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Orientation reversal of manifolds

DANIEL MÜLLNER

We call a closed, connected, orientable manifold in one of the categories TOP,
PL or DIFF chiral if it does not admit an orientation-reversing automorphism and
amphicheiral otherwise. Moreover, we call a manifold strongly chiral if it does not
admit a self-map of degree �1 . We prove that there are strongly chiral, smooth
manifolds in every oriented bordism class in every dimension � 3 . We also produce
simply-connected, strongly chiral manifolds in every dimension � 7 . For every
k � 1 , we exhibit lens spaces with an orientation-reversing self-diffeomorphism of
order 2k but no self-map of degree �1 of smaller order.

55M25; 57S17, 57N65, 57R19

1 Introduction

In this paper, we study the question of whether a manifold admits an orientation-
reversing self-map. Let M be a closed, connected, orientable manifold in one of the cat-
egories TOP, PL or DIFF. We call M chiral if it does not admit an orientation-reversing
automorphism in the respective category and amphicheiral if it does. For the sake of
clarity, we indicate the category by adverbs: eg a topologically chiral manifold does
not admit an orientation-reversing self-homeomorphism, whereas a smoothly amphi-
cheiral manifold is a differentiable manifold which admits an orientation-reversing self-
diffeomorphism. We extend this by the notion of homotopical chirality/amphicheirality
when we consider homotopy self-equivalences. Chiral manifolds in the strongest sense
do not admit self-maps of degree �1; we call them strongly chiral and define weakly
amphicheiral as the opposite. The definition of chirality may be extended to nonclosed
manifolds and to oriented manifolds with several components, both of which are not in
the focus of the present work.

Many familiar manifolds like spheres or orientable surfaces are smoothly amphicheiral:
in these cases mirror-symmetric embeddings into Rn exist, and reflection at the “equa-
torial” hyperplane reverses the orientation. On the other hand, instances of strongly
chiral manifolds have been known for many decades, eg the complex projective spaces
CP2k or some lens spaces in dimensions congruent 3 mod 4.
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A basic question which was not fully answered for any type of chirality by the known
examples is in which dimensions chiral manifolds exist. We solve this problem not
only for all dimensions but also under the finer differentiation of oriented bordism.
Trivially, a point is chiral, and all one- and two-dimensional manifolds are smoothly
amphicheiral.

Theorem A In every dimension � 3, every closed, smooth, oriented manifold is
oriented bordant to a connected manifold of this type which is strongly chiral.

In the proof, we first construct strongly chiral manifolds in every dimension � 3 and
then modify these to obtain examples in all bordism classes. The manifolds which
we construct in the first step are aspherical in odd dimensions and contain aspherical
manifolds as factors in a cartesian product in many even dimensions. In these cases,
it is the structure of the fundamental group and its endomorphisms which exclude
self-maps of degree �1. We therefore ask for other obstructions and restrict the analysis
to simply-connected manifolds.

Theorem B In dimensions 3, 5 and 6, every simply-connected, closed, smooth mani-
fold is smoothly amphicheiral. The analogous statements hold in the topological and
the PL categories. A simply-connected, closed, topological 4–manifold is topologically
amphicheiral if its signature is zero. If the signature is nonzero, the manifold is even
strongly chiral.

In every dimension � 7 there is a simply-connected, closed, smooth, strongly chiral
manifold.

In the amphicheiral case, it is also interesting to consider the minimal order of
orientation-reversing maps. We give examples from the literature which admit an
orientation-reversing diffeomorphism but none of finite order. We complement this
with amphicheiral manifolds where the minimal order of an orientation-reversing map
is finite but arbitrarily large:

Theorem C For every positive integer k , there are infinitely many lens spaces which
admit an orientation-reversing diffeomorphism of order 2k but no self-map of degree
�1 of smaller order.

Outline

In Section 2, we briefly survey known results and invariants which detect chirality.
We also quote results which imply that homotopical and strong chirality coincide
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for all relevant manifolds in this paper. In Section 3, we prove parts of Theorem A
and Theorem B by constructing strongly chiral manifolds in all dimensions � 3 and
simply-connected, strongly chiral manifolds in all dimensions � 7 except 9, 10, 13 and
17. These remaining four dimensions are dealt with in Section 4, which finishes the
proof of Theorem B. The proof of Theorem A is completed in Section 5 by extending
the examples to all oriented bordism classes in dimensions � 3. Finally, Section 6 is
devoted to the proof of Theorem C.

If not indicated otherwise, homology and cohomology are in this text always understood
with integral coefficients.

Terminology

Three distinct adjectives have been used in the literature to describe manifolds whose
orientation can be reversed by a self-map: “symmetric” (by Rueff [32, page 162] and
Kirby [15, Problem 1.23]), “amphicheiral” (by Siebenmann [36] and Saveliev [34] for
3–manifolds) and “reversible” (by Hirsch [9, 9.1.3, page 190] for surfaces). We chose
the pair chiral/amphicheiral since it is justified by two parallels between knot theory
and 3–manifold topology. The other two notions are dismissed since they either have
now other meanings (asymmetric manifolds of Puppe [30], symmetric spaces) or in
the case of “reversibility” the existing concept in knot theory would suggest the wrong
analogies.

First, if a 3–manifold admits a cyclic branched covering over an amphicheiral link it is
amphicheiral. More precisely, we prove the following statement in [26, Proposition 19].

Proposition D Let M be a triangulated 3–manifold and let L be a piecewise linear
link in S3 . Suppose that there is a PL–map pW M!S3 which is a cyclic branched cov-
ering with branching set L. If the link L is amphicheiral, then M is PL–amphicheiral.

The second parallel is the following: When a 3–manifold is formed by rational surgery
on a link in S3 , the manifold with the opposite orientation is obtained by surgery on
the mirror image of this link, with the negative surgery coefficients; see Saveliev [34,
Section 2.2, Section 3.4]. Thus, surgery on an amphicheiral link which is appropriately
labeled by rational surgery coefficients yields an amphicheiral 3–manifold. Since
every 3–dimensional manifold has a unique smooth structure, it is not necessary to
distinguish between topological, PL– and smooth amphicheirality here.

Acknowledgements This paper is a condensed version of a large part of my doctoral
thesis [26] written under the supervision of Professor Matthias Kreck. I would like to
thank him for his constant support during my doctoral studies. I also want to thank
Professor Shmuel Weinberger for several very useful comments and suggestions.
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2 Known examples and obstructions

In this section, we briefly survey known results and invariants which detect chirality.
The examples show that not all kinds of chirality coincide.

� A manifold with nonzero signature does not admit a self-map of negative degree,
in particular it is strongly chiral. Indeed, the intersection form of a closed, oriented,
4k –dimensional manifold is isomorphic to its negative if and only if its signature is
zero; see Milnor and Husemoller [23, Theorem 5.3]. In contrast, the antisymmetric
intersection form of a .4k C 2/–dimensional manifold is always isomorphic to its
negative [23, Corollary 3.5].

� The linking form of a closed, oriented, .2k � 1/–dimensional manifold gives
obstructions to amphicheirality if k is even. For example, a .4n� 1/–dimensional
manifold with H2n�1.M /Š Z=t is strongly chiral if �1 is not a quadratic residue
modulo t . If k is odd, the linking form is always isomorphic to its negative; see Wall
[39, Lemma 4(ii)].

� Explicit classification results up to oriented maps (diffeomorphisms, homotopy
equivalences etc.) give information about chirality. For example, lens spaces have been
classified up to orientation-preserving homotopy equivalence and homeomorphism/PL–
equivalence/diffeomorphism; see Milnor [22, Section 12] and Lück [20, Section 2.4].
There are lens spaces like L5.1; 1/ which are topologically chiral but homotopically
amphicheiral.

� A manifold with nonzero Pontrjagin numbers is topologically chiral by work of
Novikov [27].

� A closed, smooth, oriented manifold whose Pontrjagin numbers are zero is ori-
ented bordant to a manifold with an orientation-reversing smooth involution (see
Kawakubo [13] and Rosenzweig [31, page 5, lines 13–20]). This smoothly amphicheiral
representative can be chosen to be connected.

� A closed, smooth, oriented manifold is oriented bordant to its negative if and only
if all its Pontrjagin numbers vanish; see Wall [37].

� Many homotopy spheres are examples of topologically amphicheiral but smoothly
chiral manifolds; see Kervaire and Milnor [14]. Since the inverse of an element in the
group �n of exotic n–spheres is given by the manifold with the opposite orientation,
and for example we have �7 Š Z=28, there are 13 pairs of smoothly chiral, homotopy
7–spheres. Obviously, these manifolds are topologically amphicheiral. The standard
sphere and the exotic sphere of order 2 in �7 are smoothly amphicheiral.
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� In low-dimensional topology, more specialized invariants are available. The Casson
invariant is a Z–valued homeomorphism invariant for oriented integral homology
3–spheres, which reverses its sign with the orientation; see Saveliev [33, especially
Chapter 12]. For example, the Poincaré homology sphere has Casson invariant �1 [33,
Section 17.5] and is therefore topologically chiral.

A concept which produces chiral 3–manifolds in abundance, is homology bordism [33,
Section 11.4]. Since the homology bordism group ‚3

Z of oriented integral homology
3–spheres contains a free abelian group of infinite rank, this yields a countable infinite
number of homology 3–spheres, all of which are topologically chiral.

� The specialized techniques in 4–dimensional topology can be used to show smooth
chirality. Based on Donaldson invariants, Kotschick exhibits a smoothly chiral, simply-
connected 4–manifold (more precisely a minimal compact complex surface of general
type) with signature 0 [17, Theorem 3.7, Remark 3.9], in contrast to the topological
amphicheirality of such manifolds by Freedman’s results [5].

A closed, connected, orientable manifold M is called Hopfian if every map f W M!M

of degree one is a homotopy equivalence. Since a self-map f is a homotopy equivalence
if and only if f 2 is, also a self-map of degree �1 of a Hopfian manifold is a homotopy
equivalence. Every manifold with finite fundamental group is Hopfian. This has
an elementary proof using Whitehead’s theorem [40, Theorem 3] and the Umkehr
homomorphism in homology. Also note that a map of degree ˙1 between closed,
connected, orientable manifolds induces a surjection on the fundamental groups [8].
Orientable hyperbolic manifolds are also Hopfian according to Sela [35].

In summary, the notions of weak amphicheirality and homotopical amphicheirality
coincide for Hopfian manifolds. Likewise, homotopical chirality implies strong chirality
for Hopfian manifolds. We will use this several times, as all relevant manifolds in this
paper are Hopfian.

3 Strongly chiral manifolds in every dimension � 3

In this section, we prove the parts of Theorem A and Theorem B which make sense
to be dealt with together. In Section 3.1, a series of strongly chiral manifolds in
every odd dimension � 3 is constructed. In Section 3.2, we use cartesian products of
chiral manifolds to produce even-dimensional chiral manifolds in all dimensions n� 2

mod 4, n� 6. In dimensions congruent 0 modulo 4, many examples are known, like the
complex projective spaces CP2k , or any other manifold with nonzero signature. We
also obtain simply-connected, strongly chiral manifolds in all dimensions � 7 except
9, 10, 13 and 17.
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Shmuel Weinberger pointed out a different way of proving Theorem A to the author,
which yields strongly chiral manifolds in all possible dimensions as a quick corollary,
although not in a constructive and rather elementary manner: Belolipetsky and Lubotzky
proved in [2] that every finite group can be realized as the isometry group of a compact,
hyperbolic manifold of arbitrary dimension � 2. The manifolds of Belolipetsky and
Lubotzky are in fact orientable, and they are Hopfian according to Sela [35]. Thus
by Mostow rigidity, every self-map of degree ˙1 is homotopic to an isometry if the
dimension is at least 3. Now choose any finite group of odd order as the isometry
group. This way, one obtains many strongly chiral, hyperbolic manifolds in every
dimension � 3. Since the manifolds are aspherical, Proposition 5.1 can be used to
cover all oriented bordism classes in dimensions � 3.

3.1 Strongly chiral manifolds in every odd dimension � 3

Examples of strongly chiral manifolds in odd dimensions will be provided by mapping
tori of n–dimensional tori T n . We can exclude orientation-reversing maps by studying
the endomorphisms of the fundamental group.

Let f W T n! T n be an orientation-preserving diffeomorphism. The mapping torus
of f ,

Mf WD T n
� Œ0; 1�

ı
.x; 0/� .f .x/; 1/;

is a fibre bundle over S1 with fibre T n . According to the long exact sequence of
homotopy groups, Mf is aspherical, and its fundamental group is a semidirect product
�1.T

n/Ì�1.S
1/Š Zn ÌZ. Conjugation by lifts of elements in �1.S

1/ determines
a homomorphism  W �1.S

1/! Out.�1.T
n//, or isomorphically Z! GL.n;Z/. In

the present case,  is given by  .idS1/D f�W �1.T
n/! �1.T

n/, which can be seen
from the attaching maps of the 2–cells in an appropriate CW–decomposition of Mf

[26, page 33].

In the following, we require that f�� id is an isomorphism on �1.T
n/. Under these

circumstances, we show in [26, Corollary 26] that �1.S
1/ is the abelianization of

�1.Mf ;�/ and �1.T
n/ its commutator subgroup. Therefore, every endomorphism J

of �1.Mf / induces endomorphisms J ab and J .1/ on �1.S
1/ and �1.T

n/ respectively.
These two induced endomorphisms must be compatible with the action  :

(1)  .J ab.h//.J .1/.n//D J .1/. .h/.n// for all n 2 �1.Mf /, h 2 �1.S
1/
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Consider a self-map KW Mf !Mf . Since ŒMf ;S
1�ŠH 1.Mf /ŠZ, we can always

complete the following diagram so that it commutes up to homotopy:

T n //

K 00

��

Mf
//

K

��

S1

K 0

��

T n // Mf
// S1

This means that K is homotopic to a fibre-preserving map. We can thus employ the
naturality of the Serre spectral sequence, which has the highest E2 –term E

1;n
2
D

H 1.S1IH n.T n//ŠH 1.S1/˝H n.T n/ (constant coefficients since f� acts trivially
on H n.T n/). We deduce from the spectral sequence in [26, Lemma 28] that the degree
of K is given by the product deg K0 �deg K00D deg K0 �det.K00�W H1.T

n/!H1.T
n//.

Having chosen a basis for H1.T
n/ D �1.T

n/ Š Zn , every matrix F 2 SL.n;Z/
can be realized as the map on �1.T

n/ which is induced by an orientation-preserving
diffeomorphism f W T n! T n . Hence, we can construct a chiral .nC 1/–manifold
under the following circumstances:

Lemma 3.1 Suppose there is a matrix F 2 SL.n;Z/ such that

(a) det.F � id/D˙1,

(b) the equation FG DGF has no solution G 2 GL.n;Z/, det G D�1,

(c) the equation F�1G DGF has no solution G 2 SL.n;Z/.

Then a mapping torus Mf with f W T n!T n realizing F on �1.T
n/ŠZn is strongly

chiral.

Proof This lemma is a reformulation of the previous considerations, in particular the
condition given by Equation (1). The correspondence between the notation here and in
the previous paragraphs is

F$f�D .id/W �1.T
n/! �1.T

n/; F�1
$ .� id/;

J ab.id/DK0�.id/D˙ id 2 �1.S
1/; G$J .1/DK00�W �1.T

n/! �1.T
n/:

We show that every matrix F 2M.n�nIZ/, for even n, with characteristic polynomial

�F .X /DX n
�X C 1
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fulfills the lemma. A matrix with the required characteristic polynomial is given, eg,
by the following scheme:

F WD

�1 1 0

0 In�1

The value �F .0/D1 guarantees F 2SL.n;Z/, while �F .1/D1 ensures Condition (a).
Next we show that there is no solution to Equation (b). By basic linear algebra, the
eigenvalues of F are distinct pairs of conjugate complex numbers .�i ; x�i/, �i 2C nR.
Thus, F is diagonalizable over C and its determinant is given by

det F D

n=2Y
iD1

�i
x�i D

n=2Y
iD1

j�i j
2:

Suppose now that FG DGF , ie G lies in the centralizer of F . Since F has distinct
eigenvalues, linear algebra again tells us that G is a polynomial expression p.F /,
possibly with rational coefficients. Hence, G is also diagonalizable, and its determinant
is given by the products of polynomials

det G D

n=2Y
iD1

p.�i/p.�i/D

n=2Y
iD1

jp.�i/j
2
� 0:

This contradicts det G D�1, hence Equation (b) has no solution.

Now we show that there is no solution to Equation (c). Suppose GF DF�1G for some
G 2 SL.n;Z/. Then F and F�1 have the same eigenvalues. However, this possibility
can be easily excluded from the characteristic polynomial for n> 2; see Müllner [26,
page 36]. In the case nD 2, the two eigenvalues of F are in fact inverses of each other.
However, in this case G is necessarily of the form

G D

�
a b

aC b �a

�
with a; b 2 Z,

and its determinant det G D �.a2C abC b2/ D �1
2
.a2C .aC b/2C b2/ is always

negative. Thus, there is no solution to (c) in any case.
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3.2 Products of strongly chiral manifolds

The chiral manifolds that we constructed in odd dimensions can also be used to obtain
examples in even dimensions. We show that under certain conditions, products of
strongly chiral manifolds are again strongly chiral. Moreover, we use this method to
prove the existence of simply-connected, strongly chiral manifolds in sufficiently high
dimensions.

Proposition 3.2 Let † be a rational homology sphere and M a closed, connected,
orientable manifold of the same dimension which is not a rational homology sphere.
The product †�M is strongly chiral if and only if both factors are.

Example 3.3 Let † be a lens space of dimension n � 3 mod 4 with fundamental
group of order t � 3 mod 4, and let M be a strongly chiral mapping torus of the
same dimension, as constructed in Section 3.1. This yields examples of strongly chiral
manifolds in each dimension congruent 6 modulo 8.

Proof The lens space † is strongly chiral according to the second item in the list in
Section 2 since t contains a prime factor congruent 3 mod 4. Furthermore, we have
H1.M /D �1.M /ab Š Z, so M is not a rational homology sphere.

Proof of Proposition 3.2 The “only if” part is obvious, hence we deal with the
sufficiency of the condition. Let n be the dimension of † and M . In the following,
cohomology is understood with rational coefficients. By the Künneth theorem, we have

H n.†�M /ŠH n.†/˚H n.M /ŠQ2:

Consider the cohomology classes Œ†�� 2 H n.†/ and ŒM �� 2 H n.M / which are
Kronecker dual to the fundamental classes Œ†�, ŒM �. Let T W †�M !†�M be a
continuous map. The effect on H n.†�M / is given (with respect to the basis Œ†�� ,
ŒM �� ) by an integral matrix �

a b

c d

�
:

Since Œ†��[ ŒM �� is a generator of H 2n.†�M /ŠQ, the mapping degree of T is
given by ad C .�1/nbc . The coefficient b can be recovered as the mapping degree
of pM ı T ı i†W †!M , where the maps i† and pM are the usual inclusion and
projection.

By a theorem of Hopf following from the Umkehr homomorphism [10, Satz IIIa], every
map †!M must have degree zero since at least one Betti number of † is smaller
than that of M . Thus, the degree of T is equal to the product ad . Since neither of the
factors can be �1 by assumption, T cannot reverse the orientation.
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If † and M have different dimensions, chirality of the product is even easier to prove
since only the Künneth theorem is needed, not the argument with the Umkehr map.

Proposition 3.4 [26, Theorem 34] Let † be a rational homology sphere of dimen-
sion s and M a closed, connected, orientable manifold of different dimension m¤ s .
Also require that H s.M IQ/D 0. The product †�M is strongly chiral if and only if
both factors are.

Example 3.5 Let LDL1�� � ��Lk be a product of lens spaces of pairwise different
dimensions. Then L is strongly chiral if and only if this holds for each single factor.

This follows from Proposition 3.4 by induction. Note that the condition in the example
can be easily tested by the oriented homotopy classification of lens spaces [22, Sec-
tion 12.1]. Since strongly chiral lens spaces occur in all dimensions n� 3 mod 4, this
yields in particular strongly chiral manifolds in each dimension congruent 2 mod 4
starting from 10D 7C3. This finishes the construction of strongly chiral manifolds in
all dimensions � 3.

We now want to apply this approach to simply-connected, strongly chiral manifolds
and cover as many dimensions as possible. As “starting dimension” we cannot use 3 as
in the examples with nontrivial fundamental group. Instead, we use highly connected,
strongly chiral manifolds in dimensions congruent 3 mod 4 from 7 on as the “building
blocks”. Suitable manifolds are eg linear S2k�1 bundles over S2k with Euler class
6ŒS2k �� . These are .2k�2/–connected closed manifolds with first nontrivial homology
group H2k�1 Š Z=6. Since �1 is not a quadratic residue modulo 6, the linking form
forbids orientation reversal. (Note that an odd Euler class can only be achieved in
dimensions 7 and 15, due to the Hopf invariant one problem. The Euler class 6 is
always possible: pull back the sphere bundle of the tangent bundle TS2k by a smooth
map of degree 3.)

This provides us with simply-connected, strongly chiral manifolds in every dimension
n� 3 mod 4 starting from nD 7. For completing the examples in higher dimensions,
we need simply-connected, strongly chiral 7–manifolds that are not rational homology
spheres. Explicitly, we define N1 to be the connected sum of S3 � S4 with a 7–
manifold M 7 as constructed above. Similarly, N2 WD .S2 � S5/# M 7 . They are
strongly chiral because of the linking form.

Corollary 3.6 In every dimension n� 2 mod 4 starting from 14, there is a simply-
connected, strongly chiral manifold.
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Proof In dimension 14, take the product of a simply-connected, 7–dimensional
rational homology sphere M 7 from the previous paragraphs with either N1 or N2 and
apply Proposition 3.2. In higher dimensions, use products of two rational homology
spheres of different dimensions congruent 3 mod 4 and apply Proposition 3.4.

Corollary 3.7 In every dimension n� 1 mod 4 starting from 21, there is a simply-
connected, strongly chiral manifold.

Proof From dimension 25 on, we can take the product of the 14–dimensional manifold
M 7 �N2 from the previous corollary with another strongly chiral rational homotopy
sphere. Note that, according to the rational Künneth theorem, M 7�N2 has no rational
homology in degree 11 (and of course not in higher degrees congruent 3 mod 4). Thus,
Proposition 3.4 applies.

For dimension 21, consider M 21 WDM 7 �N1 �N2 . Here, we can argue in a similar
way as in the proof of Proposition 3.2; we only have to consider products of three
manifolds instead of two (see Müllner [26, Corollary 40]).

4 Amphicheirality and chirality of simply-connected mani-
folds

In this section, we prove Theorem B. The statements in dimensions 3 to 5 follow
from the classification results for simply-connected manifolds in these dimensions
more or less immediately. A closed, simply-connected 3–manifold is diffeomorphic
to the 3–sphere by the Poincaré conjecture, as proved by Perelman (see Morgan and
Tian [25]), and is hence smoothly amphicheiral. In dimensions 4 to 6, the classification
results were obtained respectively by Freedman [5], Barden [1] and Zhubr [41]. In [26,
Section 4.1], we provide the details to conclude amphicheirality from the classifications.
The classification statement in dimension 6 is considerably more complicated than in the
other dimensions, and we must add some smaller observations to prove amphicheirality.
Denote the second homology group of the 6–manifold M in question by G . All the
invariants of Zhubr can be expressed as numbers or in terms of G . One invariant is
for example the image of the fundamental class �D f�ŒM � 2H6.K.G; 2// under the
first nontrivial Postnikov map f W M !K.G; 2/. A necessary condition which has to
be verified is that � can be sent to �� by an automorphism of G . Indeed, we show
that for a finitely generated abelian group G , every element of H6.K.G; 2// is sent
to its inverse by the automorphism � id on G . We also show that all other invariants
are sent to the values for M with the opposite orientation under the maps which are
induced by � id on G .
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The main result of this section is the second part of Theorem B, where we claim the
existence of simply-connected, strongly chiral manifolds in every dimension � 7. We
constructed such manifolds in all dimensions congruent 1, 2 and 3 mod 4, except 9,
10, 13 and 17, in Section 3.2. The complex projective spaces CP2k clearly provide
simply-connected examples in dimensions congruent 0 mod 4. We prove that strongly
chiral, simply-connected manifolds exist in the remaining dimensions in Section 4.1
(dimensions 10 and 17) and Section 4.2 (dimensions 9 and 13).

These proofs are less constructive since the problem is more complicated than for an
arbitrary fundamental group. In fact, we divide the problem into two manageable parts:
(1) identify an obstruction to amphicheirality in the partial homotopy type and (2)
realize the obstruction by a simply-connected manifold.

The first step is done with the help of the Postnikov tower: By its functoriality up
to homotopy (see Kahn [12]), every self map of a space M ! M induces a map
Pk ! Pk on its Postnikov approximations pW M ! Pk (k D 1; 2; : : :) such that the
diagrams

M
p

//

��

Pk

��

M
p

// Pk

commute up to homotopy. The same holds for rational Postnikov approximations.
Whenever a homology class m 2Hn.P

k/ cannot be sent to its negative by any self-
homotopy equivalence of Pk , also the preimages .p�/�1.m/ in the homology of M

cannot be reversed.

To exploit this property, we construct an appropriate finite tower of principal K.�; n/–
fibrations (or simply a single stage) as a candidate for the Postnikov tower and fix an
element in the integral homology of one of the stages that is to be the image of the
fundamental class of the manifold. Then we prove that (by the mechanism that lies in
the particular construction) this homology class can never be mapped to its negative
under any self-map of a single Postnikov stage or of the partial Postnikov tower.

In the arguments given below, we do not relate the induced maps between successive
stages in the tower of fibrations by functoriality. (For P3! P2 , it is done, though,
explicitly and elementary in the proof of Lemma 4.6, and for P4

(0)! P3
(0)! P2

(0) we
will refer to the properties of minimal models instead of spaces.) The full naturality
statement involving all Postnikov stages at once is Kahn [12, Theorem 2.2].

In the second step, the obstruction is realized by proving that there is indeed an n–
dimensional manifold M with the correct partial homotopy type (ie a map pW M ! Pk
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which is a .kC1/–equivalence) and the correct image p�ŒM �Dm of the fundamental
class in the Postnikov approximation. This step involves bordism computations and
surgery techniques.

Remark One can also define chirality in the algebraic setting of Poincaré duality
algebras (see Papadima [29] or Meyer and Smith [21]), possibly with some extra
structure. The manifolds we construct in the following sections indicate interesting
types of Poincaré duality algebras to consider: eg Poincaré duality algebras over Z=p
(p > 2) with an action of the mod–p Steenrod algebra, rational differential algebras
and their minimal models and also integral lattices in rational Poincaré duality algebras.
A detailed treatment of such algebraic generalizations is outside the scope of this paper,
particularly since realizing the algebraic obstructions by manifolds is an essential part
of this work.

4.1 Dimensions 10 and 17

Theorem 4.1 There exists a simply-connected, closed, smooth, strongly chiral, 10–
dimensional manifold.

Proof We follow the outline described above and choose the Eilenberg–MacLane
space K.Z=3; 3/ as a candidate for the first nontrivial, single Postnikov stage. From
the structure of the subalgebra H�.K.Z=3; 3/IZ=3/ of the Steenrod algebra A3 (see
Hatcher [7, Section 4L]) and the universal coefficient theorems, we can deduce Lemma
4.2 below. As usual, P1W H 3.� IZ=3/! H 7.� IZ=3/ denotes the first Steenrod
power operation, and �3 is the reduction of integral coefficients modulo 3.

Lemma 4.2 [26, Lemma 48] Let � 2 H 3.K.Z=3; 3/IZ=3/ denote the canonical
generator. There is a homology class m 2H10.K.Z=3; 3// such that h�[P1�; �3mi

is nonzero in Z=3.

We claim that there is a 10–dimensional, 2–connected manifold M with first Postnikov
approximation f W M ! K.Z=3; 3/ such that the image f�ŒM � of the fundamental
class is m. Let i WD f �� 2H 3.M IZ=3/. If T W M !M is a homotopy equivalence,
i is multiplied by some factor k 2 Z=3: T �i D k � i . Then we have

deg T � hi [P1i; �3ŒM �i D hi [P1i;T��3ŒM �i

D h.T �i/[P1.T �i/; �3ŒM �i

D k2
hi [P1i; �3ŒM �i:
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By Lemma 4.2, the Kronecker product hi[P1i; �3ŒM �i is nonzero. Thus, deg T � k2

mod 3, and this is never congruent �1, so T cannot reverse the orientation.

Now we prove the existence of a 10–manifold with first Postnikov approximation
K.Z=3; 3/ and the correct image of the fundamental class. For the sake of simplicity,
we look for a framed manifold M . This task can be formulated as a bordism problem:
Show that there is an element .M; f / in the 10–dimensional singular framed bordism
group �fr

10
.K.Z=3; 3// that maps to m under the Thom homomorphism

�fr
10.K.Z=3; 3//!H10.K.Z=3; 3//

.M; f / 7! f�ŒM �:

The Thom homomorphism factors through the edge homomorphism

E110;0 ,!E2
10;0

in the Atiyah–Hirzebruch spectral sequence for the homology theory �fr
� ; see Conner[4,

Section 1.7] and Kochman [16, Section 4.2]:

�fr
10.K.Z=3; 3//�E110;0 ,!E2

10;0 ŠH10.K.Z=3; 3//

Thus, it is sufficient to prove surjectivity of the edge homomorphism.

In the following, we restrict ourselves to the reduced bordism group��fr
10.K.Z=3; 3//��

fr
10.K.Z=3; 3//:

This is no limitation: we actually produce manifolds which are nullbordant in �fr
10

.

The E2 –terms in the reduced Atiyah–Hirzebruch spectral sequence are given by

E2
r;s Š

zHr .K.Z=3; 3/I�
fr
s /:

Since there are no bordism groups of negative degree, the Atiyah–Hirzebruch spectral
sequence is located in the first quadrant, and we have

E1r;0 DErC1
r;0

:

It is sufficient to show that all the intermediate inclusions

EiC1
10;0
D ker di �Ei

10;0

are in fact bijections, ie we want to show that all differentials starting from E2
10;0

are
zero. The diagram below shows the relevant part of the Atiyah–Hirzebruch spectral
sequence for ��fr

10
.K.Z=3; 3//. It reveals that all terms E2

r;9�r
on the 9–line are zero.

Thus, the Thom homomorphism is surjective.
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// r

OO s

0 0 0 Z=3 0 0 0 .Z=3/2 Z=3 0 Z=3

0

0

0

0

0

0

0

0

0

E2
r;s Š

zHr .K.Z=3; 3/I�fr
s /

di

ff

Z

Z=2

Z=2

Z=24

0

0

Z=2

�

�

�

�fr
�

Now we have a framed manifold M together with a map

f W M !K.Z=3; 3/

such that f�ŒM � D m. We still need the correct third homology group. By surgery
below the middle dimension (see Kreck [18, Proposition 4]), .M; f / is bordant to
another manifold .M 0; f 0/ such that the new map

f 0W M 0
!K.Z=3; 3/

is a 5–equivalence. Hence, M 0 is 2–connected and H3.M
0/ is isomorphic to Z=3.

Since the bordism relation is understood over K.Z=3; 3/, ie it takes the maps f
respectively f 0 into account, the images of the fundamental classes f�ŒM � and f 0�ŒM

0�

are equal.

Corollary 4.3 There exists a simply-connected, closed, smooth, strongly chiral, 17–
dimensional manifold.

Proof The 10–dimensional manifold whose existence has just been shown has nonzero
Betti numbers only in degrees 0, 10 and possibly 5. By Proposition 3.4, the product
of this manifold with a 7-dimensional, strongly chiral rational homology sphere is
strongly chiral.
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4.2 Dimensions 9 and 13

In this section, examples of simply-connected, strongly chiral manifolds are given
in the last two missing dimensions. Before we start proving their existence, some
preliminaries are necessary.

As described above, we use the Postnikov tower of a simply-connected space. Two
successive stages Pn! Pn�1 of this tower form a principal fibration with a K.�; n/

as the fibre (see Griffiths and Morgan [6, Section VI.B]). This fibration is determined
up to fibre homotopy equivalence by the k –invariant knC1 2H nC1.Pn�1I�/.

Given a principal K.�; n/–fibration pW E!B , it is known that the k –invariant knC1

is the image of the canonical element � 2H n.K.�; n/I�/D Hom.�; �/ under the
transgression homomorphism which is the first possibly nonzero differential in the
cohomology Serre spectral sequence with � –coefficients:

dnC1W E
0;n
nC1

// E
nC1;0
nC1

Š Š

H n.K.�; n/I�/ H nC1.BI�/

We would like, however, to relate the k –invariant to the transgression in the Serre
spectral sequence with integer coefficients. We distinguish the transgressions for the
various coefficient groups in the following by a subscript to � .

Proposition 4.4 Suppose that � is a finitely generated, free abelian group. Let E!B

be a principal fibration with the fibre F ' K.�; n/. Assume that B is homotopy
equivalent to a CW–complex and Hi.B/ is finitely generated for i � nC 2. Then the
map

H nC1.BI�/ 7! Hom.H n.F /;H nC1.B//

k–invariant 7! transgression in the Serre spectral sequence

knC1 D ��.�/ 7! .�Z D dnC1W E
0;n
nC1
!E

nC1;0
nC1

/

coincides with the chain of natural isomorphisms

H nC1.BI�/ !H nC1.BIHn.F // (Hurewicz map)

 H nC1.B/˝Hn.F / (Universal coefficient theorem)

!Hn.F IH
nC1.B// (Universal coefficient theorem)

! Hom.H n.F /;H nC1.B//: (Universal coefficient theorem)

Note that all relevant Ext and Tor groups in the universal coefficient theorems vanish
because Hn�1.F /DH nC1.F /D 0 and Hn.F / is finitely generated free.
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Outline of proof A detailed proof is given in [26, Proposition 56]. The idea is to
prove commutativity of the following diagram:

Hom.H n.F /;H n.F //
Hom.id;�Z/

// Hom.H n.F /;H nC1.B//

Hn.F IH
n.F //

OO

.�Z/�

coefficient change
// Hn.F IH

nC1.B//

OO

H n.F /˝Hn.F /

OO

��

�Z˝id
// H nC1.B/˝Hn.F /

OO

��

H n.F IHn.F //

��

�Hn.F /
// H nC1.BIHn.F //

��

Hom.Hn.F /;Hn.F // // Hom.HnC1.B/;Hn.F //

All vertical maps are parts of universal coefficient sequences, and are all isomorphisms
except for the dotted arrow at the bottom right. Remembering the maps in the universal
coefficient theorem and according to the known relation between the k –invariant and
the transgression with Hn.F /–coefficients, elements are mapped in the following way:

id � // �Z

�

_

OO

�

_
OO

�

_
OO

_
��

�

_
OO

_
��

�
� //

_
��

knC1

id

Thus, the maps are exactly as stated in Proposition 4.4.

4.2.1 The 9–dimensional example

Theorem 4.5 There exists a simply-connected, closed, smooth, strongly chiral, 9–
dimensional manifold.
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Summary of proof The obstruction to amphicheirality in the Postnikov tower is a
combination of rational and integral information. First, we construct a candidate for the
Postnikov approximation P4! P3! P2 of the desired manifold M together with a
candidate for the image of the fundamental class m 2H9.P

4/. We show that there
are very few automorphisms of H2.P

3/ that can be induced from a self-homotopy
equivalence P3! P3 .

Let P4
(0)! P3

(0)! P2
(0) be the corresponding rational Postnikov tower and denote by

mQ the image of m in H9.P
4
(0)/. We show that mQ cannot be reversed by a self-map

of P4
(0) that induces one of the above automorphisms on H2 (tensored with Q).

A short bordism argument shows that there really is a 9–dimensional manifold M

together with a map gW M ! P4 inducing the correct image of the fundamental class,
ie g�ŒM �Dm. By surgery, we alter M to M 0 so that g0W M 0!P3 is a 4–equivalence
and gW M 0! P4! P4

(0) is rationally a 5–equivalence. Due to functoriality of the
Postnikov approximations P3 and P4

(0) , M 0 is strongly chiral.

Construction and automorphisms of P3 We start with a candidate for the Postnikov
tower of fibrations P4 ! P3 ! P2 of the desired manifold M . As the base, we
choose P2 Š K.U; 2/ with U Š Z3 . We fix a basis .a; b; c/ of the dual group
U_ WD Hom.U;Z/. Likewise, we let V Š Z3 and fix a basis .A;B;C / of the dual
group V _ . The space P3 is defined as a principal fibration over P2 with the fibre
K.V; 3/. By Proposition 4.4, there is a bijection between the possible k –invariants
and the first differential in the Serre spectral sequence. This correspondence allows us
to define the fibration by its transgression

� W V _! S2.U_/

A 7! bc; B 7! 2ac; C 7! 3ab:

Here, we used that the base is homotopy equivalent to .CP1/3 , whose cohomology
algebra is the polynomial algebra ZŒa; b; c�D S�.U_/.

The cohomology of P3 can be computed by the Serre spectral sequence [26, page 65].
This yields the following cohomology groups:

i H i.P3/ generators

0 Z 1

1 0

2 U_ a; b; c

3 0

4 Z3˚Z=2˚Z=3 a2; b2; c2; ac; ab

5 Z2 2aA� bB; 3aA� cC
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Lemma 4.6 Let T W P3! P3 be a homotopy equivalence. Then the induced map on
H 2 is necessarily of the form

(2)

0@˙1 0 0

0 ˙1 0

0 0 ˙1

1A
with respect to the basis .a; b; c/.

Proof Since P2 is an Eilenberg–MacLane space K.U; 2/ and the projection P3!P2

induces an isomorphism on H 2 with any coefficients, the map T and the Postnikov
fibrations can be complemented to a homotopy-commutative square:

P3 T
//

��

P3

��

P2 // P2

By the homotopy lifting property of a fibration, the map T is homotopic to a fibre-
preserving map T 0 . This yields a restriction to the fibre, T 0jK.V;3/ , in addition to
the induced map on the base K.U; 2/. For simplicity, we write the induced maps in
cohomology simply as T � . From the functoriality of the Serre spectral sequence, we
get

(3) T ��.v/D �.T �v/

for every v 2 V _ .

Express the induced map on H 2.P3/D U_ by a matrix

M WD

0@g h i

k l m

p q r

1A 2M.3� 3IZ/:

By Equation (3), we have

�.T �C /D T �.�.C //D T �.3ab/D 3.gaC kbCpc/.haC lbC qc/:

Since the right hand side is in the image of � , the coefficients of a2 , b2 and c2 must
be zero, ie gh D kl D pq D 0. Considering the images of A and B in the same
manner, we obtain that in each row of M , the product of two arbitrary entries must
vanish. Thus there is at most one nonzero entry in each row of M .

Since M is a unimodular matrix, it must be the product of a permutation matrix
and a diagonal matrix with eigenvalues ˙1. We want to show that the only possible
permutation is the identity.
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Suppose that the permutation is a transposition, eg .a $ b/. This would imply
�.T �A/D T �.�.A//D T �.bc/D˙ac but only multiples of 2ac are in the image
of � . Likewise, the other transpositions .b$ c/ and .a$ c/ as well as the 3–cycles
.a! b! c/ and .c! b! a/ are excluded.

Construction of P4 and m The next Postnikov stage, P4 , is again constructed as
a principal K.�; n/–fibration. We choose the fibre as a K.W; 4/ with W Š Z2 and
a basis ˛; ˇ of the dual group W _ . The k –invariant is again determined by the
transgression, which is chosen as the isomorphism

� W W _!H 5.P3/

˛ 7! 2aA� bB; ˇ 7! 3aA� cC:

Below, the spectral sequence for this fibration immediately shows that H 5.P4/D 0

and therefore H5.P
4IQ/D 0. This result is needed later in Proposition 4.9. Blank

entries in the following diagram represent the trivial group.

// p

OOq

Z � � Z2

W _

� � � � � �
_

_

_

_

_

_

� � �

E
p;q
5
ŠE

p;q
2
ŠH p.P3IH q.W; 4//

0 1 2 3 4 5

0

1

2

3

4

5

Lemma 4.7 There is a class m 2H9.P
4/ such that

� m is an element of infinite order,
� the image of m in H9.P

4
(0)/ is never mapped to its negative under any self-map

of P4
(0) such that the induced map on H 2.P4

(0)/ is of the form (2).

By P4
(0) , we mean the rational localization of P4 , as described in Griffiths and Morgan

[6, Chapter 7]. The above properties of m obviously remain if m is replaced by a
nonzero multiple.

Proof Consider the rational cohomology of P4
(0) . The minimal model for it (uniquely

determined up to isomorphism) is the free, graded-commutative, rational differential
graded algebra

M WDQŒa0; b0; c0;A0;B0;C 0; ˛0; ˇ0�
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with degrees ja0j D jb0j D jc0j D 2, jA0j D jB0j D jC 0j D 3 and j˛0j D jˇ0j D 4 and
differentials

da0 D db0 D dc0 D 0;

dA0 D b0c0; dB0 D 2a0c0; dC 0 D 3a0b0;

d˛0 D 2a0A0� b0B0; dˇ0 D 3a0A0� c0C 0:

The generators are chosen so that a0 2M2 maps to a 2H 2.P4
(0)/ under the isomor-

phisms

H�.M/ŠH�.P4
(0)IQ/ŠH�.P4

IQ/;

and likewise for the other generators. These isomorphisms are natural with respect
to self-maps of P4 . For the second isomorphism, this follows immediately from
the universal property of a localization; see Griffiths and Morgan [6, Theorem 7.7
and Definition on page 90]. The naturality of the first isomorphism is proved in [6,
Theorem 14.1].

Consider the element .d˛/ˇ�ABC 2M9 . It is easily verified that it is closed, thus it
represents a cohomology class xmQ 2H 9.M/ŠH 9.P4

(0)/. The cohomology class is
nonzero since there is no expression in M8 whose differential contains a summand
ABC .

Let mQ 2H9.P
4
(0)/ be a homology class such that h xmQ;mQi 2Q is nonzero. The

class mQ itself might not be in the image of H9.P
4/ ! H9.P

4
(0)/ but a nonzero

multiple of mQ certainly is. We replace mQ by this multiple and choose a preimage
m 2H9.P

4/.

Now consider an automorphism of M. Note that the differentials in every Hirsch
extension which is used to build M are injective, ie d is injective on the vector spaces
QfA;B;C g and Qf˛; ˇg. For this reason, the automorphism of M is completely
determined by the restriction to the base degree M2 DQfa; b; cg.

Let Ta be the automorphism of M2 which is given by

a 7! �a; b 7! b; c 7! c:

The automorphism Ta extends uniquely to M by

A 7!A; B 7! �B; C 7! �C; ˛ 7! �˛; ˇ 7! �ˇ:

It can be quickly checked that Ta fixes xmQ . Likewise, the automorphisms Tb and Tc

which reverse b respectively c fix xmQ . Hence, every automorphism T of P4 that
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induces a diagonal matrix of the form (2) on H 2.P4
(0)/Š H 2.M/ŠM2 fixes xmQ .

Since the evaluation is natural, we have

hT�mQ; xmQi D hmQ;T
�
xmQi D hmQ; xmQi;

so mQ cannot be reversed by T . The same clearly holds for m.

Bordism argument

Proposition 4.8 There is a framed, closed, smooth, 9–dimensional manifold M

together with a map gW M ! P4 such that g�ŒM � is a nonzero multiple of m 2

H9.P
4/.

Proof In analogy to the 10–dimensional case, it is sufficient to investigate the differ-
entials starting from Ek

9;0
in the Atiyah–Hirzebruch spectral sequence for �fr

�.P
4/.

Since all coefficient groups �fr
i for i > 0 are finite abelian groups, each of the finitely

many differentials has a nonzero multiple of m in the kernel, so a nonzero multiple
of m survives to the E1–page.

Surgery In order to exploit the functoriality of the Postnikov towers, we aim to replace
M by surgery with a manifold M 0 such that the corresponding map g0W M 0!P4 is a
4–equivalence and rationally a 5–equivalence. Note also that M 0 is then automatically
simply-connected.

Since M is framed, its stable normal bundle �W M ! BO is trivial. Thus, there is a lift
of � to the path space EO' P BO'�. Fix any such lift y�W M ! EO. Together with
the map g from the previous proposition, we use this to define a fibration and a lift

B

�
��

P4 �EO
(projection to EO,
then end point map)

��

M
�

//

x�

==

BO M
�

//

g�y�
==

BO :

as

The lift x� is a normal B–structure on M in the language of Kreck [18, Section 2].
By [18, Proposition 4], .M;g/ is bordant over P4 to .M 0;g0/ such that g0 is a 4–
equivalence. The proof of Theorem 4.5 is completed by the following proposition. This
is an extension of Kreck’s surgery technique below the middle dimension to surgery on
rational homology classes in the middle dimension. We give a detailed proof in [26,
Proposition 64].

Algebraic & Geometric Topology, Volume 9 (2009)



Orientation reversal of manifolds 2383

Proposition 4.9 Let M 0 be an m–dimensional, closed, smooth, simply-connected
manifold with normal B –structure x�0W M 0!B which is a Œm=2�–equivalence. Assume
that m is odd and at least 5. Also assume that HŒm=2�C1.BIQ/D 0. Then .M 0; x�0/

can be replaced by a finite sequence of surgeries with .M 00; x�00/ such that x�00W M 00!B

is again a Œm=2�–equivalence and additionally �Œm=2�C1.B;M
00/˝QD 0.

4.2.2 Extension to dimension 13

Theorem 4.10 Let M be a manifold as in the previous section with all described
properties. The product N WDM �CP2 is a simply-connected closed, smooth, strongly
chiral, 13–dimensional manifold.

Idea of proof The Postnikov tower Pk
N

of N is very similar to the Postnikov tower
of M . We have eg P2

N
' .CP1/4 and P3

N
' P3 � CP1 . With an analogous

computation to Lemma 4.6 it is proved that for a homotopy equivalence T W P3
N
!P3

N
,

the induced map on H 2 is necessarily of the form0BB@
˙1 0 0 �

0 ˙1 0 �

0 0 ˙1 �

0 0 0 ˙1

1CCA
with respect to a suitable basis .a; b; c;x/ for H 2.P3

N
/.

The localization P4
N;(0) has the minimal algebra M˝QŒx�, where M is the rational min-

imal algebra of P4
(0) . The fundamental class of N is detected by ..d˛/ˇ�ABC /x2 2

H 13.P4
N;(0)/ and cannot be reversed by any map with matrix form as above.

5 Strongly chiral manifolds in all bordism classes

In this section, we finish the proof of Theorem A by splitting it into three separate
cases: Proposition 5.1 shows the existence of strongly chiral manifolds in all bordism
classes in all odd dimensions � 3, Proposition 5.2 in the even dimensions � 6, and
Theorem 5.5 deals with dimension four and signature zero. Recall that the bordism
classes in dimension four are detected by the signature (see Milnor and Stasheff [24,
Chapters 17, 19]), and a manifold with nonzero signature is strongly chiral.

Proposition 5.1 Given an aspherical, strongly chiral, closed, smooth, n–dimensional
manifold, there are strongly chiral manifolds in every n–dimensional oriented bordism
class.
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Proof Denote the given manifold by M . By a surgery argument, every oriented
bordism class in dimensions � 2 contains a simply-connected representative N . We
claim that M # N does not admit a self-map of degree �1. The collapsing map
pW M # N !M has degree 1 and induces an isomorphism on the fundamental group.
Since M is aspherical, it is the first Postnikov stage of M # N . Since the Postnikov
approximation is functorial up to homotopy and the image of the fundamental class
p�ŒM # N �D ŒM � cannot be mapped to its negative, M # N is chiral.

Since N runs through all n–dimensional bordism classes, the connected sum M # N

does as well, which proves the proposition.

The aspherical manifolds assumed in Proposition 5.1 can for example be the explicit
odd-dimensional, strongly chiral manifolds from Section 3.1. One can also apply
the proposition to the manifolds of Belolipetsky and Lubotzky [2], thus finishing the
alternative proof of Theorem A. The proof given below with its separate treatment of
dimension 4 is still interesting since eg Theorem 5.5 produces manifolds with finite
fundamental group.

Proposition 5.2 [26, Proposition 74] In every even dimension �6 and every oriented
bordism class, there is a strongly chiral, connected representative.

Proof Instead of the n–dimensional manifold M above use a product M n�3 �L3 ,
where L3 is a strongly chiral, 3–dimensional lens space and M n�3 is one of the
manifolds from Section 3.1. Since strong chirality of lens spaces is detected by the
cohomology structure, also the induced image of the fundamental class ŒL� under the
inclusion L3 � L1 to the corresponding infinite-dimensional lens space cannot be
reversed by a self-map. By examining the possible endomorphisms of the fundamental
group, it can be shown that with our choice of M from Section 3.1, the image of the
fundamental class ŒM n�3 �L3� can never be reversed in the homology of the first
Postnikov approximation M n�3�L1 . Therefore, by a very similar argument as in the
previous lemma, all connected sums .M �L/# N for simply-connected manifolds N

are strongly chiral.

It remains to prove that there are strongly chiral, 4–dimensional manifolds with
signature zero. Since every simply-connected, closed 4–manifold with signature
zero is topologically amphicheiral, such a manifold must certainly have a nontrivial
fundamental group. We use again the idea that the obstruction to amphicheirality should
already be manifest in the 1–type, as it was in the two preceding propositions.
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Proposition 5.3 Let � be a finite group such that every automorphism of � is an
inner automorphism and there is an element m 2 H4.�/ of order greater than two.
Then there is a closed, connected, smooth, strongly chiral 4–manifold with fundamental
group � and signature equal to any given value.

Proof In analogy to the arguments for Theorem 4.1 and Theorem 4.5, consider the ori-
ented bordism group �SO

4
.K.�; 1//. The Atiyah–Hirzebruch spectral sequence below

shows that there is no differential from or to E2
4;0

. Hence, the Thom homomorphism
�SO

4
.K.�; 1//!H4.K.�; 1// is surjective. Let .M 0; f 0/ be a preimage of m.

// r

OOs

Z �ab � � H4.�/

0

0

0

0

0

Z
E2

r;s ŠHr .K.�; 1/I�
SO
s /

di

hh

By surgery below the middle dimension, .M 0; f 0/ can be altered to .M; f / in the
same bordism class such that f W M ! K.�; 1/ is a 2–equivalence; see Kreck [18,
Proposition 4]. The signature of M can then be corrected to any value by taking
the connected sum with several copies of CP2 or �CP2 . The map f is tacitly
precomposed with the collapsing map M #˙CP2!M , which is also a 2–equivalence.

The map f is a first Postnikov approximation for M , and so every homotopy equiva-
lence of M induces an automorphism of K.�; 1/. Since every automorphism of �
is inner and inner automorphisms induce the identity on group homology (see Brown
[3, Proposition II.6.2]), m D f�ŒM � is fixed under any automorphism of � . Thus,
since m ¤ �m, the fundamental class ŒM � can never be sent to its negative under
any homotopy equivalence of M . Since manifolds with finite fundamental group are
Hopfian, every map M !M of degree ˙1 is a homotopy equivalence.

In the rest of this section, we present an infinite set of finite groups that fulfill the
requirements of Proposition 5.3. For this, a certain family of finite groups is studied,
which all have only inner automorphisms. An infinite subset of these groups also fulfills
the condition on the fourth homology group (Proposition 5.4).

Let p1; : : : ;pk be pairwise distinct odd primes. Let Gi be the finite split metacyclic
group Gi WDZ=pi ÌZ=.pi�1/ defined by an isomorphism Z=.pi�1/ŠAut.Z=pi/.

Every automorphism of the product G1 � � � � �Gk is inner. This extends an example
in Huppert’s book [11, Beispiel I.4.10], where the case of a single factor is proved. For
the author’s full proof, inspired by the cited reference; see [26, Proposition 77].
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We now turn to the homology groups of G1�� � ��Gk with constant integral coefficients.
Wall computed in [38] the integral homology of finite split metacyclic groups. Applying
the Künneth theorem to this computation, we easily get the following result:

Proposition 5.4 [26, Proposition 80] The group G1 � � � � �Gk has an element of
order greater than 2 in H4.G/ if and only if there are indices i; j 2 f1; : : : ; kg, i ¤ j

such that either pi D 3 and pj � 1 mod 3 or gcd.pi � 1;pj � 1/ > 2.

In summary, we proved that the following theorem:

Theorem 5.5 There are infinitely many (with finite fundamental groups of different
order) closed, connected, smooth, strongly chiral 4–manifolds with the signature equal
to any given value.

6 Orientation-reversing diffeomorphisms of minimal order

Another facet in the study of orientation reversal is the following:

Question If a manifold is smoothly amphicheiral, what is the minimal order of an
orientation-reversing diffeomorphism?

Siebenmann presented a 3–manifold that admits an orientation-reversing diffeomor-
phism but none of finite order [36, page 176]. Another example is obtained by combining
two theorems: Kreck proved in [19] that there are infinitely many closed, simply-
connected, smooth 6–manifolds on which no finite group can act effectively. However,
Theorem B asserts that every such manifold is smoothly amphicheiral. We can conclude:

Proposition 6.1 There are infinitely many closed, simply-connected, smooth 6–
manifolds which admit an orientation-reversing diffeomorphism but none of finite
order.

In view of diffeomorphisms of finite order, let f W M !M be an orientation-reversing
diffeomorphism of order 2k � l with l odd. Then f l is an orientation-reversing
diffeomorphism of order 2k . Thus, only powers of two are relevant for the minimal
order of an orientation-reversing diffeomorphism, and we ask the following:

Question Given k > 1, is there a manifold which admits an orientation-reversing
diffeomorphism of order 2k but none of order 2k�1 ?
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This question can be answered in the affirmative. The key to one direction is that the
possible degrees of self-maps of lens spaces are well-known. Indeed, let L be a lens
space of dimension 2n� 1 with fundamental group Z=r . There is a self-map of L

with degree d 2 Z inducing the endomorphism x 7! e �x on the fundamental group if
and only if en � d mod r , as proved by Olum [28, Theorem V]. We get the following
statement as a corollary.

Lemma 6.2 A lens space of dimension 2n�1 with fundamental group of order r > 2

does not admit a self-map of degree �1 whose order is a divisor of n.

As immediate examples, this shows that no 3–dimensional lens space admits an
orientation-reversing involution and no 7-dimensional lens space admits an orientation-
reversing diffeomorphism of order less than 8.

To complement Lemma 6.2, we construct lens spaces with orientation-reversing diffeo-
morphisms of minimal order. Let L be a lens space with prime fundamental group
Z=p , p � 5, and dimension p� 2. Let p� 1D 2k � l be the factorization into even
and odd parts. By Lemma 6.2, L has no orientation-reversing diffeomorphism of
order 2k�1 .

Since p is prime, the group of multiplicative units in Z=p is a cyclic group of order
p � 1. Let c 2 Z=p be a primitive root mod p , ie a generator of this group. In the
following, abbreviate .p�1/=2 by n. Consider the lens space L WDLp.c; c

2; : : : ; cn/.
We follow the convention that L is formed as the quotient of the unit sphere Sp�2�Cn

under the Z=p–action

.z1; : : : ; zn/ 7!
�

exp
�

2� ic
p

�
� z1; : : : ; exp

�
2�icn

p

�
� zn

�
:

The diffeomorphism

zf W Sp�2
! Sp�2

.z1; z2; : : : ; zn/ 7! .z2; : : : ; zn; Sz1/

preserves the Z=p–orbits. (Here we use that cn��1 mod p because both sides of the
equation are the unique element of order two in the cyclic group of units.) Moreover,
zf reverses the orientation, so it induces an orientation-reversing diffeomorphism f on

the lens space L. It follows from the definition that zf 2n D zf p�1 D id. This implies
that f l is an orientation-reversing diffeomorphism of order 2k .

By Dirichlet’s theorem, the arithmetic progression

2k
C 1; 3 � 2k

C 1; 5 � 2k
C 1; : : :

contains infinitely many primes. Thus, for every positive integer k , there are suitable
primes p , and this finally proves Theorem C.
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