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On Hopkins’ Picard group Pic2 at the prime 3

NASKO KARAMANOV

In this paper we calculate the algebraic Hopkins Picard group Picalg
2

at the prime
p D 3 , which is a subgroup of the group of isomorphism classes of invertible K.2/–
local spectra, ie of Hopkins’ Picard group Pic2 . We use the resolution of the K.2/–
local sphere introduced by Goerss, Henn, Mahowald and Rezk in [3] and the methods
from Henn, Karamanov and Mahowald [5] and Karamanov [7].

55N22, 55P42, 55Q10, 55Q51, 55Q52

1 Introduction

Let C be a symmetric monoidal category with product ^ and unit I . We say that an
object X in C is invertible if there exists an object Y in C such that X ^Y Š I . If the
collection of equivalence classes of invertible objects is a set, then the product defines
a group structure on it. We denote this group by Pic.C/, the Picard group of C .

For example, the homomorphism Z ! Pic.S/W n 7! Sn defines an isomorphism
between the integers and the Picard group of S , the stable homotopy category, by
Hopkins, Mahowald and Sadofsky [6].

Let Kn be the category of K.n/–local spectra, where K.n/ is the n–th Morava K–
theory at the prime p . The unit in Kn is given by LK.n/S

0 and the product of two
K.n/–local spectra by X ^ Y WD LK.n/.X ^ Y / (as the ordinary smash product of
two K.n/–local spectra need not be K.n/–local). Hopkins’ Picard group is the group
Pic.Kn/ which we denote by Picn . The first account of it appears in Strickland [8] and
the case nD 1 is treated in detail in [6] where also some examples of elements of Pic2

at the prime p D 2 are given.

In this paper we are interested in Pic2 at the prime p D 3.

One way to study Kn is through the functor En�X WD��LK.n/.En^X / where En is
the Lubin–Tate spectrum with coefficients ring En� ŠW Fpn ŒŒu1; : : : ;un�1��Œu;u

�1�,
where the power series ring is over the Witt vectors of Fpn . Recall that En is acted on by
the (big) Morava stabilizer group Gn D Sn ÌGal.Fpn=Fp/ by E1–maps; see Goerss
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276 Nasko Karamanov

and Hopkins [4]. Let EGn be the category of profinite En�ŒŒGn��–modules, ie En�–
modules with a continuous Gn –action compatible with the action of Gn on En� (see
Goerss, Henn, Mahowald and Rezk [3] or Hopkins, Mahowald and Sadofsky [6] for
details). The tensor product (over .En/� ) gives a monoidal structure on EGn .

Proposition 1.1 [6] Let X 2Kn . Then the following conditions are equivalent:

(a) X is invertible in Kn .

(b) En�X is free En�–module of rank 1.

(c) En�X is invertible in EGn .

1.1. Let Picalg
n WD Pic.EGn/. By Proposition 1.1 there is a homomorphism

�nW Picn! Picalg
n

X 7!En�X .

Let Picalg;0
n be the subgroup of Picalg

n of index 2 of modules concentrated in even
degrees. Let M 2 Picalg;0

n and �M be a generator of M in degree 0, as an .En/�–
module. Then for all g 2 Gn there exists a unique element ug 2 .En/

�
0

such that
g�.�M / D ug�M . The map �M W g 7! ug is a crossed homomorphism and is a well
defined element in H 1.GnI .En/

�
0
/ that does not depend on �M . Thus we have a

homomorphism Picalg;0
n !H 1.GnI .En/

�
0
/.

Proposition 1.2 [6] Picalg;0
n ŠH 1.GnI .En/

�
0
/ .

Not much is known about the kernel �n of �n (cf [8]). When n2 � 2.p�1/ and n> 1

or when nD 1 and p > 2, it is known to be trivial. It is conjectured (by Hopkins – see
Strickland [8]) that �n is a finite p–group.

The next theorem is an unpublished result of Goerss, Henn, Mahowald and Rezk.

Theorem 1.3 At the prime p D 3, �2 Š Z=3�Z=3 .

The next two theorems describe some known results for Picn .

Theorem 1.4 [6]

Pic1Š Z2 �Z=2�Z=4 for p D 2

Pic1Š Zp �Z=2.p� 1/ for p > 2 :
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The spectrum S1 is a generator of Pic1 in the case p > 2. In an unpublished result
and using Shimomura’s calculations of ��L2S at primes p > 3, Hopkins shows:

Theorem 1.5 For primes p > 3

Pic2 Š Z2
p �Z=2.p2

� 1/ :

The main result of this paper is the following theorem.

Theorem 1.6 At the prime 3

Picalg
2
Š Z2

3 �Z=16

generated by .E2/�S
1 and .E2/�S

0Œdet�, where det is a suitable character of G2 .

Theorem 1.3 and Theorem 1.6 imply the following theorem.

Theorem 1.7 At the prime 3

Pic2 Š Z2
3 �Z=3�Z=3�Z=16 :

1.2. This paper is organized as follows. In Section 2 we recall the basic properties of
the Morava stabilizer group Gn and describe some important subgroups in the case
nD 2 and pD 3. We also recall the GHMR resolution of [3] and the spectral sequence
of [5; 7] that we use for the most difficult part of our calculation. In Section 3 we define
two elements of Picalg

n that turn out to be generators in the case of Picalg
2

. In Section 4
we present three short exact sequences that we use to simplify the calculations. In
Section 5 we describe the part of the first page of the spectral sequence that is needed
for the calculations. The final calculations for Picalg;0

2
are done in Section 6, and Picalg

2

is treated in Section 7.

The author would like to thank Hans-Werner Henn for many useful discussions and for
sharing his knowledge on the subject and Paul Goerss for discovering a discrepancy in
a previous version of Proposition 5.1.

2 On the Morava stabilizer group and the GHMR resolution

In this section we recall some basic properties of the Morava stabilizer group and some
important finite subgroups in the case nD 2 and p D 3. We also describe the main
tool of this work, that is the algebraic GHMR resolution of the K.2/–local sphere
constructed in [3]. This resolution is used in [5; 7] to determine the homotopy of the
mod–3 Moore spectrum localized at K.2/. We will use some of the calculations of
[5; 7] and the spectral sequence used there. For more details the reader is referred to
the corresponding papers.
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278 Nasko Karamanov

2.1. Recall that Sn is the group of automorphisms of the Honda formal group law �n

with p–series Œp��n
.x/D xpn

, that is, the group of units in the endomorphism ring
End.�n/. Let On be the noncommutative ring extension of W Fpn (the Witt vectors
over Fpn , that we denote by W from now on) generated by an element S satisfying
SnDp and SwDw�S where w 2W and � is the lift of the Frobenius automorphism
of Fpn . Then End.�n/ can be identified with On . For example, in the case nD 2 and
p D 3 each element g of S2 can be written as g D g1C g2S with g1 2W � and
g2 2W .

2.2. Right multiplication of Sn on End.�n/ defines a homomorphism Sn!GL.W /.
Composition with the determinant can be extended to Gn to obtain a homomorphism
Gn!W �ÌGal.Fpn=Fp/ and it is easy to check that this lands in Z�p �Gal.Fpn=Fp/.
The quotient of Z�p by its torsion subgroup, isomorphic to Z=.p � 1/ when p > 2,
can be identified with Zp and we get a homomorphism called reduced determinant or
reduced norm:

Gn! Zp :

The kernel of this homomorphism is denoted by G1
n and in the case when p does not

divide n we have Gn ŠG1
n �Zp .

2.3. The element S generates a two sided maximal ideal m in On with quotient
On=m Š Fpn . The strict Morava stabilizer group Sn is the kernel of O�n ! F�pn

induced by reduction modulo m. We denote by S1
n its intersection with G1

n .

2.4. Let nD 2 and p D 3 from now on. Let ! be a primitive eighth root of unity,
� 2 Gal.F9=F3/ the generator, t WD !2 ,  WD !� and a WD 1

2
.1C!S/. It is easy to

verify that a is an element of order 3 . These elements satisfy  aD a , t D  t3 ,
taDa2t and  2D t2 . Then a,  and t generate a subgroup of order 24, denoted G24 ,
! and � a subgroup isomorphic to the semidihedral group of order 16, denoted SD16 .
The elements t and  generate a subgroup of SD16 isomorphic to the quaternion
group of order 8, denoted Q8 and we have

(1) SD16 ŠQ8 ÌGal.F9=F3/ :

2.5. The action of the element a on .E2/�=.3/Š F9ŒŒu1��Œu;u
�1� is described in [5,

Corollary 4.7]. For our purposes we only need the following formulae:

a�u � .1C .1C!2/u1/u mod .u3
1
/

a�u1 � u1� .1C!
2/u2

1
mod .u3

1
/ :

The (integral) action of ! is given by

(2) !�u1 D !
2u1 and !�uD !u
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and the Frobenius � acts Z3 –linearly by extending the action of the Frobenius on W
via

(3) ��u1 D u1 and ��uD u :

2.6. The GHMR resolution In [3] a resolution of the trivial G1
2

–module Z3 is
constructed that has the following form

0 �! C3

@3
�! C2

@2
�! C1

@1
�! C0

@0
�! Z3 �! 0

where C0 D C3 D Z3ŒŒG
1
2
��˝Z3ŒG24�Z3 and C1 D C2 D Z3ŒŒG

1
2
��˝Z3ŒSD16� � and

� is the nontrivial character of SD16 defined over Z3 , on which ! and � act by
multiplication by �1. The complete ring Zp ŒŒG�� is by definition limU;n Zp=p

nŒG=U �

where U runs through the open subgroups of G . Then we have the following lemma
(cf [5, Lemma 6.1]).

Lemma 2.1 Let M be a left G1
2

–module. Then there is a first quadrant cohomological
spectral sequence E

�;�
r , r � 1 with

(4) E
s;t
1
D Extt

Z3ŒŒG
1
2
��
.CsIM /H)H sCt .G1

2 IM /

in which E
s;t
1
D 0 for 0< s < 3 and t > 0, and for s � 0 and t > 3, and also

E
0;t
1
ŠE

3;t
1
ŠH t .G24IM / and E

1;0
1
ŠE

2;0
1
Š HomSD16

.�;M / :

Note that HomSD16
.�;M /Š fm 2M j!�mD ��mD�mg.

2.7. Let N0 be the kernel of @0 and j W N0! C0 the inclusion. As explained in the
remark after [5, Lemma 6.1] the differentials in the spectral sequence can be evaluated
if we know projective resolutions Q� of N0 and P� of C0 as well as a chain map
'W Q�! P� covering j . These data can be assembled in a double complex T�� with
T�0 D P� , T�1 D Q� , vertical differentials ıP and ıQ and horizontal differentials
.�1/n'nW Qn! Pn . The filtration of the spectral sequence of this double complex
agrees (up to reindexing) with that of the spectral sequence of the lemma. Hence
extension problems in the spectral sequence (4) can be studied by using the double
complex. As in [5] we obtain a resolution P� WD Z3ŒŒG

1
2
��˝Z3ŒG24� P

0
� induced from

an explicit resolution of the trivial G24 –module Z3 .

Lemma 2.2 [5, Lemma 6.2] Let x� be the Z3ŒQ8�–module whose underlying Z3 –
module is Z3 and on which t acts by multiplication by �1 and  by the identity. Then
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the trivial Z3ŒG24�–module Z3 admits a projective resolution P 0� of period 4 of the
following form

a2�a
���! 1 "

G24

Q8

eCaCa2

������! 1 "
G24

Q8

a2�a
���! x� "

G24

Q8

eCaCa2

������! x� "
G24

Q8

a2�a
���! 1 "

G24

Q8
�! Z3 :

We obtain Q� from splicing the exact complex 0 ! C3 ! C2 ! C1 ! N0 ! 0

with the projective resolution P� of C3 D C0 (as C1 and C2 are projective). If we
denote by e the unit of G1

2
, by ei the generators e˝1 of Ci and by zei the generators

e˝ 1 of Pi , then by [5, Lemma 6.3] there is a chain map '�W Q�! P� covering the
homomorphism j such that '0W Q0 D C1! P0 sends e1 to .e�!/ze0 .

2.8. We denote by E the spectral sequence for .E2/�=.3/ Š F9ŒŒu1��Œu;u
�1�. The

structure of the E1 –page is well known (cf [2] for the group Sn , the case of Gn can
be deduced in the same way).

Proposition 2.3 Let M D .E2/�=.3/Š F9ŒŒu1��Œu;u
�1�.

(a) There are elements

ˇ 2H 2.G24;M12/; ˛ 2H 1.G24;M4/ and z̨ 2H 1.G24;M12/;

an invertible G24 –invariant element � 2M24 and an isomorphism of graded
algebras

H�.G24;M /Š F3ŒŒv
6
1�
�1��Œ�˙1; v1; ˇ; ˛; z̨�=.˛

2; z̨2; v1˛; v1 z̨; ˛ z̨ C v1ˇ/ :

(b) The ring of SD16 –invariants of M is given by the subalgebra

M SD16 D F3ŒŒu
4
1��Œv1;u

˙8�

and HomZ3ŒSD16�.�;M / is a free M SD16 –module of rank 1 with generator
!2u4 , ie

HomZ3ŒSD16�.�;M /Š !2u4F3ŒŒu
4
1��Œv1;u

˙8� :

Recall that v1 D u1u�2 is invariant modulo 3 with respect to the action of G2 and
therefore all the differentials in the spectral sequence are v1 –linear. The element
˛ 2H 1.G24I .E2/4=.3// is defined as the modulo 3 reduction of ı0.v1/, where ı0 is
the Bockstein with respect to the short exact sequence

0 �! .E2/�
�3
�! .E2/� �! .E2/�=.3/ �! 0 :
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The element z̨ 2H 1.G24I .E2/12=.3// is defined as ı1.v2/, where v2 D u�8 and ı1

is the Bockstein with respect to the short exact sequence

0 �! .E2/�=.3/
�u1
�! .E2/�=.3/ �! .E2/�=.3;u1/ �! 0

and ˇ 2H 2.G24I .E2/12=.3// is the modulo 3 reduction of ı0ı1.v2/. The definition
of � is more complicated and we have the following formula (cf [5, Proposition 5.1]).

(5) �� .1�!2u2
1Cu4

1/!
2u�12 mod .u6

1/ :

One of the main results in [7] (see also [5, Theorem 1.2]) is the following theorem.

Theorem 2.4 There are elements

�k 2E
0;0;24k
1

; b2kC1 2E
1;0;8.2kC1/
1

; xb2kC1 2E
2;0;8.2kC1/
1

for each k 2 Z satisfying

�k ��
k ; b2kC1 � !

2u�4.2kC1/; xb2kC1 � !
2u�4.2kC1/

(where the first congruence is modulo .u2
1
/ and the last two modulo .u4

1
/) such that

d1.�k/D

8̂̂<̂
:̂
.�1/mC1b2.3mC1/C1�.�1/mC1!2.1Cu4

1
/u�12k kD2mC 1;

v4�3n�2
1

b2�3n.3m�1/C1 kD2 �3nm; 3−m;
0 kD0;

d1.b2kC1/D

8̂̂<̂
:̂
.�1/nv6�3nC2

1
xb3nC1.6mC1/ kD3nC1.3mC 1/;

.�1/nv10�3nC2
1

xb3n.18mC11/ kD3n.9mC 8/;

0 otherwise.

3 Two elements of Picalg;0
n

3.1. In this section n and p are arbitrary. We have two distinguished elements in
Picalg;0

n ŠH 1.GnI .En/
�
0
/. In the case nD 2 and p D 3 these will generate the first

cohomology. The first one is given by the crossed homomorphism

�W Gn! .En/
�
0

g 7!
g�u

u
:

The second one is given as the composition of the norm and the canonical inclusion

detW Gn! Z�p ! .En/
�
0 :
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We denote the corresponding elements of H 1.GnI .En/
�
0
/ again by � and det. Note

that by the isomorphism of Proposition 1.2 the element .En/�S
2 2 Picalg;0

n is sent to �
(as u 2 .En/�2 gives rise to a generator of .En/0S2 ) .

3.2. The reduction W ŒŒu1��
� ! W � is equivariant with respect to the inclusion

W �!Gn . Taking into account the Galois group Gal WD Gal.Fpn=Fp/ we obtain a
homomorphism:

redW H 1.GnI .En/
�
0 /!H 1.W � ÌGalIW �/!H 1.W �

IW �/Gal

and the last homomorphism is induced by the short exact sequence 1 ! W � !

W � ÌGal! Gal! 1 and the corresponding spectral sequence.

Proposition 3.1 Let nD 2 and p > 2. Then the image of the homomorphism red is
(topologically) generated by the images of � and det.

Proof Recall that when p > 2 then W � ŠW �Fpn with the obvious Galois action.
Thus

H 1.W �
IW �/Gal

Š End.W �/Gal
Š Zn

p �Z=.pn
� 1/:

The image of det is given by the composition

W �
!Gn

det
! Z�p ! .En/

�
0 !W �:

If g D g0Cg1S C � � �Cgn�1Sn�1 with gi 2W and w 2W then

gw D .g0Cg1S C � � �Cgn�1Sn�1/w D g0wCg1w
�S C � � �gn�1w

�n�1

Sn�1

and the composition above sends w to ww� : : : w�
n�1

. The image of � is given by
the composition

W �
!Gn

�
! .En/

�
0 !W �

and this is easily verified to be the identity.

4 Reductions

In this short section we present three short exact sequences that we use in our calcula-
tions. The last two were also used by Hopkins in the case nD 2 and p > 3.

4.1. The first one

(6) 1!G1
2!G2! Z3! 1

was described in Section 2. We use the Lyndon–Hochschild–Serre spectral sequence
associated to (6) to calculate H 1.G2IW ŒŒu1��

�/. The main difficulty is computing
H 1.G1

2
IW ŒŒu1��

�/. This is done in Theorem 6.4.
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4.2. The reduction modulo 3 gives a short exact sequence

(7) 0!W ŒŒu1��
exp.p�/
�����!W ŒŒu1��

�
�! F9ŒŒu1��

�
! 0:

We will use the long exact sequence associated to (7) to calculate H 1.G1
2
IW ŒŒu1��/ .

The difficult part is H 1.G1
2
IF9ŒŒu1��

�/ (cf Corollary 6.2).

4.3. We have another short exact sequence coming from the reduction modulo u1

(8) 1! U1! F9ŒŒu1��
�
! F�9 ! 1

where U1 WDfh2F9ŒŒu1��
�j h�1 mod .u1/g: The hard part is to calculate H 1.G1

2
IU1/.

This is by far the hardest part of this work (cf Theorem 5.10). Note that the group U1

is 3–profinite.

5 The spectral sequence

We use the spectral sequence (4) with M D U1 and denote it by xE to distinguish
it from the (additive) case M D .E2/�=.3/ that we also make use of. We start with
the xE1 –page. As we only need to calculate the first cohomology, it is sufficient
to determine xE0;0

1
, xE0;1

1
and xE1;0

1
Š xE

2;0
1

and the corresponding differentials and
extension problems.

5.1. The term xE
0;1
1

Proposition 5.1 H 1. xG24IF9ŒŒu1��
�/Š Z=6, where xG24 WDG24=ht

2i.

Proof Let F9..u1//
� be the multiplicative group of the field of fractions of F9ŒŒu1��.

Each element of F9..u1//
� is of the form un

1
� f with f 2 F9ŒŒu1��

� and n 2 Z. The
map

F9..u1//
�
! ZW un

1 �f 7! n

is a group homomorphism with kernel F9ŒŒu1��
� . Thus we have a short exact sequence

of xG24 –modules

(9) 1! F9ŒŒu1��
�
! F9..u1//

�
! Z! 1

where xG24 acts trivially on Z.

By Hilbert 90, the multiplicative version, we have H 1. xG24IF9..u1//
�/D 0 and thus

the long exact sequence induced by (9) yields

H 0. xG24IF9ŒŒu1��
�/!H 0. xG24IF9..u1//

�/!H 0. xG24IZ/�H 1. xG24IF9ŒŒu1��
�/:
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By Proposition 2.3 we have H 0. xG24IF9ŒŒu1��
�/Š F3ŒŒv

6
1
��1��� and by a similar ar-

gument we conclude H 0. xG24IF9..u1//
�/Š F3..v

6
1
��1//� . By (5) we know that

v6
1
��1 � u6

1
!�2 mod .u8

1
/ so the image of the homomorphism

H 0. xG24IF9..u1//
�/!H 0. xG24IZ/Š Z

is 6Z, and the result follows.

Note that � is not defined on U1 (as for example !�u=uD ! 62 U1 ), but 8� is well
defined.

Proposition 5.2 xE
0;1
1
ŠH 1.G24IU1/Š Z=3 generated by the restriction of 8�.

Proof The short exact sequence (8) induces a long exact sequence

!H 1. xG24IU1/!H 1. xG24IF9ŒŒu1��
�/!H 1. xG24IF

�
9 /! :

The group in the middle is isomorphic to Z=6 by Proposition 5.1 and the group
on the right is 2–torsion. The group U1 is 3–profinite, so there is no 2–torsion in
H�. xG24IU1/. As H 0. xG24IF

�
9
/ is 2–torsion, the first morphism above is injective.

As U1 is 3–profinite, H 1.G24IU1/ŠH 1. xG24IU1/Š Z=3.

For the second part of the proposition we use the resolution P 0� of G24 constructed
in Lemma 2.2, to show that the cocycle of 8� can not be a coboundary. Recall that �
was defined as a crossed homomorphism and thus it can be easily described using the
standard (bar) resolution (cf [1, III.3]). A cocycle representing the image of 8� in the
standard resolution B� of G24 is given by B1! U1W Œg� 7! g�u

8=u8 . By comparing
these resolutions we find a representing cocycle in P 0� . A homomorphism ��W P

0
�!B�

over the identity of Z3 is given by

�0W P
0
0
! B0 �1W P

0
1
! B1

e0
0
7!

1

8

X
g2Q8

g e0
1
7!

1

8
.

X
g2Q8

x�.g�1/g/aŒa�

where e0i are the generators e ˝ 1 of P 0i and fŒg�gg2G24
is a G24 –basis of B1

(cf [1, I.5]). Thus the composition

P 01! B1! U1W e
0
1 7!

a2
�u

8

a�u8

is the desired cocycle. Using the formula from paragraph 2.5 we obtain

a2
�u

8

a�u8
� 1� .1C!2/u1 mod .u2

1/ :
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Now we will show that this cocycle can not be a coboundary. A morphism from
P 0

0
! U1 sends e0

0
to a Q8 –invariant element h of U1 . By Proposition 5.3(c) we

know that h� 1 mod .u2
1
/ and thus the composition P 0

1
! P 0

0
! U1 sends e0

1
to an

element congruent to 1 modulo u2
1

which is not the case for 8�.

5.1 The 0–th line

In the following proposition we give the structure of the 0–th line of the first page
of the spectral sequence xE . We end up with a nice description of the corresponding
groups as products of copies of the 3–adics.

Recall that v1D u1u�2 is in degree 4 and � in degree 24. Thus v6
1
��1 is in degree 0.

Proposition 5.3

(a) xE
0;0
1
Š fg 2 ..E2/0=.3//

G24 Š F3ŒŒv
6
1
��1���jg � 1 mod .u1/g .

(b) Let gk 2
xE

0;0
1

be such that gk � 1C v6k
1
��k mod .u6kC2

1
/. Then

xE
0;0
1
Š

Y
k�1

k 6�0 mod .3/

Z3fgkg:

(c) xE
1;0
1
D fh 2 U1j 9k 2 ..E2/0=.3//

Q8 Š F3ŒŒ!
2u2

1
��; hD !�k=kg.

(d) Let hk 2
xE

1;0
1

be such that hk � 1C!2u4kC2
1

mod .u4kC4
1

/. Then

xE
1;0
1
Š xE

2;0
1
Š

Y
k�0

k 6�1 mod .3/

Z3fhkg:

Proof Proposition 2.3 implies (a). By (a) each element g 2 xE
0;0
1

can be written as a
product

Q
k�1 g

�k

k
with �k 2 f�1; 0; 1g. As g3k � g3

k
mod .u18kC2

1
/ we obtain the

result. To get the action of Q8 on .E2/0=.3/ we use formulae (2) and (3) and then (c)
follows. As !2 D �!6 we have h�1

3kC1
� 1C!6u

4.3kC1/C2
1

� .1C!2u4kC2
1

/3 �

h3
k

mod .u12kC8
1

/ and we obtain (d).

5.2. The goal of what follows is to construct families of generators fgkg for k � 1

and k 6� 0 mod .3/ and fhkg for k � 0 and k 6� 1 mod .3/ as in Proposition 5.3 on
which the differential xd1 is easy to describe.

We start with a particular element m 2 xE
1;0
1

that is related to 8� and plays the same
role as the element b1 in [5].
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Proposition 5.4 There exists m 2 xE
1;0
1

such that

(a) m� 1C!2u2
1

mod .u4
1
/

(b) xd1.m/D 1

(c) 24�Dm in H 1.G1
2
IU1/ :

Proof We imitate the proof of [5, Proposition 5.5] and use paragraph 2.7. By definition
8� is a permanent cycle so there are cochains c 2 HomZ3ŒŒG

1
2
��.P1;U1/ and d 2

HomZ3ŒŒG
1
2
��.Q0;U1/ such that cC d is a cocycle in the total complex of the double

complex HomZ3ŒŒG
1
2
��.T��;U1/ and such that c represents the restriction of 8� in

H 1.G24IU1/. From the proof of the Proposition 5.2 we have an explicit cocycle
c1 for 8� in the resolution P� , so there exists hc 2 HomZ3ŒŒG

1
2
��.P0;U1/ such that

c D c1 C ıP .hc/. As 24� D 1 in H 1.G24IU1/ (Proposition 5.2) there exists h 2

HomZ3ŒŒG
1
2
��.P0;U1/ such that ıP .h/ D 3c1 . In the double complex the cochain

3c C 3d is cohomologous to 3d � '0.h C 3hc/. One can easily check that h D

u24=.u8.a�u
8/.a2

�u
8// D 1 C !2u2

1
mod .u3

1
/. Then 3d � .e � !/�.h C 3hc/ D

1C!2u2
1

mod .u3
1
/ is a cocycle concentrated in HomZ3ŒŒG

1
2
��.T1;0;U1/ representing

24� (cf paragraph 2.5 for the action of a and ! ).

The next lemma is elementary but crucial as it relates the differentials of xE and E ,
and thus suggests that we could use the generators from Theorem 2.4 to construct
convenient generators gk and hk .

Lemma 5.5 Let f 2 F9ŒŒu1�� be such that f � 0 mod .uk
1
/ for some k > 0. Then

1

1Cf
� 1�f mod .u2k

1 / :

Proposition 5.6 Let gk WD 1C v6k
1
��k for k � 1; k 6� 0 mod .3/. Then

xd1.gk/�

(
1C .�1/mC1!2.u12mC6

1
Cu12mC10

1
/ mod .u12mC12

1
/ k D 2mC 1;

1C!2u12mC2
1

mod .u12mC4
1

/ k D 2m :

Proof By Lemma 5.5 we have xd1.1C v
6k
1
��k/ � 1C v6k

1
d1.��k/ mod .u12k

1
/

where we have used the v1 –linearity of d1 . Then the result follows from the formulae
from Theorem 2.4.
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5.3. As in [5] we will use the image of xd1 to define hk , for k 6� 1 mod .3/. From
Proposition 5.6 and using !2 D�!6 we get

1C .�1/kC1!2u12kC10
1

� xd1.g1C2k/.1C .�1/kC1!2u4kC2
1

/3 mod .u12kC12
1

/ :

Thus if hk is already defined and satisfies hk � 1C .�1/kC1!2u4kC2
1

mod .u4kC6
1

/

we can define h3kC2 WD
xd1.g1C2k/h

3
k

or recursively (as 3kC 2D 3.kC 1/� 1/)

h3nC1.kC1/�1 WD
xd1.g1C2.3n.kC1/�1//h

3
3n.kC1/�1

The generator h3.3kC1/C2 D h9kC5 needs to be defined separately and we also need
to define h3k for k � 0. Using Proposition 5.6 for k 6� 0 mod .3/ we define

h3k WD
xd1.g2k/

k :

The reason for the power is to get the right sign.

To complete the definition of all generators hk , we define h0 , h9k and h9kC5 as
follows (again, the power is needed to get the right sign):

h0 WD m2

h9k WD !�.1C v
36kC2
1

b�1�18k/
k=.1C v36kC2

1
b�1�18k/

k k > 0

h9kC5 WD !�.1C v
36kC22
1

b�11�18k/
k=.1C v36kC22

1
b�11�18k/

k k � 0 :

As �1� 18k D 1C 2.9.�k � 1/C 8/ and �11� 18k D 1C 2 � 3.3.�k � 1/C 1/ the
elements b�1�18k and b�11�18k belong to the two families in Theorem 2.4 that have
nontrivial image under d1 . In both of these cases we can apply Lemma 5.5. This would
not have been the case if we would have defined h0 as 1C v2

1
b�1 as then Lemma

5.5 does not give the enough precision. The following proposition and the recursive
definition of the generators describe xd1W

xE
1;0
1
! xE

2;0
1

. The proof uses Theorem 2.4
and Lemma 5.5.

Proposition 5.7

z1;k WD
xd1.h9k/ � 1C .�1/kC1!2u36kC14

1
mod .u36kC18

1
/

z2;k WD
xd1.h9kC5/ � 1C .�1/kC1!2u36kC30

1
mod .u36kC34

1
/ :

A more complete description of xd1 is given with the following proposition.
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Proposition 5.8 The following complexes are exact:

Z3fg2kg �

Y
n�0

Z3fg1C2�.3n.3kC1/�1/g !

Y
n�0

Z3fh3n.3kC1/�1g ! 1 for k 62 3NY
n�0

Z3fg1C2�.3n.9kC1/�1/g !

Y
n�0

Z3fh3n.9kC1/�1g ! Z3fz1;kg for k > 0Y
n�1

Z3fg1C2�.3n.3kC2/�1/g !

Y
n�1

Z3fh3n.3kC2/�1g ! Z3fz2;kg for k � 0 :

The first homology of the complexY
n�0

Z3fg1C2�.3n�1/g !

Y
n�0

Z3fh3n�1g ! 1

is isomorphic to Z3fh0g. The matrix of the first homomorphism of the first complex
has the form 0BB@

�k �3

1 �3

1 �3

� � �

1CCA
and in the other complexes 0BB@

�3

1 �3

1 �3

� � �

1CCA
and when nontrivial the matrix of the second morphism has the form .1 3 9 27 � � �/.

Proof The proof is a consequence of Proposition 5.3, Proposition 5.4, the definitions
of the generators in paragraph 5.3 and Proposition 5.8.

Corollary 5.9 xE
1;0
2
Š Z3:

Proof This is consequence of the previous proposition. Indeed, the relevant part of
the 0–th line of the first page of the spectral sequence xE is the product over k of the
four complexes of the previous proposition.

Theorem 5.10 H 1.G1
2
IU1/Š Z3 is generated by 8�.

Proof We only need to resolve the extension problem

0! xE
1;0
2
Š Z3!H 1.G1

2 IU1/! Z=3ZŠ xE0;1
2
! 0 :

But this is immediate due to Proposition 5.4.
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6 Picalg;0

2

In this section we calculate Picalg;0
2

by using the short exact sequences from Section 4.
The element � again plays an important role in the proof.

Proposition 6.1 H 1.G1
2
IF�

9
/Š F�

9
.

Proof There is a short exact sequence

1! S1
2 !G1

2! SD16! 1

that gives a spectral sequence and as S1
2

acts trivially on F�
9

we have

H�.G1
2 IF
�
9 /ŠH�.SD16IF

�
9 / :

There is another short exact sequence

1! C8! SD16! Gal! 1

(where Gal WD Gal.F9=F3/ and C8 is the cyclic subgroup of order 8 generated by ! )
and thus a spectral sequence

H�.GalIH�.C8IF
�
9 //)H�.SD16IF

�
9 /:

By using the standard resolution it is easily seen that the group H�.C8IF
�
9
/ is isomor-

phic to F�
9

in each degree as ! acts trivially on F�
9

.

The group H 1.C8IF
�
9
/ is generated by the identity which is Galois invariant thus

H 0.GalIH 1.C8IF
�
9 //Š F�9

and by Hilbert 90

H 1.GalIH 0.C8IF
�
9 //ŠH 1.GalIF�9 /D 0 :

As the image of � in H 1.G1
2
IF�

9
/ Š H 1.SD16IF

�
9
/ reduces to the identity in the

group H 1.C8IF
�
9
/, the differential

d2W H
0.GalIH 1.C8IF

�
9 //!H 2.GalIH 0.C8IF

�
9 //

has to be trivial.

Corollary 6.2 H 1.G1
2
IF9ŒŒu1��

�/Š Z3 �F�
9

generated by �.
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Proof The short exact sequence (8) induces a long exact sequence

!H 0.G1
2 IF
�
9 /!H 1.G1

2 IU1/!H 1.G1
2 IF9ŒŒu1��

�/!H 1.G1
2 IF
�
9 /!H 2.G1

2 IU1/ :

By Theorem 5.10 we have H 1.G1
2
IU1/Š Z3 and by Proposition 6.1 H 1.G1

2
IF�

9
/Š

F�
9

. As U1 is a 3–profinite group, the first and the last homomorphisms are trivial.

Proposition 6.3

(a) H 1.G1
2
IF9ŒŒu1��/D 0.

(b) The group H 1.G1
2
IW ŒŒu1��/ is 3–profinite.

(c) H 1.G1
2
IW ŒŒu1��/D 0.

Proof (a) is direct consequence of [5, Theorem 1.6]. The group W ŒŒu1�� is 3–profinite
and there is a resolution of finite type (Lazard) of the trivial G1

2
–module Z3 and (b)

follows. Multiplication by 3 induces a short exact sequence

W ŒŒu1��
�3
�!W ŒŒu1�� �! F9ŒŒu1��

which induces a long exact sequence

�!H 1.G1
2 IW ŒŒu1��/ �!H 1.G1

2 IW ŒŒu1��/ �!H 1.G1
2 IF9ŒŒu1��/ �!

From (a) and the long exact sequence above it follows that the homomorphism

H 1.G1
2 IW ŒŒu1��/ �!H 1.G1

2 IW ŒŒu1��/

is surjective ie the group G WDH 1.G1
2
IW ŒŒu1��/ is 3-divisible. As G is 3–profinite, it

is the limit of finite 3-groups G=In . Thus the homomorphism G=In!G=In induced
by the multiplication by 3 is surjective and therefore G is trivial.

Theorem 6.4 H 1.G1
2
IW ŒŒu1��

�/Š Z3 �F�
9

generated by �.

Proof We use the long exact sequence in H 1.G1
2
I �/ induced from the short exact

sequence (7). The homomorphism H 1.G1
2
IW ŒŒu1��

�/!H 1.G1
2
IF9ŒŒu1��

�/ is injec-
tive by Proposition 6.3 (c) and also surjective as the image of � 2H 1.G1

2
IW ŒŒu1��

�/

is a generator (by Corollary 6.2).

Finally we get to the main result of this section.

Theorem 6.5 Picalg;0
2
ŠH 1.G2IW ŒŒu1��

�/Š Z2
3
�F�

9
generated by � and det.
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Proof We use the short exact sequence (6). We have

H 1.Z3IH
0.G1

2 IW ŒŒu1��
�//ŠH 1.Z3IZ3/Š Z3

generated by the image of det (cf Section 3) and

H 0.Z3IH
1.G1

2 IW ŒŒu1��
�//ŠH 0.Z3IZ3 �F�9 /Š Z3 �F�9 :

generated by the image of �. The theorem follows from the short exact sequence

H 1.Z3IH
0.G1

2 IW ŒŒu1��
�//�H 1.G2IW ŒŒu1��

�/�H 0.Z3IH
1.G1

2 IW ŒŒu1��
�//:

7 Picalg
2

In this short section we prove Theorem 1.6 (ie we calculate Picalg
2

).

We are left with the short exact sequence

0! Picalg;0
2
! Picalg

2
! Z=2! 0

that comes from the definition of Picalg;0
2

(cf paragraph 1.1). Note that the isomorphism
of Proposition 1.2 sends .E2/�S

2 to � (cf paragraph 3.1). Thus .E2/�S
2 is an

element of Picalg;0
2

that generates Z3�Z=8 in Picalg
2

. But .E2/�S
1 is not an element

of Picalg;0
2

, therefore its image in the above sequence is a generator of Z=2. Thus
.E2/�S

1 itself must generate Z3 �Z=16.
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