to the
pentagon are punctured.

Again, we start with the Heegaard diagram

H D .†;˛D f˛1; : : : ; ˛gg;ˇ0 D fˇ1; : : : ; ˇg�1g/
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for the complement of the knot K � Y , together with two additional curves ˇg D �1
and �1 corresponding to the three-manifolds Y and Y1.K/ (the three-manifold obtained
from Y by 1–surgery on K . Assume that three marked points u; v and w are chosen
in the complement of ˛[ˇ0[f�1; �1g, as before. Let

†�˛�ˇ0�f�1; �1g D

� Na
iD1

Di

�
[Du[Dv [Dw;

where D� are the regions in the complement of these curves, with Du;Dv and Dw

the regions containing the marked points. As it was the case in the construction of [3],
let us assume that this data satisfies the following conditions:

(1) The regions D2; : : : ;DN are either rectangles or bigons, while D1 is a pentagon.

(2) One of the corners of the pentagon D1 is the unique intersection point P of �1

and ˇg D �1 , and the three marked points u; v and w are placed on three of
the quadrants around P (other than the quadrant corresponding to D1 ).

(3) All the neighbors of D1 (those regions having an edge in common with D1 )
are punctured.

(4) Each ˇ–curve is adjacent to at least one of the punctured domains.

The edges of the pentagon are five arcs: 2 of them are on �1 and �1 , two of them
are on ˛–curves, and one of them is on a ˇ–curve which will be assumed to be ˇ1 .
The ˛–curve which cuts �1 in a corner of the pentagon will be assumed to be ˛1 ,
and the other one will be assumed to be ˛2 . Denote the vertices of the pentagon by
P DQ1;Q2;Q3;Q8 and Q6 in counterclockwise order, so that Q1 is the intersection
point of �1 and �1 , Q2 is on the intersection of ˛1 with �1 , and so that Q6 is the
intersection point of �1 with ˛2 . The strange labeling of these vertices will become
clear in a moment (or the reader may check out Figure 6). Define the chain map

�0W cCF.†;˛;ˇ0[f�1gIu; v; w/!
cCF.†;˛;ˇ0[f�1gIu; v; w/

by setting �0fQ2;Q8;x3; : : : ;xgg WD fQ3;Q6;x3; : : : ;xgg, where xi 2 ˛i \ ˇ�.i/
for some � W f3; : : : ;gg ! f1; : : : ;g� 1g. For the rest of generators x of the left-hand
group, set �0.x/D 0. It is shown in [3] that this is in fact a chain map, and induces a
map

�0WbHF.†;˛;ˇ0[f�1gIu; v; w/!bHF.†;˛;ˇ0[f�1gIu; v; w/:

The fact that �0 is a chain map may also be proved as a byproduct in the proof of our
next theorem. We would like to compare this map with the map � corresponding to an
associated Heegaard triple.
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Let us construct a Heegaard triple from this data as follows. For i D 2; : : : ;g� 1, let
�i be a parallel copy of ˇi which is drawn very close to ˇi , and is slightly pushed
to one of the punctured domains adjacent to ˇi , so that a pair of intersection points
(denoted by pi and qi ) is created between these two curves (see Figure 5). Let us

˛–curve

˛–curve

Di

Li

Ri

Ti

qi

pi

ˇi �i

Figure 5: The diagram around the pair of intersection points between ˇi

and �i for i D 2; : : : ;g � 1 . The small bold circle denotes the punctured
domain, and shaded region is the hexagon Di .

assume that the small positively oriented disk connecting these two intersection points
(with ˇi on the left and �i on the right) goes from pi to qi . In order to define �1 ,
choose a parallel copy of ˇ1 and push it slightly over the intersection point of ˇ1

with ˛1 to obtain �1 , so that a pair of canceling intersection points p1 and q1 is
created between �1 and ˇ1 on the two sides of the intersection point Q3 of ˛1 and
ˇ1 , and so that �1 slightly enters the punctured domain next to the ˇ–edge of the
pentagon. The local picture around D1 will look like Figure 6 where this procedure
is pictured. Let �g be the curve �1 and set �D f�1; : : : ; �gg. The top generator ‚
of the Heegaard Floer homology group cHF.#g�1S1 �S2/ coming from the Heegaard
diagram .†;ˇ;�;u; v; w/, is then the generator fP;p1; : : : ;pg�1g.

Theorem 2.3 If the surface † and the sets of curves ˛;ˇ0 , and � and the curves
�1 and �1 are as before, and if the homology group bHF.†;˛;ˇ0[f�1gIu; v; w/ is
identified with bHF.†;˛;�Iu; v; w/, the map �.K/ defined using the Heegaard triple

H D .†;˛;ˇ;�Iu; v; w/

and following Definition 2.1, is identical with the map �0 defined using the Heegaard
diagram .†;˛;ˇ0[f�1; �1gIu; v; w/ as above.

Proof Let xD fx1; : : : ;xgg and yD fy1; : : : ;ygg be generators with xi 2 ˛�.i/\ˇi

and yi 2 ˛�.i/\�i , where �; � W f1; : : : ;gg! f1; : : : ;gg are permutations in Sg . Let
�W D! Symg.†/ be the homotopy class of a triangle in �2.x; ‚; y/, with Maslov
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index zero, such that it supports a holomorphic representative, and remains disjoint
from the punctures. There are two types of domains in the complement †�˛�ˇ ��

of curves, the large domains and the small domain. The small domains are those
created between the parallel pairs of curves �i and ˇi (i D 1; : : : ;g� 1), and their
area may be chosen arbitrarily small by choosing �i close enough to ˇi . The large
domains are the rest of the domains which are in correspondence with the domains
D�; � 2 fu; v; w; 0; 1; : : : ;N g introduced above. We will abuse the notation and will
still denote these new regions by D� .

Let us assume that the small bigon connecting pi to qi is denoted by Ti , and the region
having the small interval Œpi ; qi � on ˇi in common with Ti is Di ; i D 2; : : : ;g� 1.
Then there are two triangles with corners pi and qi , which have an edge in common
with Di , which will be denoted by Ri and Li respectively. For i D 1, instead of these
three regions we will have 4 triangles with one corner being p1 or q1 , which will be
denoted by R1;T1;S1 and L1 respectively (as they appear while we travel on ˇ1 from
p1 to q1 ; see Figure 6). We are assuming that the regions Di for i D 1; : : : ;g� 1 (as
described above) are different, while it may happen that this is not the case. However,
the argument we give below will still be true in general, and only needs notational
corrections. Let DDD.�/ denote the domain (ie the 2–chain on †) associated with

˛1

P DQ1

˛2

The pentagon
becomes a hexagon
denoted by D1

L1

Q3

R1

q1

S1Q7

T1

Q4 D p

Q8

Q5

Q2

Q6

Figure 6: The regions around the pentagon D1 . The punctured domains
are marked by a small solid circle inside them. The pentagon is changed to a
hexagon in the new Heegaard diagram which is colored orange. The initial
pentagon is the union of the hexagon D1 with the triangle R1 .

this triangle map. Let di � 0 denote the coefficient of Di in D . Similarly, denote the
coefficients of Ti ;Ri and Li by ti ; ri and li respectively. The coefficient of S1 will be
denoted by s1 . Of course, there are other regions which may appear in D with positive
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coefficient, but all such regions will be bigons or rectangles. Since P appears in ‚
and three of the corners around P are punctured, the coefficient d1 is equal to 1. Let
P DQ1;Q2; : : : ;Q6 denote the corners of D1 (now a hexagon) in counterclockwise
order (so Q4D p1 ). Since two opposite quadrants around each one of Q2 and Q6 are
punctured, we should have xg DQ2 and yg DQ6 . From here, Q3 may not be one of
x1; : : : ;xg and Q5 may not be one of y1; : : : ;yg . Looking at the local coefficients
around Q3 we may thus conclude that t1 D 1C s1 . If Q7 is the third corner of T1

(other than Q3 and Q4 ), in order for D to be a nonnegative domain, we should have
x1 DQ7 , and the 4 local coefficients around Q7 are forced to be t1 D 1C s1; s1; 0

and 0 in the counterclockwise order. Two opposite quadrants around q1 now have zero
coefficients in D . Since q1 does not appear in ‚, this implies that s1 D l1 D 0 (thus
t1 D 1). Similarly, looking at the local coefficients around p1 , we should have r1 D 1.
Since Q5 is not among y1; : : : ;yg , the local coefficients around Q5 are 1; r1 D 1; 0

and 0 in counterclockwise order. Let Q8 be the third corner of R1 other than Q4

and Q5 . Since two opposite corners around Q8 have zero coefficient, and r1 D 1,
we should have x1 DQ8 . This implies that D D D0CD1 D D0C .R1CD1CT1/

where D0 is a nonnegative 2–chain which is disjoint from D1 , and D1 is a hexagon
with 5 acute angles and one obtuse angle, and with vertices fP;yg;x1;p1;y1;xgg.
The contribution of D1 to the index of � is zero, by Sarkar’s formula from [13].

Note that by Sarkar’s formula for the index of triangles from [13], the Maslov index
�.�/ is equal to

e.D/C�x.D/C�y.D/C c.D/ : b.D/�
g

2
;

where e.D/ is the Euler measure of the domain D , b.D/ is the part of @D on the
ˇ–curves, and c.D/ is the part of @D on the �–curves. Separating D1 , which has
Maslov index 0, from D we obtain the equality

�.�/D e.Ds/C e.Dl/C�x.D0/C�y.D0/C c.D0/ : b.D0/�
g� 2

2
:

Here Ds denotes the part of D which uses the regions Di ;Ri ;Ti and Li for i D

2; : : : ;g� 1 and Dl DD0�Ds . Clearly, e.Dl/� 0 and

Ds D

g�1X
iD2

.diDi C tiTi C riRi C liLi/:

By looking at the local coefficients around pi and qi it is easy to see that ri D li C 1

and di D ti C li . Having in mind that Ti are bigons, Ri and Li are triangles and Di
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are hexagons, this implies the following computation:

e.Ds/D

g�1X
iD2

�
.ti C li/e.Di/C tie.Ti/C .li C 1/e.Ri/C lie.Li/

�
D

g�1X
iD2

�
.ti C li/

�
�

1

2

�
C ti

�
1

2

�
C .li C 1/

�
1

4

�
C li

�
1

4

��
D

g� 2

4
:

(2-2)

The 1–chain b.D0/ is a union of 1–chains on ˇi ; i D 2; : : : ;g�1, denoted by bi.D0/.
Similarly we have c.D0/D

Pg�1
iD2

ci.D0/. It is clear that bi.D0/ and cj .D0/ are disjoint
unless i D j . In this later case, the only possible geometric intersections are at pi and
qi , where the intersection numbers are .li C 1

2
/.ti �

1
2
/ and �li : ti respectively. We

thus have

(2-3) c.D0/ : b.D0/D
g�1X
iD2

��
li C

1

2

��
ti �

1

2

�
� li : ti

�
D�

g� 2

4
C

1

2

g�1X
iD2

.ti � li/:

Let us now look at the coefficients around the intersection points xi and yi for i D

2; : : : ;g � 1. Since xi is on ˇi , we should have nonnegative integers ai ; bi ; ci and
ei such that the local coefficients around xi are ai ; bi ; bi C li C 1 and ai C li , and
the local coefficients around yi are ci ; ei ; ei C ti � 1 and ci C ti . From here we may
compute

(2-4) �x.D0/C�y.D0/D
1

2

g�1X
iD2

�
.ai C bi C ci C ei/C .li C ti/

�
:

Combining Equations (2-2), (2-3) and (2-4) and replacing for the terms in the definition
of �.�/ we obtain

0D �.�/D e.Ds/C e.Dl/C�x.D0/C�y.D0/C c.D0/ : b.D0/�
g� 2

2

D e.Dl/�
g� 2

2
C

1

2

g�1X
iD2

.ai C bi C ci C ei C 2ti/

�
1

2

g�1X
iD2

.ai C bi C ci C .ei C ti � 1/C ti/:

(2-5)

Note that ei C ti � 1 is the coefficient of one of the domains around yi and is thus
nonnegative. The above inequality thus implies that ai D bi D ci D ti D 0 and ei D 1

for i D 2; : : : ;g� 1. The coefficients on the two sides of �i will thus, either agree,
or differ by 1, and the coefficients on the two sides of ˇi differ either by li or li C 1.
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If we start from yi , where on the left (or right) side of yi the coefficients on the
two sides of �i are zero, and continue orthogonal to �i until we reach ˇi , as we
pass ˇi the coefficient should change either to �li or to �li � 1. Since the later is
negative, the first one will happen and li should be equal to 0. It is easy to see from
here that xi and yi should be the corresponding intersection points of ˇi and �i with
the same ˛ curve, and that the domain D0 is a union of obvious triangles which are
disjoint from each other. We have concluded that the domain of � is the disjoint union
of g� 2 simple triangles with a hexagon with 5 acute angles and one obtuse angle.
It is quite well-known that the moduli space corresponding to this homotopy class
contributes 1 to the triangle map, for a generic path of almost complex structures. These
are thus the only holomorphic triangles which contribute to the chain map � defined
using the Heegaard triple .†;˛;ˇ;�Iu; v; w/. Combinatorially, this is just the map,
which replaces the pair fQ2;Q8g with fQ6;Q7g. Under the obvious identification of
bHF.†;˛;�Iu; v; w/ with bHF.†;˛;ˇ1Iu; v; w/ (obtained by choosing an appropriate
complex structure for each Heegaard diagram), this is precisely the map �0 considered
in [3]. This completes the proof of our theorem.

The proof of a similar theorem for the maps x�; and x (and the corresponding
combinatorial versions x�0;  0 and x 0 ) is in fact easier, since the unpunctured domains
in the Heegaard triple defining �0 include a pentagon, together with a number of bigons
and rectangles, while for the other maps we have a triangle instead of the pentagon.
Working with a diagram containing a pentagon forces us, as was discussed in the proof
of the above theorem, to describe carefully the domain associated to holomorphic
triangles is a neighborhood of this pentagon. This part of the argument is not needed if
the unpunctured domains do not have more than 4 edges.

3 Surgery as splicing: a computation for the lens space

Suppose that p; q > 0 are relatively prime, and that K is a null-homologous knot
inside a three-manifold Y . The three-manifold Yp=q obtained as the result of p=q–
surgery on K may also be realized as the outcome of splicing K with a (rationally null-
homologous) knot Op=q inside the Lens space L.p;�q/. In fact, L.p;�q/ is obtained
by gluing two solid tori along their boundary using an appropriate homeomorphism of
their boundaries and in this situation Op=q is the core of one of the two pieces. Note that
the appearance of L.p;�q/ instead of L.p; q/ serves to remain compatible with the
splicing convention in [3]. This observation suggests that by computing the homology
groups H�.Op=q/ for � 2 f0; 1;1g and the maps �; x�W H1.Op=q/ ! H1.Op=q/

and  ; x W H1.Op=q/!H0.Op=q/ we would have a surgery formula for knots inside
three-manifolds. We will carry out this computation in the following two sections.

Algebraic & Geometric Topology, Volume 9 (2009)



2240 Eaman Eftekhary

�

�1

�0

˛ D q��p�0

Figure 7: A Heegaard diagram .†; ˛; �/ for Op=q together with two surgery
curves �0 and �1

Consider the Heegaard diagram for L.p;�q/ which is illustrated in Figure 7. The
surface † in this Heegaard diagram is a genus 1 surface obtained by identification
of the opposite sides of a 1� 1 square. The curve ˛ is the unique ˛–curve, obtained
as the image of a straight line with slope q=p in the quotient surface. There are
three other curves in this picture which are denoted by �; �0 and �1 , and would
give (together with .†; ˛/) Heegaard diagrams for L D L.p;�q/;L0.Op=q/ and
L1.Op=q/ respectively. As before, Y`.K/ is the three-manifold obtained from Y by
`–surgery on a framed knot K . There are p; q and pC q generators corresponding
to the Heegaard diagrams H1 D .†; ˛; �/, H0 D .†; ˛; �0/ and H1 D .†; ˛; �1/

respectively. If we fix a marked point z anywhere in the diagram, the Spinc structures
in Spinc.L/; Spinc.L0.Op=q//, and Spinc.L1.Op=q// assigned to the generators in
each of these three sets are mutually different. This simply implies that

H1.Op=q/D .Z=2Z/p; H0.Op=q/D .Z=2Z/q; and H1.Op=q/D .Z=2Z/pCq:

We now compute the maps � and x� from H1.Op=q/ to H1.Op=q/. Let us denote the
intersection points between ˛ and � by x1; : : : ;xp , and the intersection points between
˛ and �1 by y1; : : : ;ypCq as illustrated in Figure 8. The unique intersection of �
and �1 is denoted by M . There are four marked points u; v; w and z in the four corners
around M . Counting holomorphic triangles which miss the marked points in either
of the Heegaard diagrams H D .†; ˛; �; �1Iu; v; w/, and xH D .†; ˛; �; �1Iu; w; z/

gives a map which would be � and x� respectively. It is easy to see that there is a unique
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� �1

˛

z w

vu
M

xi

yi M�i

xi

yqCi

M

x�i

x1

x2

x3

xp�1

xp
y1y2 yq

yqC1

yqC2

yqC3

yqCp

yqCp�1

Figure 8: The diagram for the construction of the triangle maps � and x� .

triangle �i with vertices .M;xi ;yi/ for i D 1; 2; : : : ;p in the first diagram which is
disjoint from the marked points u; v; w , and a triangle x�i with vertices .M;xi ;yiCq/

for i D 1; 2; : : : ;p which is disjoint from u; w; z . Typical triangles are highlighted in
Figure 8. It is not hard to see that these are all the relevant triangles. The maps � and
x� will thus have the following matrix block forms as p�.pCq/ matrices representing
linear maps from .Z=2Z/p to .Z=2Z/pCq :

� D
�

Ip�p 0p�q

�
; x� D

�
0p�q Ip�p

�
:

Choosing an appropriate basis for H0.Op=q/ (and the same basis for H1.Op=q/)
similarly gives the following matrix presentations of the maps  and x :

 D

�
Iq�q

0p�q

�
; x D

�
0p�q

Iq�q

�
:

4 Obtaining surgery formulas from splicing formulas

Suppose that K1 � Y1 and K2 � Y2 are two null-homologous knots inside three-
manifolds Y1 and Y2 . As before denote bHF..Yi/�.Ki/;Ki IZ=2Z/ by H�.Ki/ where
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� is a surgery index in f0; 1;1g, and .Yi/�.Ki/ is the three-manifold obtained from
Yi by �–surgery on Ki , i D 1; 2. Let us denote H�.K1/˝H?.K2/ by H�;? for
�; ? 2 f0; 1;1g. Let �i be the map �.Ki/ defined for the knot Ki � Yi for i D 1; 2.
Similarly, define the maps x�i ;  ; x i ; �i and x�i for i D 1; 2, where �i D  i ı �i and
x�i D

x i ı
x�i . Consider the complex

CuD
�
H1;1˚H1;1˚H1;0˚H0;1

�M�
H1;1˚H1;1˚H1;1˚H0;0

�
with the differential D, which has the block form

DD

�
0 D1

D2 0

�
;

with D1 and D2 the following matrices respectively0BB@
I ˝�2 �1˝ I 0 x�1˝x�2

0 0 0 0

0 0 0  1˝ I

0 0 0 I ˝ 2

1CCA ;
0BB@

0 �1˝ I x�1˝
x 2 0

0 I ˝�2 0 x 1˝
x�2

0 I I ˝ 2  1˝ I

0 0 0 0

1CCA :
The main theorem of [3] may be restated as follows.

Theorem 4.1 With the above notation, for the three-manifold X obtained by splicing
the knot complements Y1 �K1 and Y2 �K2 , the Heegaard Floer homology group
bHF.X IZ=2Z/ is isomorphic to the homology of the chain complex .Cu;D/.

This theorem, together with the observations of the previous section imply that the
Heegaard Floer homology (hat theory) of Yp=q.K/ is obtained as the homology of
the complex .Cu;D/, where in the above setup Y1 D Y;K1 DK;Y2 DL.p;�q/ and
K2 DOp=q . From the computations of the previous section, we thus know

�2 D
�

Ip�p 0p�q

�
; x�2 D

�
0p�q Ip�p

�
;

 2 D

�
Iq�q

0p�q

�
; x 2 D

�
0p�q

Iq�q

�
:

To begin the simplifications, note that a particular change of basis for Cu may be
described by a matrix of the form

PD

�
P1 0

0 P2

�
;

and in the corresponding coordinates D will be replaced with

D.P/D

�
0 D1.P/

D2.P/ 0

�
D

�
0 P1D1P�1

2

P2D2P�1
1

0

�
:
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In particular, if ��
2

and  �
2

are matrices with �2�
�
2
D Id and  �

2
 2 D Id, we may

choose P1 and P�1
2

to be the following two matrices respectively:0BB@
I 0 0 x�1˝x�2 2

0 I I ˝ 2  1˝ I

0 0 I  1˝ 
�
2

0 0 0 I

1CCA ;
0BB@

I �1˝�
�
2
�1˝ I 0

0 I I ˝�2 0

0 0 I 0

0 0 0 I

1CCA :
Thus D1.P/ and D2.P/ will have the following matrix forms respectively:0BB@

I ˝�2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 I ˝ 2

1CCA ;
0BB@

0 0 x�1˝
x 2C�1˝ 

0
2

�1˝ I 0

0 0 I ˝ �2
x 1˝

x�2C 1˝�
0
2

0 I 0 0

0 0 0 0

1CCA :
Here  0

2
D .I C��

2
�2/ 2 , �0

2
D �2.I C 2 

�
2
/ and I 0 D .I C��

2
�2/.I C 2 

�
2
/.

Note that the first p rows in x 2 ,  0
2

and I 0 and the first q columns in x�2 , �0
2

and I 0

are zero. In fact, assuming p � q and r D p� q ,  0
2
; �0

2
and I 0 have the block forms

 02 D 0; �02 D

�
0q�q 0 0q�q

0 Ir�r 0

�
; I 0 D

0@ 0q�q 0 0

0 0r�r 0

0 0 Iq�q

1A :
The homology of the complex with this differential is clearly the same as the homology
of the complex�

H1˝ .Z=2Z/q
�
˚
�
H1˝ .Z=2Z/p

�
˚
�
H1˝ .Z=2Z/q

�
˚
�
H0˝ .Z=2Z/p

�
with a differential which has the following matrix block form (assuming that r D

p� q � 0): 0BBBB@
0 0 x�1˝ Iq�q �1˝

�
0 Iq�q

�
0 0 I ˝

�
Iq�q

0

�
x 1˝ Ip�pC 1˝

�
0 0

Ir�r 0

�
0 0 0 0

0 0 0 0

1CCCCA :

Another change of coordinates, and a cancelation of H1˝.Z=2Z/q�H1˝.Z=2Z/p in
the second component of the above direct sum presentation against the third component
using the map

I ˝

�
Iq�q

0

�
;
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implies that the homology of the initial complex is the same as the homology of the
complex

HD
�
H1˝ .Z=2Z/q

�
˚
�
H1˝ .Z=2Z/r

�
˚
�
H0˝ .Z=2Z/p

�
together with a differential which has the matrix block form0@ 0 0 �1˝ .0 Iq�q/Cx�1˝ .Iq�q 0/

0 0 x 1˝ .0 Ir�r /C 1˝ .Ir�r 0/

0 0 0

1A :
This computation completes the proof of Theorem 1.1 for p � q . The other case is
completely similar.

5 An example: the trefoil

We finish this paper with a sample computation for the trefoils (leaving out many
details). Let us consider the right-handed trefoil, whose filtration on cCF.S3/ may be
described as follows. The complex B D cCF.S3/ is generated by x1;x0;x�1 with
s.xi/D i and the differential of the complex is given by d.x0/D x�1 . Here s assigns
relative Spinc structures to the generators of the complex. Using the integral surgery
formula of [2], we may compute H�.s/ for � 2 f0; 1g and s 2Z as the homology of a
complex C�.s/. These complexes are given as the following mapping cones:

C1.s/D
�
Bf� sg

{
�! B

{
 � Bf� �sg

�
;

C0.s/D
�
Bf� sg

{
�! B

{
 � Bf� �s� 1g

�
:

We may thus compute H1.1/DH1.0/DH1.�1/D Z=2Z and H0.0/DH0.�1/D

.Z=2Z/˚.Z=2Z/. Thus H1DH1D .Z=2Z/3 while H0D .Z=2Z/4 . We may check,
either by direct computation, or using the general formulation of the maps �; x�; and
x given in [4] that these maps will have the following matrix presentations:

� D

0@ 1 0 0

0 0 0

0 0 0

1A ; x� D

0@ 0 0 0

0 0 0

0 0 1

1A
 D

0@ 1 0 0 0

0 1 0 0

0 0 0 0

1A ; x D

0@ 0 0 0 0

0 0 1 0

0 0 0 1

1A :
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Thus the differential of the complex for p � q is given by a matrix of the form�
0 D

0 0

�
;

where D is the following matrix

D D

0BBBBBBB@

Ir�r 0r�q 0 0 0 0 0 0

0 0 Ir�r 0r�q 0r�q Ir�r 0 0

0 0 0 0 0 0 0r�q Ir�r

0 Iq�q 0 0 0 0 0 0

0q�r 0 0 0 0 0 0 0

0 0 0 0 0 0 Iq�q 0

1CCCCCCCA
:

This .3rC3q/�4p matrix is of rank 2pCr . So the rank of the homology group of the
complex is 3.r Cq/C4p�2.2pC r/D 2qCp . If q > p > 0, a similar computation
gives the same rank 2qCp for bHF.S3

p=q
.T /;Z=2Z/.

Let us now consider the left-handed trefoil. In this case H1 D .Z=2Z/3; H1 D

.Z=2Z/5 while H0D .Z=2Z/4 . We may compute the maps �; x�; and x as follows:

� D

0@ 1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1A ; x� D

0@ 0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1A ;

 D

0BBBB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

1CCCCA ; x D

0BBBB@
0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1CCCCA :

If q � p > 0, and s D q�p , we may form the matrix D as before, and observe that
the rank of this .3q/� .5sC 4p/ matrix is 3q . Thus the size of the homology group
for this complex would be .5sC 4p/C .3q/� 2� .3q/D 2q�p . If instead we have
p> q > 0, the matrix D will be a .3qC5r/�.4p/ matrix, where r Dp�q . The rank
of this matrix may be computed as r C 3p . Thus the homology group of the complex
is of rank .3qC 5r C 4p/� .6pC 2r/D p . This implies that cHF.S3

p=q
.T 0/IZ=2Z/

is isomorphic to .Z=2Z/p if p � q and is isomorphic to .Z=2Z/2q�p if q > p . This
completes our computation for positive rational surgery on both trefoils, using surgery
formulas presented here.
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