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Bordism groups of solutions to differential relations

RUSTAM SADYKOV

In terms of category theory, the Gromov homotopy principle for a set valued functor F

asserts that the functor F can be induced from a homotopy functor. Similarly, we
say that the bordism principle for an abelian group valued functor F holds if the
functor F can be induced from a (co)homology functor.

We examine the bordism principle in the case of functors given by (co)bordism groups
of maps with prescribed singularities. Our main result implies that if a family J
of prescribed singularity types satisfies certain mild conditions, then there exists an
infinite loop space �1BJ such that for each smooth manifold W the cobordism
group of maps into W with only J –singularities is isomorphic to the group of
homotopy classes of maps ŒW; �1BJ � . The spaces �1BJ are relatively simple,
which makes explicit computations possible even in the case where the dimension of
the source manifold is bigger than the dimension of the target manifold.

55N20, 53C23; 57R45

1 Introduction

A smooth map f W V ! W of manifolds is said to be singular at a point x 2 V if
the rank of the differential of f at x is less than the minimum of dimensions of V

and W . If x is a regular value of f , ie, if f �1.x/ consists only of nonsingular points,
then f �1.x/ is a smooth manifold of a formal dimension d D dim V � dim W . The
integer d is also called the dimension of f . In the present paper we are primarily
interested in the case d � 0.

For a set of prescribed singularity types J of maps of a fixed dimension d , a smooth
map f of manifolds is said to be a J –map if each singular point of f is of type in J .
Similarly, we say that a cobordism of two J –maps is a J –cobordism if, as a map,
it has only J –singularities. The set of J –cobordism classes of J –maps of closed
manifolds into a closed manifold W leads to an abelian group B.W IJ /; in terms of
representatives the group operation is given by taking the disjoint union of maps (see
Sections 6, 7).
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Let us mention that in later sections we will define the group B.W IJ / for an arbitrary
(not necessarily closed) manifold W . At the moment, however, we consider only maps
of closed manifolds, just to simplify the exposition.

Carefully choosing the set J of singularities, one may derive cobordism groups related
to various objects in geometry and topology.

Example 1.1 Since a proper submersion is a smooth fiber bundle, the cobordism
group of submersions is closely related to diffeomorphism groups of smooth manifolds.
It is also known to be related to various infinite loop spaces, moduli spaces of Riemann
surfaces, the cobordism category as in Galatius et al [17]; and, in particular, to the
Kahn–Priddy theorem and the standard Mumford conjecture as in Fuks [16], Madsen
and Weiss [32] and [17] (see Remark 2.2). Similarly, J –cobordism groups are related
to singular cobordism categories by work of the author [42] and a certain version
of J –cobordisms is related to the Deligne–Mumford compactification by Eliashberg
and Galatius [12]. The cobordism groups of special generic maps are related to
diffeomorphism groups of spheres and exotic smooth structures on spheres by Saeki [45]
and Sadykov [43]. The cobordism groups of fold maps are known to be related to stable
homotopy groups of spheres and other interesting objects by Chess [8], Ando [2] and
Kalmár [25].

A priori J –cobordism groups do not form generalized cohomology theories since, for
example, J –cobordism groups are not defined for topological spaces. In the current
paper we propose a counterpart of B.W IJ / that for a wide range of sets J can be
used to compute B.W IJ / in the same way as singular cohomology groups H n.W IR/
can be used to compute De Rham cohomology groups H n

DR.W /.

Definition 1.2 Let F be a contravariant functor from a category C to the category Ab
of abelian groups. We say that F satisfies the bordism principle (or b-principle) if
there is a cohomology theory with functors hi W Top! Ab, indexed by i 2 Z, on the
category Top of topological spaces and a covariant factor � W C! Top such that F is
naturally equivalent to hn ı � for some n, ie, there is a noncommutative diagram of
functors:

C � //

F   @
@@

@@
@@

@ Top

hn
}}zz

zz
zz

zz

Ab

On the category of smooth manifolds, for example, H n
DR satisfies the b-principle since

it is naturally equivalent to H nı� ; here � takes a smooth manifold onto the underlying
topological space.

Algebraic & Geometric Topology, Volume 9 (2009)



Bordism groups of solutions to differential relations 2313

In general, if holds, the b-principle allows us to replace an a priori incomprehensible
functor by one that can be studied by means of the machinery of the cohomology
theory.

Remark 1.3 The b-principle is a bordism version of the homotopy principle, or h-
principle. The classical Gromov definition of the h-principle is given in terms of
so-called jet bundles [19]. There are, however, important h-principle type theorems, eg,
Thurston h-principle for foliations [52; 53] (see also Eliashberg and Mishachev [33;
13]) that do not fit the classical jet bundle setting. In general, the h-principle can be
formulated in terms of category theory as above by respectively replacing Top and Ab
by the category Top # B of topological spaces over a fixed space B (see Section 3)
and a category of sets, and requiring that hn be a homotopy functor rather than a term
of a cohomology theory.

In the present paper we show that for a wide range of sets J the b-principle holds true
for a functor counterpart of B.�IJ /. More importantly, we construct a cohomology
theory extending B.� IJ / whose spectrum BJ is simple enough to make explicit
computations possible.

Structure of the paper

The results of the paper are stated in Section 2. In Section 3 we formulate the bordism
and weak bordism principles. In Sections 4–5 and 8–10 we recall and develop the
language necessary to discuss (co)bordism groups in terms of jet spaces and differential
equations and, more generally, differential relations. We will see that each set J of
singularity types is associated with differential relations so that J –maps can be defined
to be solutions of associated differential relations. In Sections 6–7 we define bordism
and cobordism groups of solutions of differential relations. In Sections 11–13 we
prove the Main Theorem and its covariant counterpart. Finally, Sections 14 and 15 are
devoted to applications.
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me by András Szűcs. I am thankful to Osamu Saeki, Alex Dranishnikov and Yuli
Rudyak for their time, attention and numerous suggestions while the paper was written
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the referee for many comments which lead to improvement in the exposition of results.
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2 Results

Definition of BJ Let pW EO zt ! BOt be the universal vector t –bundle. Let St D

St .J / denote the space of Taylor series T .f / at 0 2RtCd of J –maps f W RtCd !

EOt jb , with b 2 BOt , into the fibers EOt jb D p�1.b/ such that f .0/ is 0 2 EOt jb .
Then the map � W St ! BOt that takes T .f / onto b has a structure of a fiber bundle.
The desired spectrum BJ is defined to be the Thom spectrum with .t C d/–th term
given by the Thom space T��EOt of the bundle ��EOt over St .

Unless otherwise stated, we will always (tacitly) assume that the set J of (nonregular)
singularity types is open, K–invariant. The former means that a map close to a J –
map is also a J –map, while the latter means that the set J has sufficiently many
symmetries (see Section 4). In addition, unless otherwise stated, we will always (tacitly)
assume that if d � 0, then J contains folds and the target W of considered maps is
of dimension > 1.

Main Theorem The cobordism group B.W IJ / of J –maps of dimension d to a
closed manifold W is isomorphic to the set ŒW; �1BJ � of homotopy classes of maps
into the infinite loop space �1BJ of BJ .

Remark 2.1 Similar definitions and a theorem are valid for bordism groups of J –
maps and their functor counterparts (see Section 6 and Theorem 11.1).

Remark 2.2 In the case of maps of a general dimension d with J D ∅, ie, in the
case where J –maps have only nonsingular points, the statement of the Main Theorem
is not true. Let us mention, however, that its version, which we do not consider in
the present paper, holds true for d D 0 (Kahn–Priddy theorem; see Chess [8] and
Fuks [16]) and d D 2 (Mumford conjecture; see Madsen and Weiss [32]).

Remark 2.3 The omitted case of maps of dimension d � 0 into a manifold W of
dimension 1 has been considered by Ikegami and Saeki [23], Ikegami [22], Kalmár [26]
and Saeki [45]. For this case our approach does not apply because our argument
implicitly (but essentially) uses the Eliashberg h-principle [9; 10] for fold maps which
requires the condition dim W > 1.

The Main Theorem is obviously related to an old question in singularity theory on
constructing a classifying space BJ such that for each closed manifold W there is an
isomorphism B.W IJ /� ŒW;BJ �. The first general result on constructing classifying
spaces was obtained by Rimányi and Szűcs [38] who constructed a space BJ for each
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finite family J of simple stable singularities of maps of negative dimension. Remark-
ably, it lead Rimányi to the method of Restriction Equations [37] which prompted
a series of explicit computations by Rimányi, Kazarian, Fehér and others (eg, see
Rimányi [37], Fehér and Rimányi [15], Kazarian [27] and the references there).

The Rimányi–Szűcs construction uses a technical Jänich theorem (see Jänich [24]
and Wall [54]), which a priori has no analogue in the positive dimension case. How-
ever, when exists, the Rimányi–Szűcs construction BJ consists of classifying spaces
BDiff F˛ of diffeomorphism groups of fibers F˛ of J –maps, ie, as a set BJ is given
by the disjoint union

BJ Š
G

BDiff F˛:

In the case d > 1, some of these strata are complicated. For example, the space BJ
always contains a stratum BDiff F for each smooth manifold F of dimension d ; we
recall that computing cohomology groups H�.BDiff F IZ/ is a challenging (open)
problem already for a surface F of a high genus.

In contrast, thanks to an extremely helpful observation of Kazarian (eg, see [29]),
the proposed spectrum BJ has a relatively simple structure both in the positive and
negative dimension cases. It consists of Thom spaces of vector bundles over St .J /,
while the space S.J /D lim St .J / has a natural stratification,

S.J /Š
G
�2J

BDiff �;

where Diff � stands for the symmetry group of � . The spaces BDiff � are relatively
simple. For example, in the case where J is the empty set of singularities of maps of
dimension d >0, the space S.J / coincides with BOd (compare with the corresponding
monstrosity

F
BDiff Fˇ , where the disjoint union ranges over closed manifolds Fˇ of

dimension d ). The simplicity of BJ makes it possible to carry out explicit computations
not only in the case of d < 0, but also in the case d � 0 [51], [44].

Remark 2.4 Note that since both �1BJ and BJ are classifying spaces, it follows
that for each closed manifold W , there is a canonical isomorphism of sets

ŒW; �1BJ �Š ŒW;BJ �

of homotopy classes of maps. In a paper in progress we study diffeomorphism groups
of manifolds by exploring the relationship between �1BJ and BJ from geometric
point of view.

Remark 2.5 The b-principle is not a direct consequence of the h-principle. In terms
of jet spaces, the h-principle for a differential relation R asserts that if T V and T W
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denote the tangent bundles of smooth closed manifolds V and W respectively, then the
existence of a formal solution V ! J k.T V;T W / of R covering a map f W V !W

implies the existence of a homotopy of f to a genuine solution of R (for definitions,
see Sections 4, 8 and 10); while the corresponding version of the b-principle implies that
for a sufficiently big integer l 2 Z and stabilized tangent bundles T V ˚ l" of V and
T W˚ l" of W , the existence of a stable formal solution V !J k.T V˚ l";T W˚ l"/

of R covering the map f W V !W implies the existence of a cobordism of f to a
genuine solution of R (for definitions, see Sections 5, 8 and 9). Here " stands for the
trivial vector bundle over any topological space.

Remark 2.6 The proof of the Main Theorem in the present paper essentially utilizes
the h-principle. The early versions of the h-principle appeared in the works of Nash,
Smale, and later Hirsch, Poenaru, Phillips, Feit and others (eg, see Gromov [19] and
Eliashberg and Mishachev [14] and the references there). Its general version first
appeared in the papers of Gromov [18] and Eliashberg and Gromov [20], and in the
present form was first formulated in the foundational book by Gromov [19]. The
theory has been extensively developed and several general powerful methods have been
discovered (eg, Gromov’s [19] methods of convex integration, continuous sheaves and
its new version, namely, the method of Eliashberg and Mishachev [14] of holonomic
approximations). We will use the h-principle for so-called open K–invariant differential
relations which is essentially due to Phillips [34], Eliashberg [9; 10], du Plessis [36]
and Ando [1; 5; 6].

Remark 2.7 It is plausible that a weak version of the h-principle is sufficient for
proving the Main Theorem. Indeed, for finite families J of simple singularities in the
negative dimension case [51] one only needs the Rourke–Sanderson argument [39];
while in the case of maps of positive dimension a theorem similar to the Main Theorem
can be established by using only the Gromov h-principle over open manifolds [42].

Related constructions

The construction of �1BJ is related to the construction by Eliashberg [11] of clas-
sifying spaces for Lagrangian and Legendrian immersions. In fact, our intermediate
Theorem 11.1 is a generalization of the Eliashberg theorem.

According to a startling observation of Kazarian, the infinite loop space �1Cd MO of
the Thom spectrum of the unoriented cobordism groups contains a copy KJ of each
space BJ [28; 29] (see also Saeki and Yamamoto [46]). Each space KJ comes with
a natural stratification resembling that in the Rimányi–Szűcs construction. In the case
d < 0, the advantage of the classifying space �1BJ over KJ is relatively limited,
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but in the case d � 0, the strata of �1BJ are essentially simpler than those of KJ
(see the discussion above).

In the case of immersions, our construction should be compared to that of Wells [55].
In the case d < 0 the Main Theorem is also proved by Szűcs [51] by a different line of
reasoning. In [6], Ando proposes a homotopy theoretic counterpart of B.W IJ / similar
to but essentially different from ours and independently proves a theorem similar to but
essentially different from our Theorem 11.1. It implies a version of the Main Theorem
but only in the case d < 0. Ando also suggests an alternative way of deriving the
Main Theorem from our Theorem 11.1 (cf our Theorem 13.2 which originally appeared
in [41]). Again, the main advantage of our approach is that it applies not only in the
case d < 0, but also in the case d � 0 of our primary interest.

For J D∅ and dD0, the space �1BJ can be identified with a path component of the
infinite loop space �1S1 and appears in the Kahn–Priddy theorem [16]. In the case
where J D∅ and d D 2, the space �1BJ coincides with the space �1hV in the
proof of the Mumford conjecture by Madsen and Weiss [32]. In the case where J D∅
and d > 1, the space �1�1BJ is weakly homotopy equivalent to the classifying space
BCd of the cobordism category of manifolds of dimension d of Galatius, Madsen,
Tillman and Weiss [17]. In general �1�1BJ is weakly homotopy equivalent to the
classifying space BCJ of the corresponding singular cobordism category, provided
d > 1 [42].

3 Bordism principle

We may say that the homotopy principle for a set valued functor F asserts that F can
be induced from a homotopy functor with domain in a homotopy category. Likewise
we say that the bordism principle for a functor F with values in the category AG of
abelian groups asserts that F can be induced from a (co)homology functor.

We examine the b-principle in the case of AG valued functors B of J –bordism groups
and C of J –cobordism groups. The functors B and C are sometimes confused in the
literature; both are defined so that for each closed manifold W of a fixed dimension n,
there is a canonical isomorphism

B.W /Š C.W /Š B.W IJ /:

There is, however, an essential difference between B and C . The former is covariant,
while the latter is contravariant (see Sections 6, 7).

We will show that under the conditions of the Main Theorem the covariant functor B
extends over the category Top2

#BOn whose object is a vector n–bundle over a pair of
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topological spaces, and whose morphism is a fiberwise isomorphism of vector bundles.
As we will see, the extended functor satisfies an analogue of the Eilenberg–Steenrod
axioms. In other words, for the functor B of J –bordism groups we will establish a
weak version of the b–principle (see Definition 3.2).

On the other hand, we will show that in contrast to the functor of J –bordism groups,
under the conditions of the Main Theorem, the functor of J –cobordism groups does
satisfy the b-principle, ie, it can be induced from a genuine cohomology functor.

We will need the following definitions.

For a topological space B , let Top2
# B denote the category with objects .X;AI'/,

each given by a pair of topological spaces .X;A/ together with a homotopy class of a
map 'W X !B ; and with morphisms .X1;A1I'1/! .X2;A2I'2/, each given by the
homotopy class of a continuous map f W .X1;A1/! .X2;A2/ such that '1 D '2 ıf .
There is a functor r W Top2

# B! Top2
# B defined by r.X;AI'/D .A;∅I'jA/.

Definition 3.1 A homology theory h� on the category Top2
# B is a sequence of

functors hnW Top2
# B ! AG, with n 2 Z, and natural transformations @nW hn !

hn�1 ı r that satisfy the Exactness axiom and the Excision axiom (eg, see Switzer [49,
Chapter 7]).

In a similar fashion one may give a definition of a cohomology theory h� on the
category Top2

# B .

The category Top2
#B contains a subcategory Top#B of topological spaces .X I'/D

.X;∅I'/ over B and homotopy classes of continuous maps over B .

Definition 3.2 Let F be a contravariant (respectively covariant) functor from a cate-
gory C into the category of abelian groups AG. We say that the functor F satisfies the
weak bordism principle with respect to Top2

#B if there is a cohomology (respectively
homology) theory h� (respectively h� ) on Top2

# B and a functor � W C! Top # B

such that the functor F is naturally equivalent to the functor hnı� (respectively hnı� )
for some n 2 Z. We say that F satisfies the bordism principle if F satisfies the weak
bordism principle in the case where B is a point.

For example, the de Rham cohomology functor defined on the category of smooth
manifolds and smooth maps satisfies the bordism principle. Its homotopy analogue
is the singular cohomology functor defined on the category Top2

# fptg of pairs of
topological spaces over a point fptg.

Remark 3.3 Since reduced and unreduced (co)homology are essentially equivalent
(eg, see Hatcher [21]), Definition 1.2 given in the Introduction is essentially the same
as Definition 3.2 of b-principle for contravariant functors.
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4 Differential relations

Let X ! V be a smooth fiber bundle. We say that two smooth sections f1 and f2 ,
defined in a neighborhood of a point v 2 V , have a contact of order � k at v if the
values and the partial derivatives of order � k of f1 and f2 at v are the same. The
equivalence class of local sections that have a contact of order k at v with a local
section f is called the k –jet Œf �kv . The set of k –jets of local sections of X forms
the total space J k.X /, called the k –jet space, of a smooth fiber bundle over X with
projection �X sending a k –jet Œf �kv onto f .v/. The composition of �X with the
projection X ! V turns J k.X / into the total space of a smooth fiber bundle over V .

Definition 4.1 A differential relation R of order k over a smooth fiber bundle X!V

is a subset of the k –jet space J k.X /.

Every smooth section f of the bundle X ! V is covered by a smooth map

j kf W V ! J k.X /;

j kf W v 7! Œf �kv ;

called the k –jet extension of f .

Definition 4.2 A solution of a differential relation R� J k.X / is a section f with
image j kf .V / in R.

In other words, a differential relation over a smooth fiber bundle is a relation on the
derivatives of smooth sections of the bundle.

If X ! V is a smooth fiber bundle over a manifold of dimension m with fiber of
dimension n, then the fiber of the k –jet bundle J k.X /! X is isomorphic to the
space J k.Rm;Rn/ of k –jets of germs

(1) f W .Rm; 0/ �! .Rn; 0/:

Occasionally we will identify the space J k.Rm;Rn/ with the space of polynomial
maps .Rm; 0/! .Rn; 0/ of degree � k .

The space J k.Rm;Rn/ admits a smooth action of the so-called k –contact group KD
K.k;m; n/. By definition, the group K is the subgroup of k –jets of diffeomorphism
germs

.Rm
�Rn; 0/ �! .Rm

�Rn; 0/

consisting of those elements which take the horizontal slice Rm � f0g onto Rm � f0g

and each vertical slice fxg �Rn , with x 2 Rm , into a vertical slice fyg �Rn , with
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y 2 Rm . The action of K on J k.Rm;Rn/ is determined by the action of K on the
graphs f.x; f .x// 2Rm �Rng of germs of the form (1).

Definition 4.3 A differential relation basis R of order k is an arbitrary subset of
the space J k.Rm;Rn/. We say that a basis has sufficiently many symmetries or K–
invariant if it is invariant with respect to the action of K .

A basis invariant with respect to the action of K.k;m; n/, leads to a differential relation
over every trivial fiber bundle �V W X D V �W ! V with base of dimension m and
fiber of dimension n. Indeed, over the total space X , there is a canonically defined,
principal K–bundle Pk

X
.K/!X of k –jets of diffeomorphism germs

(2) ˛W .Rm
�Rn; 0/ �! .X;x/; x D .v; w/ 2X;

such that the restriction ˛j.Rm � f0g/ is a diffeomorphism onto a neighborhood of
.v; w/ in V �fwg, and for each point y 2Rm , the image of the vertical slice .fyg�Rn/

under the map �V ı ˛ is a single point in V . The projection Pk
X
.K/! X is given

by taking the k –jet represented by a germ (2) onto x . Let us observe that there is a
canonical isomorphism of fiber bundles

Pk
X .K/�K J k.Rm;Rn/ �! J k.X /

over X , which, in terms of representatives, takes a pair .˛; f / of germs (2) and (1)
onto a local section with graph

˛ ı .Œ�V ı˛j.R
m
� f0g/��1; f ı Œ�V ı˛j.R

m
� f0g/��1/:

If, now, R � J k.Rm;Rn/ is a K–invariant basis, then the set Pk
X
.K/ �K R is a

well-defined relation over X .

Remark 4.4 The sections of a trivial bundle X D V �W ! V are in bijective
correspondence with the maps V !W . In this case, according to the terminology of
singularity theory, the complement †D J k.X / nR to a differential relation R is a
singularity set, and a solution to R is a map without †–singularities. Thus a choice of
a K–invariant differential relation basis containing regular jets corresponds to a choice
of a (not necessarily open) K–invariant set of prescribed singularity types J (see
Section 1). Namely, the set J corresponding to R consists of nonregular singularity
types of germs whose jets are in R. We note that if the set of singularity types J is
open, then the corresponding differential relation basis R is open in the topological
space J k.Rm;Rn/.
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5 Sequence of differential relation bases

We have seen that a base R� J k.Rm;Rn/ with sufficiently many symmetries deter-
mines a differential relation on smooth maps V !W for any pair of manifolds V

and W of dimensions m and n respectively. However, to define a bordism group of
solutions we also need to consider differential relations on maps of manifolds of higher
dimensions, which can be done by introducing a sequence of differential relation bases.

For nonnegative integers s , t , with s < t , and an integer q , there is an embedding

extst W J
k.Rs;RqCs/ �! J k.Rt ;RqCt /

of k –jet spaces that takes the k –jet of a germ

f W .Rs; 0/! .RqCs; 0/

onto the k –jet of the suspension germ

f � idRt�s W .Rt ; 0/! .RqCt ; 0/;

where idRt�s stands for the identity map of the space Rt�s . We note that the space
J k.Rs;RqCs/ is empty if qC s < 0.

Definition 5.1 A sequence R D R.q/ of differential relation bases, or a stable dif-
ferential relation basis is a set of bases Rs.q/� J k.Rs;RqCs/, one for each s � 0,
such that for nonnegative integers s; t , with s < t , the map extst takes Rs D Rs.q/

into Rt and the complement of Rs in J k.Rs;RqCs/ into the complement of Rt in
J k.Rt ;RqCt /. We say that a sequence RD fRsg of bases is open if each basis Rs is
open in J k.Rs;RqCs/.

Remark 5.2 For a map f W V ! W of a manifold of dimension t to a manifold
of dimension t C q , the number q is called the codimension of f . Thus, if f is of
dimension d , then qD�d . We tend to use the term “codimension” if q � 0, eg, in the
case of immersions. On the other hand, in the case q < 0 we find the term “dimension”
more appropriate; for example, the phrase “a map f of dimension 2” means that a
nonempty regular fiber of f is a manifold of dimension 2, while the phrase “a map of
codimension �2” has no obvious geometric meaning.

We may identify a sequence R.q/ of bases with a subset of the space

JD J.q/ WD colim
s!1

J k.Rs;RqCs/;

where the colimit is taken with respect to the maps exts
sC1

, regarded as inclusions. In-
deed, if R.q/ is a subset of J.q/, then the set fRsg of spaces Rs D R\J k.Rs;RqCs/
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is a sequence of differential relation bases. Conversely, if fRs.q/g is a sequence of
differential relation bases, then the colimit

RD R.q/ WD colim
s!1

Rs.q/

taken with respect to the maps exts
sC1

is a subset of J.q/.

Similarly there are natural inclusions K.k; s; qC s/!K.k; t; qC t/, s < t , of groups,
which allow us to define a stable k –contact group

KDK.q/ WD colim
s!1

K.k; s; qC s/:

The actions of the groups K.k; s; q C s/ on J k.Rs;RqCs/ induce an action of the
group K on J. It follows that a stable basis R� J is K–invariant if and only if each
relation basis Rs , with s � 0, is invariant with respect to the action of K.k; s; qC s/.
In this case we will also say that R has sufficiently many symmetries.

A sequence of bases fRsg is a suspension of a (not necessarily K–invariant) differential
relation basis R if Rt �R for an appropriate t . A suspension is a K–suspension if
the sequence fRsg is K–invariant. We observe that each basis R � J k.Rs;RqCs/

has the minimal K–suspension, defined as the minimal K–invariant subset of J that
contains R; and the maximal K suspension, defined as the maximal K–invariant subset
of J that does not intersect the set J k.Rs;RqCs/ nR.

Remark 5.3 If R is a differential relation basis, then its minimal K–suspension exists
even if R is not K–invariant. On the other hand the maximal K–suspension of R

exists only if R is K–invariant. Indeed, suppose that fRsg is the maximal suspension
of R. Since it is a suspension, there is an inclusion Rt �R for some t . On the other
hand, since the suspension is maximal, there is an inclusion Rt �R. Consequently,
Rt DR.

Example 5.4 (Immersions) If RDR0;R1; : : : ; stand for the bases corresponding to
immersions in respectively J k.R0;Rq/, J k.R1;RqC1/; :::, then fRsg is the minimal
suspension of R� J k.R0;Rq/.

Remark 5.5 Due to Mather it is well-known that if fRsg is the minimal suspension
of a K–invariant basis R�Rt , then Rt DR. On the other hand, we may define the
minimal G –suspension fRsg of R for any subgroup G <K, eg, for the group A of
k –jets of right-left coordinate changes. In this case an A–invariant basis R�Rt may
not coincide with the t –th space Rt of the minimal A–suspension of R.
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6 Bordism groups of solutions

A sequence R of bases Rs � J k.Rs;RqCs/, s� 0, with sufficiently many symmetries
determines a differential relation R for mappings from any manifold V of dimension s

into any manifold W of dimension qC s . To simplify formulation of statements, we
will say that a map satisfying R is a solution of R, or, simply, an R–map.

By definition, two R–maps fi W Vi ! Wi , with i D 1; 2, of closed manifolds are
right-left bordant if there are

� a compact manifold V with @V D V1 tV2 ,
� a compact manifold W with @W DW1 tW2 , and
� an R–map f W V !W such that f .Vi/�Wi for i D 1; 2, and the restriction of
f to collar neighborhoods of V1 and V2 in V can be identified with the disjoint
union of suspensions of f1 and f2 .

The right-left bordism classes of R–maps constitute a group with addition defined in
terms of representatives by taking the disjoint union of maps. Each element of the
right-left bordism group is of order 2.

We say that two R–maps fi W Vi !W , with i D 1; 2, of closed manifolds Vi into a
manifold W are (right) bordant if there are

� a compact manifold V with @V D V1 tV2 , and
� an R–map f W V !W � Œ1; 2� such that f .Vi/�W �fig for i D 1; 2, and the

restriction of f to collar neighborhoods of V1 and V2 in V can be identified
with the disjoint union of suspensions of f1 and f2 .

Remark 6.1 Note that in contrast to the definition of right-left bordisms, in the
definition of right bordisms the target manifold W is not assumed to be closed. For
our approach, in the definition of right bordisms it is essential to allow arbitrary
(smooth) manifolds (without boundary), not only closed manifolds. Indeed, Theorem
11.1 implies, for example, that the right bordism groups of R–maps to nonclosed
manifolds Rn , n � 0, correspond to terms of what in homology theory is called the
coefficient group.

Finally, two R–maps fi W Vi!Wi , with i D 1; 2, of closed manifolds are left bordant
if V1 D V2 and there is a right-left bordism .V;W; f / with V D V1 � Œ0; 1�.

Taking the disjoint union of maps leads to a structure of a semigroup on the set of
right bordism classes of solutions. We note that the semigroup of bordism classes of
solutions may not be a group.
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Remark 6.2 We adopt the convention that the empty set ∅ is a manifold of an arbitrary
dimension. In particular, for each manifold W and a sequence R of relation bases, the
map ∅!W is a solution of R.

Example 6.3 Let R be the sequence of open differential relation bases Rs , with s� 0,
with sufficiently many symmetries corresponding to submersions of dimension �q > 0.
Then the element of the semigroup of bordism classes of solutions represented by any
submersion V !W of a closed nonempty manifold has no inverse. Consequently, the
semigroup of bordism classes of submersions is not a group.

We define the (right) bordism group of R–solutions B.W / as the group given by the
Grothendieck construction applied to the semigroup SB.W / of right bordism classes
of solutions. In fact, we will see that under the assumptions of the Main Theorem the
semigroup of right bordism classes of solutions is already a group (see Corollary 14.1).
Furthermore, one may follow the proof of Theorem 11.1 to obtain a description of the
inverse element (see Szűcs [51] for the case q > 0), but an explicit construction of
a representative of the inverse of a given element in SB.W / may not however be a
simple task.

Let Diffn be the category of smooth manifolds of dimension n without boundary and
equidimensional embeddings. We have defined the correspondence

BW Obj.Diffn/ �! Obj.AG/;
BW W 7! B.W /;

where Obj.C / stands for the collection of objects of a category C . The collection of
morphisms of a category C will be denoted by Mor.C /.

Given an embedding i W W1 ! W2 in Mor.Diffn/, and an R–map f W V1 ! W1

representing an element Œf � in B.W1/, the composition i ıf W V1!W2 is an R–map
representing an element Œi ıf � in B.W2/. Furthermore, the element Œi ıf � depends
only on the class Œf �, not on its representative f . Hence, each embedding i W W1!W2

in Obj.Diffn/ gives rise to a correspondence

B.i/W B.W1/ �! B.W2/;

B.i/W Œf �� Œg� 7! Œi ıf �� Œi ıg�;

which is easily seen to be a group homomorphism. In fact the correspondence B
defines an AG valued covariant functor on the category Diffn , called the functor of the
R–bordism group. We will continue to denote the functor by the symbol B .
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Remark 6.4 We warn the reader that some authors use the term “cobordism groups”
to refer to the values of the functor B and define “bordism groups” as cobordism groups
of Euclidean spaces. Other authors use the term “cobordism groups” to refer both to
groups related to the covariant functor B and to groups related to the contravariant
functor C described in Section 7.

We use the term “bordism groups” in the case of covariant functors and reserve the term
“cobordism groups” for contravariant functors (see Section 7). Our choice of terminology
is compatible with that in Switzer [49], Rudyak [40], Stong [48], Kochman [30] and
other textbooks in algebraic topology.

7 Cobordism groups of solutions

Two proper R–maps fi W Vi!W , with i D 1; 2, of manifolds are (right) cobordant if
there are

� a manifold V with @V D V1 tV2 , and

� a proper R–map f W V !W � Œ1; 2� such that f .Vi/ �W � fig for i D 1; 2,
and the restriction of f to collar neighborhoods of V1 and V2 in V can be
identified with the disjoint union of suspensions of f1 and f2 .

Taking the disjoint union of maps leads to a structure of a semigroup on the set of right
cobordism classes of solutions.

We recall that Diffn denotes the category of smooth manifolds of dimension n without
boundary and equidimensional embeddings.

The (right) cobordism group of R–solutions C.W / is defined to be the group given by
the Grothendieck construction applied to the semigroup of right cobordism classes of
solutions. In other words, C. � / is a correspondence

CW Obj.Diffn/ �! Obj.AG/;
CW W 7! C.W /:

Given an embedding i W W1 ! W2 in Mor.Diffn/, and an R–map f W V2 ! W2

representing an element Œf � in C.W2/, the pullback

i�f D i�1
ıf W V1 D f

�1.i.W1// �!W1

is an R–map representing an element Œi�f � in C.W1/. The element Œi�f � depends
only on the class Œf �, and therefore, each embedding i in Mor.Diffn/ determines a
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correspondence

C.i/W C.W2/ �! C.W1/;

C.i/W Œf �� Œg� 7! Œi�f �� Œi�g�;

which is a group homomorphism. The correspondence C defines an AG valued
contravariant functor on Diffn , called the functor of the R–cobordism group. We will
continue to denote this functor by C .

Remark 7.1 As has been mentioned in Section 3, it follows from the definitions that
if W is a closed manifold, then there is an isomorphism

B.W /
Š
�! C.W /:

In fact, in terms of representatives the isomorphism is given by the identity correspon-
dence

(3) Œf � 7! Œf �:

On the other hand, if W is not closed, then the correspondence (3) is not an isomorphism.
For example, for any sequence R.q/, with �q > 0, the inclusion f W R0 ! R�q

represents a nontrivial element in B.R�q/ and the trivial element in C.R�q/.

8 Formal jet spaces of vector bundles

Given two vector bundles � and 
 of dimensions m and n respectively over a topolog-
ical space B , let Pk

�;
 .K/ denote the principal K–bundle over B whose total space
consists of k –jets of diffeomorphism germs

(4) f W .Rm
�Rn; 0/ �! .�jx˚ 
 jx; 0/; x 2 B;

where �jx and 
 jx are restrictions to x , such that f .Rm � f0g/D �jx˚ 0 and for
each y 2 Rm , the projection �˚ 
 ! � maps the image f .fyg �Rn/ onto a point.
The projection Pk

�;
 .K/! B is defined by sending the germ (4) onto x 2 B .

Definition 8.1 A formal differential relation R over .�; 
 / is an arbitrary subset of
the total space of the formal k –jet bundle

J k.�; 
 /D Pk
�;
 .K/�K J k.Rm;Rn/ �! B:

Given a K–invariant basis R� J k.Rm;Rn/, there is an associated differential relation

RDR.�; 
 /D Pk
�;
 .K/�K R

in J k.�; 
 /.
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In fact, for a smooth trivial bundle �V W X D V �W ! V where the base and fiber are
Riemannian manifolds, the k –jet bundle J k.X / is canonically isomorphic to a certain
formal k –jet bundle. In what follows, the tangent bundle of a manifold M is denoted
by TM and the tangent plane of M at x is denoted by TxM . The Riemannian metric
on X is given by the product of Riemannian metrics on V and W .

Lemma 8.2 Let � be the pullback of T V to the bundle over X with respect to �V

and 
 the subbundle of TX that consists of vectors tangent to the fibers of the bundle
X ! V . Then there is a canonical isomorphism J k.�; 
 /! J k.X /.

Proof Let Expx W Ux!Vx denote the exponential diffeomorphism of a neighborhood
of the origin in the tangent plane TxX onto a neighborhood of x in X .

Given a map ˛W .Rm � Rn; 0/ ! .TxX; 0/ representing a point in Pk
�;
 .K/, the

composition Expxı˛ represents an element in Pk
X
.K/. Hence, the product Riemannian

metric on X determines a map Pk
�;
 .K/! Pk

X
.K/ which is easily seen to be an

isomorphism of principal K–bundles. The isomorphism of Lemma 8.2 can be produced
from the isomorphism of the principal K–bundles by the Borel construction.

9 Bordism group of formal solutions

Let R1 denote the infinite dimensional vector space, defined as the colimit of inclusions
R1 � R2 � :::, with base .e1; e2; : : : /. We regard the classifying space BOi as
the space of i –subspaces of R1 each of which is contained in a subspace Rj for
some j <1. Then the fiber of a canonical vector bundle EOi ! BOi over a plane
L 2 BOi can be interpreted as the space of vectors in L. There is a canonical
inclusion BOi ! BOiC1 that takes a plane spanned by vectors v1; : : : ; vi onto the
plane spanned by e1; �.v1/; : : : ; �.vi/; where � is the shift endomorphism of R1

given by �.ek/D ekC1 . Similarly there is a canonical inclusion EOi � EOiC1 and
splitting of EOiC1jBOi into the sum "˚EOi Š EOi˚". Here and in what follows we
use the symbol " to denote the trivial 1–dimensional vector bundle over an arbitrary
space.

Let W be a manifold of dimension n. Then a K–invariant sequence R D fRs.q/g

of bases in J k.Rs;RqCs/, with s � 0 and qC s � n, leads to a sequence of formal
differential relations ŒRW �s in the formal k –jet bundles ŒJ k

W
�s associated to the pair

of bundles
.��1 EOs; �

�
2 T W ˚ t"/ over BOs �W;

where �1 and �2 denote the projections of BOs �W onto the first and second factors
respectively, and t D qC s� n.
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For s � 0, there is a canonical inclusion ŒJ k
W
�s � ŒJ

k
W
�sC1 that takes the k –jet Œf �k

0
2

ŒJ k
W
�s over v 2 BOs �W represented by the germ of a smooth map

f W .�1jv/
�EOs �! .�2jv/

�
fT W ˚ t"g

onto the k –jet Œf � id"�k0 2 ŒJ
k
W
�sC1 of the germ of the map

f � id"W .�1jv/
�.EOs˚ "/ �! .�2jv/

�
fT W ˚ t"˚ "g;

where we make use of the identification of EOsC1jBOs with EOs˚ ".

Let us observe that, since R is a K–invariant sequence of bases, the canonical inclusion
ŒJ k

W
�s � ŒJ

k
W
�sC1 takes ŒRW �s into ŒRW �sC1 . In view of these canonical inclusions,

we will use the same symbol � to denote any of the projections

ŒJ k
W
�s �! BOs; s � 0;

ŒRW �s �! BOs; s � 0;

defined as the composition of the projection onto BOs �W followed by the projection
onto the first factor BOs .

Definition 9.1 Let RD R.q/ be a K–invariant stable differential relation basis, W

a smooth manifold of dimension n � q , and m D n� q . Then, the bordism group
MOR.W / of stable formal R–maps into W is the m–th bordism group of maps of
manifolds with an .RW ; �/–structure in the stable tangent bundle, where .RW ; �/

is the .B; f /–sequence (for a definition, see, for example, Stong [48]) given by the
commutative diagrams

ŒRW �s ����! ŒRW �sC1

�

??y �

??y
BOs ����! BOsC1;

indexed by s �m, with horizontal maps given by the canonical inclusions.

In particular an element of the bordism group of formal solutions is represented
by a triple .V; ˛; z̨/ of a closed manifold V of dimension m, a continuous map
˛W V ! ŒRW �s for some s �m, and a fiberwise isomorphism of vector bundles

z̨W T V ˚ .s�m/" �! ��EOs

covering the map ˛ . In particular, the composition � ı˛ is a map classifying the stable
tangent bundle of V .

By the Pontrjagin–Thom construction, the m–th bordism group of manifolds with
.RW ; �/–structure in the stable tangent bundle is isomorphic to the m–th homotopy
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group of the Thom spectrum, denoted by MO^RW , associated with .RW ; �/ (see,
for example, Stong [48]).

Note that if R consists of all jets, ie, if any map of codimension q is an R–map, then
MO^RW ŠMO^W and Theorem 11.1 below reduces to the classical Pontrjagin–
Thom theorem.

In Section 12 we will show that MOR. � / can be extended to a covariant functor on
the category Top2

# BOn .

10 H-principle

Certainly, a necessary condition for the existence of a solution of a differential relation R
is the existence of a section of the bundle �V W J

k.X /! V with image in R. The
homotopy converse statement, which may not be true in general, is referred to as the
homotopy principle in the existence level, or, simply, h-principle.

Definition 10.1 (H-principle) Every section sW V !R � J k.X / is homotopic to
the k –jet extension of a section V !X by homotopy of sections V !R.

In particular, if a differential relation satisfies the h-principle, and there is a section
sW V !R, then the differential relation has a solution.

By the Gromov theorem [19], an open so-called Diff–invariant differential relation
over a fiber bundle X ! V always satisfies the homotopy principle if V is an open
manifold. We refer the reader to Gromov [19], Eliashberg and Mishachev [14] and
Spring [47] for further examples of differential relations satisfying the h-principle.

A section V ! J k.X / is holonomic if it extends a section V !X .

We will also need the relative version of the h-principle.

Definition 10.2 (Relative h-principle) Suppose that a section sW V !R restricted
to a neighborhood of a closed subset V0 � V is holonomic. Then s is homotopic to a
holonomic section through sections V !R constant in a neighborhood of V0 .

Under the conditions of the Main Theorem, the relative h-principle for open K–invariant
differential relations imposed on maps of manifolds always holds true. It is essentially
due to Phillips [34], Eliashberg [9; 10], du Plessis [36] and Ando [1; 5; 6].

We say that a K–invariant sequence R D fRsg of differential relation bases Rs �

J k.Rs;RqCs/, s � 0, satisfies the (relative) h-principle if for every trivial bundle
X ! V over an s–dimensional manifold with a .qC s/–dimensional fiber, the corre-
sponding differential relation in J k.X / satisfies the (relative) h-principle.
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11 Destabilization argument

Let R be a sequence of differential relation bases Rs � J k.Rs;RqCs/, s � 0, with
sufficiently many symmetries. Then, for any smooth manifold W of dimension n,
there is a semigroup homomorphism from the semigroup SB.W / of right bordism
classes of R–maps into W to the bordism group MOR.W / of stable formal R–maps
into W .

Indeed, suppose that V is a manifold of dimension mD n� q and f W V !W is a
smooth map representing an element in the semigroup SB.W /. Let � and 
 be the
vector bundles over X D V �W defined as the pullbacks of the tangent bundles of
V and W with respect to the projections of V �W onto the first and second factors
respectively. Then, in view of Lemma 8.2, by choosing Riemannian metrics on V

and W , we may identify J k.�; 
 / with the k –jet space J k.X / of the trivial bundle
X ! V . In particular, we may say that the map f gives rise to a section j kf of the
fiber bundle �k

V
W Rm.�; 
 /! V .

Let � W T V ! EOm be a bundle map classifying the tangent bundle of V . In several
occasions we will implicitly use a well-known fact that the homotopy class of � is
unique.

The bundle map � gives rise to a fiberwise isomorphism of bundles

J k.�; 
 / ����! ŒJ k
W
�m

�k
V

??y ??y�
V ����! BOm:

Let z̨W T V ! ��EOm be the canonical lift of � covering the composition ˛ of j kf

and the fiberwise isomorphism J k.�; 
 /! ŒJ k
W
�m . Then the triple .V; ˛; z̨/ represents

an element in MOR.W /, which, as it is easy to see, does not depend on � and the
choice of Riemannian metrics on V and W . Furthermore, if fi W Vi!W , i D 1; 2,
are two R–maps representing the same element in SB.W /, ie, if there exists a bordism
between f1 and f2 satisfying R, then, by a similar argument, the triples corresponding
to f1 and f2 determine the same element in MOR.W /. Thus, there is a well-defined
map

 W SB.W / �!MOR.W /;

which is easily seen to be a semigroup homomorphism.

Theorem 11.1 The homomorphism  is an isomorphism for any (not necessarily
closed) manifold W of dimension n. In particular, the bordism semigroup SB.W / of
R–maps into W is isomorphic to the group �m.MO^RW / where mD n� q .
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Proof The Pontrjagin–Thom construction establishes an isomorphism of the bordism
group MOR.W / of manifolds with .RW ; �/–structure in the stable tangent bundle
and the homotopy group �m.MO^RW /. Hence to prove the theorem it suffices to
show that the homomorphism  is an isomorphism.

In what follows, in the notation of pullbacks of vector bundles we will occasionally
suppress the symbols of maps that induce the bundles. For example,

J k.EOm;T W / �! BOm �W

will denote the formal k –jet bundle associated with the pullbacks of EOm and T W

with respect to the projections of BOm�W onto the first and second factors respectively.

Lemma 11.2 The homomorphism  is surjective.

Proof Given an element of MOR.W /, let an .RW ; �/–manifold V0 be its represen-
tative. Suppose that the .RW ; �/–structure of V0 is represented by a continuous map
˛W V0! ŒRW �mCr and a fiberwise isomorphism of vector bundles

z̨W T V0˚ r" �! ��EOmCr

that covers ˛ producing a commutative diagram

T V0˚ r"
z̨

����! ��EOmCr??y ??y
V0

˛
����! ŒRW �mCr :

We claim that the .RW ; �/–structure in the stable tangent bundle of V0 determines
an .RW �L; �W �L/–structure in the stable tangent bundle of V0 �L, where L is a
closed parallelizable manifold of dimension r with a fixed trivialization of the tangent
bundle. Indeed, the bundle

ŒJ k
W �L�mCr WD J k.EOmCr ;T .W �L// �! BOmCr � .W �L/

is canonically isomorphic to the bundle

ŒJ k
W �mCr �L WD J k.EOmCr ;T W ˚ r"/�L �! .BOmCr �W /�L

under an isomorphism that takes the fiber

J k.EOmCr jb;T .W �L/j.w; l// over .b; .w; l// 2 BOmCr � .W �L/

onto the fiber

J k.EOmCr jb; .T W ˚ r"/jw/� flg over ..b; w/; l/ 2 .BOmCr �W /�L:
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Consequently, since the basis of the differential relation for ŒRW �L�mCr coincides
with the basis of the differential relation for ŒRW �mCr , the bundle

ŒRW �L�mCr WDR.EOmCr ;T .W �L// �! BOmCr � .W �L/

and the bundle

ŒRW �mCr �L WDR.EOmCr ;T W ˚ r"/�L �! .BOmCr �W /�L

are canonically isomorphic. Furthermore, there is a canonical isomorphism of vector
bundles

��EOmCr �L ����! ��
W �L

EOmCr??y ??y
ŒRW �mCr �L ����! ŒRW �L�mCr ;

which we precompose with the composition

T .V0 �L/ �! .T V0˚ r"/�L �! ��EOmCr �L

of a canonical isomorphism and the bundle map z̨ � idL , where idL is the identity
map of L, in order to obtain a desired .RW �L; �W �L/–structure

T .V0 �L/ ����! ��
W �L

EOmCr??y ??y
V0 �L ����! ŒRW �L�mCr

on the stable tangent bundle of V0 �L.

Similarly, the triple .V0; ˛; z̨/ determines a fiberwise isomorphism of bundles

(5) J k.T .V0 �L/;T .W �L// �! ŒJ k
W �L�mCr :

Let yX!V0�L be the trivial bundle with fiber W �L. Again, by choosing Riemannian
metrics on V0 �L and W �L, we fix an isomorphism

(6) J k. yX / �! J k.T .V0 �L/;T .W �L//

and denote its composition with the bundle map (5) by

jetW J k. yX / �! ŒJ k
W �L�mCr :

By the h-principle, there is a homotopy H DH� , with � 2 Œ0; 1�, of the map

H0 D ˛� idLW V0 �L �! ŒRW �mCr �LD ŒRW �L�mCr
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to a section H1 such that H1 D jet ı j kh for some genuine smooth R–map

hW V0 �L �!W �L:

By Sard’s Lemma applied to the composition of h and the projection of W �L onto
the second factor, there is a value pt 2 L for which the map h is transversal to the
copy W � fptg of W . In particular the subset V1 WD h�1.W � fptg/ is a compact
submanifold of V0 �L. Let h1W V1!W denote the restriction hjV1 composed with
the identification W � fptg ! W . We will show that h1 satisfies the differential
relation R, and  .Œh1�/ belongs to the class represented by .V0; ˛; z̨/.

Lemma 11.3 The map h1W V1!W is a solution to R.

Proof For a point x 2 V1 , by the Inverse Function Theorem, there are neighbor-
hoods U.x/ of x in V0 � L and U.h.x// of h.x/ in W � L with coordinates
.s1; : : : ; sr ; v1; : : : ; vm/ in U.x/ and .zs1; : : : ; zsr ; w1; : : : ; wn/ in U.h.x// such that
.0; : : : ; 0; v1; : : : ; vm/ are coordinates in V1\U.x/, .0; : : : ; 0; w1; : : : ; wn/ are coor-
dinates in .W � fptg/\U.h.x//, and the mapping hjU.x/ has the form

zsi D si ; i D 1; : : : ; r;

wj D wj .s1; : : : ; sr ; v1; : : : ; vm/; j D 1; : : : ; n:

We note that in the chosen coordinates the mapping hjV1\U.x/ has the form

wj D wj .0; : : : ; 0; v1; : : : ; vm/; j D 1; : : : ; n:

Hence the local ring of the germ h at x is isomorphic to the local ring of the germ
hjV1 at x . If hjV1 is not a solution to a K–invariant relation R in a neighborhood
of x , then, since

extmmCr .J
k.Rm;Rn/ nRm/� J k.RmCr ;RnCr / nRmCr ;

h is not an R–map, which is a contradiction. Thus hjV1 is a solution to R.

It remains to show that  .Œh1�/ is the class represented by .V0; ˛; z̨/.

To simplify the notation we will occasionally use the same symbol both for a map and
its restrictions. In Lemma 11.4 we will chase the diagram

ŒRW �m
�

����! ŒRW �mCr
iL
����! ŒRW �mCr �L

Š
����! ŒRW �L�mCr??y ??y ??y ??y

BOm
�

����! BOmCr ����! BOmCr ����! BOmCr ;

where the horizontal map iL is the inclusion of the slice ŒRW �mCr � fptg.
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Lemma 11.4 The bordism class  .Œh1�/ is represented by an .RW ; �/–manifold
.V1; ˇ; ž/, where ˇ DH1jV1 and ž is a bundle map covering ˇ .

Proof Suppose that the construction in the definition of  applied to h1 yields an
.RW ; �/–manifold .V1; 
h; z
h/ representing  .Œh1�/, with


hW V1 �! ŒRW �m:

We recall that the triple .V1; 
h; z
h/ is completely determined by the choices of Rie-
mannian metrics on V1 and W and a bundle map

� W T V1 �! EOm:

We pass to the r –th suspension of .V1; 
h; z
h/ and denote it by the same symbols so
that now for example


hW V1 �! ŒRW �mCr :

On the other hand, the map

ˇ DH1jV1W V1 �! ŒRW �L�mCr

factors through a map

H W V1 �! ŒRW �mCr ;

while the map ž factors through a map z
H covering 
H . We need to show that the
.RW ; �/–manifolds .V1; 
h; z
h/ and .V1; 
H ; z
H / represent the same bordism class.
In fact we will construct a homotopy of .
H ; z
H / to .
h; z
h/.

In view of the Riemannian metric on L and a fixed trivialization of TL, we may
identify a neighborhood U of 0 in the vector space Rr with a neighborhood of pt
in L. Furthermore, we may identify a tubular neighborhood of V1 in V0 �L with
V1 �U so that the restriction of h to V1 �U is of the form

V1 �U �!W �U;

.v;u/ 7! .xh1.v;u/;u/

for some map xh1 . This map is fiberwise (over U ) homotopic to the map h1 � idU

through R–maps. Consequently, we may assume that hjV1�U coincides with h1�idU .

Let yY ! V1�U denote the trivial bundle with fiber W �U . Then there is an obvious
inclusion yY � yX which in its turn determines an inclusion J k. yY /� J k. yX /. Let us
recall that the restriction H1jV1 �U is given by the composition of

j khW V1 �U �! J k. yY /� J k. yX /

jetW J k. yY /
.6/
�! J k.T .V1 �U /;T .W �U //

.5/
�! ŒJ k

W �U �mCr :and
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To begin with we modify the Riemannian metrics on V1�U and W �U by homotopy
to Riemannian metrics given by products of those already fixed on V1 , W and U .
This determines a homotopy of the map (6), and therefore a homotopy of H1jV1 �U

and .
H ; z
H /.

Next we recall that the map (5) is determined by a bundle map

T .V1 �U /D T V1 �T U �! EOmCr :

We modify it by homotopy to a bundle map given by the composition

T V1 �T U ����! T V1˚ "
r ����! EOm˚ "

r ����! EOmCr??y ??y ??y ??y
V1 �U ����! V1 ����! BOm ����! BOmCr ;

where the left horizontal maps are obvious projections along the factor U , the middle
horizontal maps are determined by � , and the right horizontal maps are inclusions. This
determines a homotopy of (5) and a further homotopy of H1jV1 �U and .
H ; z
H /.

Let us observe now that the obtained pair .
H ; z
H / coincides with .
h; z
h/.

We may perturb the homotopy H relative to H0 and H1 so that H becomes transversal
to the submanifold

(7) ŒRW �mCr � fptg � Œ0; 1� in ŒRW �mCr �L� Œ0; 1�:

Then the inverse image V of ŒRW �mCr � fptg � Œ0; 1� under the map H is a compact
submanifold of V0 �L� Œ0; 1� with boundary @V that consists of two parts

V0 � fptg � f0g and V1 � f1g:

Now it suffices to prove the assertion that the composition

V
H jV
�! ŒRW �mCr � fptg � Œ0; 1�
�
�! ŒRW �mCrC1 � fptg � Œ0; 1�

�! ŒRW �mCrC1

can be covered by a bundle map

T V ˚ r" �! ��EOmCrC1

that leads to an .RW ; �/–bordism between the 1–step stabilizations of .V0; ˛; z̨/ and
.V1; ˇ; ž/.
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To verify the assertion, let us observe that the 1–step stabilization of the bundle map z̨
extends to a bundle map zH ,

T .V0 �L� Œ0; 1�/
zH

����! .�W �L ı�1;2/
�EOmCrC1??y ??y

V0 �L� Œ0; 1� ����! ŒRW �mCrC1 �L� Œ0; 1�;

covering the composition

H 0W V0 �L� Œ0; 1�
H
�! ŒRW �mCr �L� Œ0; 1�

�
�! ŒRW �mCrC1 �L� Œ0; 1�;

where �1;2 is the projection of ŒRW �mCrC1 �L� Œ0; 1� onto the product of the first
two factors.

The normal bundle � of V in V0�L� Œ0; 1� is trivial as it is isomorphic to the pullback
via H of the trivial normal bundle of the submanifold (7). Consequently the restriction
of the bundle map zH to V ,

T V ˚ �
zH jV
����! .� ı�1;2/

�EOmCrC1
D
����! ��

1
EOmCrC1??y ??y ??y

V
H 0

����! ŒRW �mCrC1 � fptg � Œ0; 1�
D
����! ŒRW �mCrC1 � Œ0; 1�;

where �1 is the projection of ŒRW �mCr � Œ0; 1� onto the first factor, leads to an
.RW ; �/–bordism of the 1–step stabilizations of the .RW ; �/–manifolds .V0; ˛; z̨/

and .V1; ˇ; ž/.

Lemma 11.5 The homomorphism  is injective.

Proof Let f W V0 ! W0 be a map representing an element Œf � 2 SB.W0/ in the
kernel of the homomorphism  . Then f determines an .RW0

; �/–structure in the
stable tangent bundle of V0 such that for a sufficiently big r , the structure map z̨0 in
the commutative diagram

T V0˚ r"
z̨0
����! ��EOmCr??y ??y

V0

˛0
����! ŒRW0

�mCr
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extends to a structure map z̨ in the commutative diagram

T V ˚ .r � 1/"
z̨

����! ��EOmCr??y ??y
V

˛
����! ŒRW �mCr

where W D W0 � Œ0; 1�, and V is a compact .mC 1/–dimensional manifold with
boundary @V D V0 .

Let yX ! V �L0 be the trivial bundle with fiber W �L0 , where L0 is a parallelizable
closed manifold of dimension r � 1 with a fixed trivialization of the tangent bundle.
As in the proof of Lemma 11.2, we use the map z̨ to construct a commutative diagram

T .V �L0/
zı

����! ��
W �L0

EOmCr??y ??y
V �L0

ı
����! ŒRW �L0 �mCr

that defines an .RW �L0 ; �W �L0/–structure in the stable tangent bundle of V �L0 .
Also, as in the proof of Lemma 11.2, we define a mapping

jetW J k. yX / �! ŒJ k
W �L0 �mCr :

Let C �V0�Œ0; a/ for some 0<a� 1 be a small collar neighborhood of V0 in V . We
may assume that in C�L0 the structure map ı coincides with jetıj k Œf � idŒ0;a/ � idL0 �.
Then, by the relative h-principle applied to the pair .V �L0;C�L0/, there is a homotopy
of ı to a map V �L0! ŒRW �L0 �mCr given by the composition jet ı j kh for some
genuine solution hW V �L0!W �L0 of R.

Again, as in the proof of Lemma 11.2, there is a regular value pt of the composition of h

and the projection of W �L0 onto the second factor. For a compact submanifold V1

defined as h�1.W � fptg/ we can show that

hjV1W V1 �!W � fptg;

is a solution of R. Since hj@V1 can be identified with f , this implies that the map
represents the trivial element in SB.W /.

The proof of Theorem 11.1 is complete.
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12 Proof of the weak bordism principle

Let Diffn denote the category of smooth (possibly noncompact) n–manifolds without
boundary and smooth (possibly nonproper) embeddings. In this section we consider
the covariant functor

B. � /W Diffn �! AG
(see Section 6) that takes a manifold W of dimension n onto the bordism group B.W /

of R–maps of .n� q/–dimensional manifolds into W , and prove the weak bordism
principle (see Definition 3.2) for B. � / with respect to the category Top2

# BOn of
pairs of topological spaces over the classifying space BOn of vector n–bundles.

To begin with, let us observe that the definition of the bordism group MOR.W / of
stable formal R–maps into an n–manifold W can be easily extended to that of the
bordism group of stable formal R–maps into a pair .X;AI'/ of topological spaces
over BOn .

Indeed, a K–invariant sequence R D fRs.q/g of differential relation basis Rs �

J k.Rs;RqCs/, with s � 0 and s � n� q , leads to a sequence of formal differential
relations ŒRX �s in the formal k –jet bundles ŒJX �s associated to the pair of bundles

.��1 EOs; .' ı�2/
�EOn˚ t"/ over BOs �X;

where �1 and �2 denote the projections of BOs �X onto the first and second factors
respectively, and t D q C s � n. Following Definition 9.1, we define the bordism
group MOR.X I'/ of stable formal R–maps into .X I'/ as the m–th bordism group
of maps of manifolds with .RX ; �/–structure in the stable tangent bundle, where
mD n� q , and .RX ; �/ is the .B; f /–sequence given by commutative diagrams as
in Definition 9.1. In other words, MOR.X I'/ is the m–th homotopy group of the
Thom spectrum MO^R.X I'/ associated to the tangent .RX ; �/–structures. Finally
we define the group MOR.X;AI'/ as the relative m–th homotopy group of the pair
of MO^R.X I'/ and its subspectrum MO^R.AI'jA/.

More generally we define the group MOR l.X;AI'/ as the relative l –th homotopy
group of the pair of MO^R.X I'/ and MO^R.AI'jA/. Furthermore, for each l � 0,
we define a functor MOR l on the category Top2

# BOn so that

MOR l W Top2
# BOn �! AG

is given by
MOR l W .X;A; '/ 7!MOR l.X;A; '/

and for each morphism

i W .X1;A1; '1/ �! .X2;A2; '2/
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of pairs of topological spaces over BOn , the homomorphism

MOR l.i/W MOR l.X1;A1; '1/ �!MOR l.X2;A2; '2/

is induced by the obvious map of pairs of spectra

.MO^R.X1I'1/;MO^R.A1I'1// �! .MO^R.X2I'2/;MO^R.A2I'2//:

In view of the Blakers–Massey theorem, it is easily verified that MO�R. � / determines
a homology theory on the category of pairs of topological spaces over BOn .

To complete the proof of the weak bordism principle for the functor B. � /, it suffices
to observe that Theorem 11.1 implies that B. � / is naturally equivalent to the functor
MOR. � / precomposed with the functor

GW Diffn �! Top2
# BOn

such that

� G takes a manifold W of dimension n onto the pair .X I'/ of the topological
space X underlying W and a map 'W X ! BOn classifying the vector bundle
inherited from T W ; and

� G takes a smooth embedding

i W W1 �!W2

in Diffn onto the morphism

G.i/W .X1; '1/ �! .X2; '2/;

where .Xi ; 'i/ WD G.Wi/ for i D 1; 2, that as a map of topological spaces is
given by the composition

X1
Š
�!W1

i
�!W2

Š
�!X2:

Theorem 12.1 Under the assumptions of the Main Theorem, the covariant functor B
satisfies the weak bordism principle.

13 A contravariant functor dual to MOR. � /

As it has been shown in the previous section, the functor MOR. � / associated to the
functor

B. � /W Diffn �! AG
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of bordism groups of maps satisfying a K–invariant relation R is defined only on the
category Top2

# BOn of pairs of topological spaces over BOn . In particular a number
of effective methods of homotopy theory are not available for MOR. � /. We will show,
however, that there is a contravariant functor H 0

R. � / dual to MOR. � / such that H 0
R. � /

is a cohomology functor in the classical sense, and there is a duality isomorphism

H 0
R.W /ŠMOR.W /

for any closed manifold W of dimension n.

To define H�R. � /, let us recall that EOt ! BOt , with t � 0, denotes the universal
vector t –bundle. There is a fiber bundle � W St ! BOt with the total space given by
the space of k –jets of R–maps

(8) .Rt�q; 0/ �! .EOt jb; 0/; with b 2 BOt ;

and with projection � taking the k –jet of a germ (8) onto the point b 2 BOt . A
construction similar to that in Definition 9.1 provides us with a .B; f /–sequence
.S; �/ given by the commutative diagrams

St ����! StC1

�

??y �

??y
BOt ����! BOtC1

where the horizontal maps are the canonical inclusions as in Definition 9.1 (cf the
definition of BJ in Section 2 where k D1).

Definition 13.1 The Thom spectrum associated to the normal .S; �/–structures de-
fines a generalized cohomology theory (in the classical sense). Its contravariant functors
are denoted by fH�R. � /g.

For a manifold W of dimension n0 , the group H r
R.W / is the r –th cobordism group

of maps into W of manifolds with an .S; �/–structure in the stable normal bundle. In
particular, every element of H r

R.W / is represented by a 4–tuple .V; i; ˛; z̨/ of

� a manifold V of dimension mD n0� r � q ,

� an embedding i W V ! Rt�r�q �W for sufficiently big t such that the com-
position of i and the projection Rt�r�q �W !W onto the second factor is
proper,

� a continuous map ˛W V ! St , and

� a fiberwise isomorphism z̨W � ! ��EOt covering ˛ , where � is the normal
vector bundle of V induced by the embedding i .
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Theorem 13.2 Under the assumptions of the Main Theorem there is a canonical
isomorphism H 0

R.W /! C.W / for any closed manifold W of dimension n.

Proof Let .V; i; ˛; z̨/ be a 4–tuple representing a given element of H 0
R.W /. We note

that since W is closed, the manifold V is closed as well. Let

(9) J k..t � q/"; �/ �! V

be the formal k –jet bundle over V associated to the pair of bundles over V , namely,
.t � q/" and the normal vector t –bundle � induced by i . We define a section s of the
bundle (9) by taking a point v 2 V onto the k –jet represented by the composition of a
map germ (8) representing ˛.v/ and the composition of two isomorphisms

EOt jb
.�j˛.v//�

������! ..�j˛.v//�/.EOt jb/
.z̨jv/�1

�����! �jv;

where b D �.˛.v//. There is a canonical inclusion

(10) J k..t � q/"; �/ �! J k.T V ˚ .t � q/";T V ˚ �/

of total spaces of k –jet bundles over V that takes the k –jet at v 2 V represented by a
germ f onto the k –jet at v represented by the germ idT V jv �f . Let

zsW V �! J k.T V ˚ .t � q/";T V ˚ �/

be the composition of s and the canonical inclusion (10). Let us observe that T V ˚ �

is canonically isomorphic to the pullback of .t � q/" ˚ T W with respect to the
composition

V �!Rt�q
�W �!W

of the embedding i and the projection of Rt�q �W onto the second factor. Con-
sequently, zs determines an .RW ; �/–structure on the stable tangent bundle of V ,
which in its turn, by Theorem 11.1, determines an element of C.W /Š B.W /. It is
easily verified that the obtained element in C.W / does not depend on the choice of the
representative of H 0

R.W /. Thus, there is a canonical map

�W W H
0
R.W / �! C.W /

which is, in fact, a homomorphism. A similar construction provides us with a homo-
morphism

��1
W W C.W / �!H 0

R.W /

inverse to �W . Thus the homomorphism �W is an isomorphism.
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It is easily verified that the homomorphisms ��1
W

in Theorem 13.2 determine a natural
transformation of functors on the category of closed manifolds of dimension n.

Now the Main Theorem readily follows from Theorem 13.2.

Theorem 13.3 Under the assumptions of the Main Theorem, the contravariant func-
tor C restricted to the full subcategory of closed manifolds of dimension n satisfies the
b-principle.

14 Applications

As has been mentioned, for a sequence R of K–invariant bases, the set of right bordism
classes of R–maps into a manifold W forms a semigroup, which is a priori not a group.
On the other hand, since MOR.W / is always a group, Theorem 11.1 implies that this
semigroup is often a group.

Corollary 14.1 If a sequence R of bases satisfies the conditions of Theorem 11.1,
then the right bordism classes of R–maps into a manifold W form a group.

We note that the assumptions in Corollary 14.1 are necessary as, for example, the right
bordism classes of submersions into a manifold W do not form a group. Corollary
14.1 was also independently observed by Szűcs [51] in the negative dimension case
and by Ando [6] in the general case.

Furthermore, the weak b-principle proved for the functor B allows us to use the
machinery of cohomology theory, notably spectral sequences and theorems on homology
of infinite loop spaces, in order to carry out explicit computations [44] (see also
Szűcs [51]).

The class of differential relations for which our theorem applies is large. For example,
as we will see next, it contains almost all Thom–Boardman differential relations.

14.1 Maps with prescribed Thom–Boardman singularities

Thom–Boardman singularities †I are singularities of smooth maps, each indexed
by a sequence I D .i1; : : : ; il/ of integers. For a definition and properties of Thom–
Boardman singularities we refer the reader to the original paper of Boardman [7].

Definition 14.2 Given a sequence I D .i1; : : : ; il/ of integers, the Thom–Boardman
basis RI

s � J k.Rs;RqCs/ is defined to be the complement to the set
S
†I0 where

the union is taken over I 0 > I with respect to the lexicographic order. It is well-known
that the relations RI

s , s � 0, form a sequence, which we will denote by RI , of open
K–invariant bases.
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It follows that solutions of differential relations associated with the basis RI
s are the

maps without Thom–Boardman singularities †I0 with index I 0 > I .

The homotopy principle for Thom–Boardman bases RI
s � J k.Rs;RqCs/, q � 0, was

proved by du Plessis [35] and a version of the h-principle in the case of the symbol
.1 � q; 0/ was proved by Eliashberg [9; 10] (see also Ando [3]), and then, in the
case of an arbitrary symbol I with I > .1� q; 0/, using the Eliashberg h-principle,
by Ando [4]. Consequently, we derive the bordism principle for Thom–Boardman
differential relations.

Corollary 14.3 Suppose that either q > 0 or q � 0 and I � .1� q; 0/. Then for the
Thom–Boardman sequence of bases RI

s � J k.Rs;RqCs/ the weak bordism principle
holds for the corresponding functor C on the category of closed manifolds and the
corresponding functor B on the category of manifolds.

14.2 Maps with additional structure

It is easy to extend the results to the case of bordism groups of manifolds with an
additional structure, eg, oriented manifolds, manifolds with almost complex structure
or spin manifolds. We refer the reader to the paper [11] of Eliashberg for the necessary
adjustments in the case of Lagrangian and Legendrian immersions.

14.3 Kazarian conjecture

Under the assumptions of the Main Theorem, for oriented J –cobordism groups we
can deduce the Kazarian conjecture [51], which relates rational cohomology groups
H�.BJ IQ/ of the classifying space BJ of J –cobordism groups with the cohomology
groups of S.J / D lim St .J /, provided of course that BJ exists. Namely it was
conjectured that the classifying space of J –cobordism groups is rationally equivalent
to the space

lim
t!1

�tCdS tCdSt .J /:

On the other hand, the latter space is rationally equivalent to �1BJ . Since �1BJ is
itself a classifying space of J –cobordism groups (by the Main Theorem), we establish
the Kazarian conjecture. In the negative dimension case the Kazarian conjecture is
proved by Szűcs [51].

14.4 Prospective applications

In view of the Rimányi-Szűcs construction BJ and the Kazarian construction KJ of
classifying spaces, the Main Theorem can be used to study diffeomorphism groups of
smooth manifolds (see Remark 2.4 and the discussion before it).
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15 Obstruction spectrum

Let R be a sequence of differential relation bases Rs � J k.Rs;RqCs/, with s � 0,
for which Theorem 13.2 holds. In this section we define1 a complete obstruction to the
existence of a cobordism of a given smooth map to an R–map.

Let R0 D fR0sg be the sequence of full differential relation bases R0s D J k.Rs;RqCs/,
with s � 0. Then the inclusions Rs �R0s lead to an inclusion i of the Thom spectrum
of H�R into the Thom spectrum of the cobordism group H

��q
R0 DN

� . Let O�R denote
the cofiber of i , the obstruction spectrum. Then for a manifold W there is a long exact
sequence of groups

� � � �!H
��q
R .W / �!N �.W /

j
�!O�R.W / �!H

�C1�q
R .W / �! � � � :

A proper smooth map f W V !W of dimension �q represents an element Œf � in the
cobordism group N q.W /. We define the obstruction class o.f;R/ 2Oq

R.W / as the
image of Œf � with respect to the homomorphism j .

Theorem 15.1 Let f W V !W be a map of dimension �q of closed manifolds. Then
o.f;R/ 2Oq

R.W / is a complete obstruction to the existence of a cobordism of f to an
R–map.

In his Habilitation thesis [27] (see also Szűcs [50]), Kazarian presented obstructions to
the existence of a cobordism of a given map to a map without certain multi-singularities
as cohomology operations with values in singular cohomology groups. Similarly, we
may view the map j W N �.W /!O�R.W / as a cohomology operation with values in
an extraordinary cohomology theory. Thus if R satisfies the assumptions of Theorem
15.1, then the complete obstruction to the existence of a bordism to an R–map is given
by a cohomology operation with values in an extraordinary cohomology theory.
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