Quasimorphisms and laws

DANNY CALEGARI

Stable commutator length vanishes in any group that obeys a law.

20E10; 20F65, 57M07, 20J05

If G is a group and g is an element of the commutator subgroup [G, G], the *commutator length* of g, denoted cl(g), is the least number of commutators in G whose product is g. The *stable commutator length*, denoted scl(g), is the limit $scl(g) := \lim_{n\to\infty} cl(g^n)/n$.

A group *G* is said to obey a *law* if there is a free group *F* (which may be assumed to have finite rank) and a nontrivial element $w \in F$ so that for every homomorphism $\rho: F \to G$, we have $\rho(w) = \text{id}$. For example, abelian (or, more generally, nilpotent or solvable) groups obey laws. The free Burnside groups B(m, n) with $m \ge 2$ generators and odd exponents $n \ge 665$ are perhaps the best known examples of non-amenable groups that obey laws; see for example Adyan [1].

The point of this note is to prove the following:

Main Theorem Let G be a group that obeys a law. Then scl(g) = 0 for every $g \in [G, G]$.

The proof is very short, given some basic facts about stable commutator length, which we recall for the convenience of the reader. A basic reference is Bavard's paper [2] or the author's monograph [3], especially Chapter 2.

Definition 1 A *homogeneous quasimorphism* on a group *G* is a function $\phi: G \to \mathbb{R}$ that restricts to a homomorphism on every cyclic subgroup, and for which there is a least number $D(\phi) \ge 0$ (called the *defect*) so that for any $g, h \in G$ there is an inequality $|\phi(gh) - \phi(g) - \phi(h)| \le D(\phi)$.

The defect satisfies the following formula:

Lemma 2 [2, Lemma 3.6] or [3, Lemma 2.24] Let ϕ be a homogeneous quasimorphism. Then there is an equality

$$\sup_{g,h\in G} |\phi([g,h])| = D(\phi).$$

Published: 12 January 2010

DOI: 10.2140/agt.2010.10.215

Bavard duality (see [2] or [3, Theorem 2.70]) says that for any $g \in [G, G]$, there is an equality $scl(g) = sup_{\phi} \phi(g)/2D(\phi)$ where the supremum is taken over all homogeneous quasimorphisms ϕ with nonzero defect. In particular, scl is nontrivial on G if and only if G admits a homogeneous quasimorphism with nonzero defect.

On the other hand, there is a topological formula for scl. Let X be a space with $\pi_1(X) = G$, and let $\gamma: S^1 \to X$ be a free homotopy class representing the conjugacy class of $g \in G$. If Σ is a compact, oriented surface without sphere or disk components, a map $f: \Sigma \to X$ is *admissible* if the map $\partial f: \partial \Sigma \to X$ can be factorized as $\partial \Sigma \xrightarrow{d} S^1 \xrightarrow{\gamma} X$. For an admissible map, define $n(\Sigma)$ by the equality $d_*[\partial \Sigma] = n(\Sigma)[S^1]$ in H_1 ; i.e. $n(\Sigma)$ is the degree with which $\partial \Sigma$ wraps around γ . By reversing the orientation of Σ if necessary, we assume $n(\Sigma) \ge 0$. With this notation, one has the following formula:

Lemma 3 [3, Proposition 2.10] With notation as above,

$$\operatorname{scl}(g) = \inf_{\Sigma} \frac{-\chi(\Sigma)}{2n(\Sigma)}$$

where χ denotes Euler characteristic, and the infimum is taken over all compact, oriented surfaces and all admissible maps.

Notice that both $\chi(\cdot)$ and $n(\cdot)$ are multiplicative under finite covers.

Proof of the Main Theorem Suppose that G obeys a law. Then there is a free group F and a nontrivial word $w \in F$ so that any homomorphism from F to G sends w to id. Let F_2 be free on generators x, y. We can embed F in F_2 , and express w as a word v in the generators x, y. Hence any homomorphism from F_2 to G sends v to id.

Let X be a space with $\pi_1(X) = G$. Let Σ be a once-punctured torus. We choose generators for $\pi_1(\Sigma)$, and identify this group with $F_2 = \langle x, y \rangle$. Let α be a loop on Σ whose free homotopy class represents the conjugacy class of v. Then any continuous map $f: \Sigma \to X$ sends α to a null-homotopic loop.

Now suppose contrary to the theorem that scl does not vanish on [G, G]. By Bavard duality there is a homogeneous quasimorphism ϕ with nonzero defect. Scale ϕ to have $D(\phi) = 1$. Then by Lemma 2, for any $\epsilon > 0$ there are elements g, h in G with $\phi([g, h]) \ge 1 - \epsilon$, and consequently $scl([g, h]) \ge 1/2 - \epsilon/2$ by Bavard duality.

Let $\gamma: S^1 \to X$ be a loop representing the conjugacy class of [g, h]. There is a map $f: \Sigma \to X$ whose boundary represents the free homotopy class of γ . As above, the loop α on Σ maps to a null-homotopic loop in X. By Scott [4], there is a finite cover

Algebraic & Geometric Topology, Volume 10 (2010)

 $\widetilde{\Sigma}$ of Σ of degree d (depending on α), so that some lift $\widetilde{\alpha}$ of α is homotopic to an embedded loop α' . Composing the covering map with f gives a map $\widetilde{f}: \widetilde{\Sigma} \to X$ for which $\widetilde{f}(\alpha')$ is null-homotopic in X. Since α' is embedded, we can compress $\widetilde{\Sigma}$ along α' to produce a new surface Σ' mapping to X by f'. The map f' is admissible for γ , and satisfies $n(\Sigma') = d$. Moreover, $\chi(\widetilde{\Sigma}) = -d$, and $\chi(\Sigma') = 2 - d$. Consequently, by Lemma 3, we have $\operatorname{scl}([g, h]) \leq 1/2 - 1/d$.

Since d is fixed (depending only on the law satisfied by G) but ϵ is arbitrary, we obtain a contradiction. Hence scl vanishes identically on [G, G], as claimed.

Remark 4 The statement of the Main Theorem may be rephrased positively as saying that if scl is nonzero on G, then for any positive integer n, there are homomorphisms $F_2 \rightarrow G$ which are injective on the ball of radius n.

If w is a word in a free group F, define a w-word in G to be the image of w under a homomorphism $F \to G$. Let G(w) be the subgroup of G generated by w-words. The w-length of $g \in G(w)$, denoted l(g|w), is the smallest number of w-words and their inverses whose product is g (commutator length is the case $w = xyx^{-1}y^{-1} \in \langle x, y \rangle$), and the stable w-length, denoted sl(g|w) is $sl(g|w) := \lim_{n\to\infty} l(g^n|w)/n$.

Question 5 Is there an example of a group that obeys a law, but for which $sl(\cdot|w)$ is nontrivial for some w?

This work was partially supported by NSF grant DMS 0707130. I would like to thank the anonymous referee for helpful comments on an earlier draft.

References

- S I Adyan, Random walks on free periodic groups, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982) 1139–1149, 1343 MR682486
- [2] C Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991) 109–150 MR1115747
- [3] D Calegari, scl, MSJ Memoirs 20, Mathematical Society of Japan, Tokyo (2009) MR2527432
- P Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978) 555–565 MR0494062

Department of Mathematics, Caltech, Pasadena CA 91125, USA

dannyc@caltech.edu

http://www.its.caltech.edu/~dannyc

Received: 4 October 2009

Algebraic & Geometric Topology, Volume 10 (2010)