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A family of transversely nonsimple knots

TIRASAN KHANDHAWIT

LENHARD NG

We apply knot Floer homology to exhibit an infinite family of transversely nonsimple
prime knots starting with 10132 . We also discuss the combinatorial relationship
between grid diagrams, braids and Legendrian and transverse knots in standard
contact R3 .

57R17; 57R58, 57M25

1 Introduction

Transverse knots play an important role in contact topology, but surprisingly little is
known about their classification even in the simplest setting, R3 with the standard
contact structure. Any transverse knot has an underlying topological knot type, and
it also carries at least one other piece of data, the self-linking number. A topological
knot type in R3 is transversely simple if transverse knots of that underlying type
are completely classified by their self-linking number; otherwise, it is transversely
nonsimple. Various knots are known to be transversely simple, including the unknot
by Eliashberg [6], torus knots by Etnyre [8], and the figure eight knot by Etnyre and
Honda [10].

It was only recently that some knot types were shown to be transversely nonsimple.
Birman and Menasco [1] (see also their paper [2]) used braid theory to find a family of
3–braids whose knot closures are transversely nonsimple; Etnyre and Honda [11] used
contact-topological techniques to show that the .2; 3/ cable of the .2; 3/ torus knot is
transversely nonsimple.

There has been much current effort to develop invariants of transverse knots that can be
used to demonstrate transverse nonsimplicity. The first (and thus far only) invariant that
has been shown to be effective lies, interestingly, not in contact-topological constructions
like Symplectic Field Theory, but in knot Floer homology; see Ozsváth and Szabó [21]
and Rasmussen [23]. The y� invariant in bHFK was introduced by Ozsváth, Szabó and
Thurston [22] and was employed by the second author, Ozsváth and Szabó [16] to
find several examples of transversely nonsimple knots, including 10132 and (a reproof
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of) the Etnyre–Honda cable example. Vértesi [24] used the examples of [16] and the
behavior of y� under connected sum to find infinite families of connected-sum examples
of transversely nonsimple knots; see also Kawamuro [14]. Most recently, by studying
the relationship between contact surgery and naturality properties of (a differently
constructed version of) y� , Ozsváth and Stipsicz [20] proved transverse nonsimplicity
for a wide family of two-bridge knots.

Absent the naturality techniques of [20], the applications of y� to transverse simplicity
have used a crude but surprisingly effective “vanishing criterion”: if T1 and T2 are
transverse knots and y�.T1/D 0 while y�.T2/¤ 0, then T1 and T2 are distinct. The
y� invariant lies in the homology of a combinatorial chain complex introduced by
Manolescu, Ozsváth and Sarkar [15], and [16] used a computer program to determine
in examples whether y� is null-homologous or not. However, reliance on a computer
program obviously limits the number of transversely nonsimple examples that can be
found.

In this paper, we find a two-parameter infinite family of prime, transversely nonsimple
knots that can be distinguished using the vanishing criterion for y� . The idea is to find
grid diagrams (the structures on which y� is defined) where the computation of y� is
short enough to be carried out by hand. The resulting family of examples is not as
simple in appearance as the two-bridge examples of [20], but has the advantage of
needing only the combinatorial description of y� and not an analysis of its image under
contact surgery.

Our family is a generalization of the 10132 example from [16]. A transverse knot can be
represented as a braid (see Section 2.3), and a fruitful technique for finding transversely
nonsimple knots is to find braids that are related by a negative flype (cf [1]) and thus
represent the same topological, but not necessarily transverse, knot. In correspondence
with the second author, H Matsuda noted that the 10132 example can be expressed as
a negative flype and proposed a one-parameter family of braids generalizing 10132 .
Here we expand Matsuda’s conjectured family to a two-parameter family of braids
related by a negative flype.1

Theorem 1.1 For any a; b � 0, the pair of 4–braids

�3�
�2
2 �2aC2

3
�2�
�1
3 ��1

1 �2�
2bC2
1

and �3�
�2
2 �2aC2

3
�2�
�1
3 �2bC2

1
�2�
�1
1 ;

1We note in passing that the 72 transverse knots in [16, Figure 11], shown to be distinct in [20], are
also related by a negative flype, �2

3
�2

2
��1

3
�2

1
�2�
�1
1
$ �2

3
�2

2
��1

3
��1

1
�2�

2
1

, as can be checked using the
techniques from this paper.
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related by a negative flype and thus representing the same topological knot and having
the same self-linking number, represent distinct transverse knots. In particular, the
topological knot types given by these pairs, which are prime, are transversely nonsimple.

The 10132 case is aD b D 0; in this case, the braids in Theorem 1.1 are transversely
isotopic to L1 and L2 , respectively, from [22, Section 3.1]. Other small knots in this
family, with the corresponding values of .a; b/, include .0; 1/D 12n

120
, .1; 0/D 12n

199
,

.0; 2/D 14n
2016

, .1; 1/D 14n
3606

and .2; 0/D 14n
5045

, where the identifications in the
Dowker–Thistlethwaite knot enumeration come from Knotscape [12].

A Shumakovitch has noticed that some (perhaps all) of this family of knots have
interesting odd Khovanov homology [19]. More precisely, the six examples listed
above have the unusual feature that their odd Khovanov homology completely vanishes
in homological degree 0. We do not know if this is a coincidence.

We believe that this two-parameter family is in fact part of a four-parameter family of
transversely nonsimple knots given by the closures of the braids

�3�
�2c�2
2 �2aC2

3
�2�
�2d�1
3 ��1

1 �2�
2bC2
1

for a; b; c; d � 0. We have checked several examples using the computer program
of [16] but do not have a general proof for the case .c; d/¤ .0; 0/.
In order to apply the y� invariant to braids to prove Theorem 1.1, we need techniques
for translating between braids, grid diagrams and Legendrian and transverse knots in
standard contact R3 . These translations are presented in Section 2 and are by now
well-known to experts, but we were unable to find any full write-ups in the literature.
In particular, the algorithms for obtaining a Legendrian knot from a braid and a braid
from a grid diagram may be of independent interest. We then prove Theorem 1.1 in
Section 3.

Acknowledgments We would like to thank H Matsuda, A Shumakovitch and D Thurs-
ton for useful discussions. Part of this work also appeared in the first author’s under-
graduate honors thesis at Duke University. The second author is supported by NSF
grant DMS-0706777.

2 Braids, grid diagrams and transverse Knots

Here we review several different approaches to transverse knots in standard contact R3 .
Most of the material in this section can be found in the Etnyre survey [9] or, in the
case of grid diagrams, [22]. The new content consists of results in Section 2.4 giving
methods to translate between grid diagrams, braids, and Legendrian knots, but even
these are “folk theorems” that have been floating around the subject for several years.
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2.1 Legendrian and transverse knots

Let
�std D ker.dz�y dx/

denote the standard contact structure on R3 . A Legendrian knot in .R3; �std/ is an
oriented knot that is everywhere tangent to �std . A transverse knot is an oriented
knot that is everywhere transverse to �std , with the orientation agreeing with the usual
coorientation on �std ; that is, dz�y dx > 0 along the orientation of a transverse knot.
Any smooth knot in R3 can be C 0 perturbed to both Legendrian and transverse knots.
We consider Legendrian and transverse knots up to Legendrian and transverse isotopy,
isotopy through Legendrian and transverse knots, respectively.

There is a many-to-one correspondence between Legendrian and transverse knots. Any
Legendrian knot L can be perturbed to a transverse knot LC , the positive pushoff
of L, by pushing each point on L in a direction transverse to the contact plane; the
positive pushoff is unique up to transverse isotopy. There is an “inverse” operation that
perturbs any transverse knot to a Legendrian knot, but this is only well-defined up to
Legendrian isotopy and negative stabilization/destabilization of Legendrian knots (see
below). Thus one can view transverse knots up to transverse isotopy as Legendrian
knots up to Legendrian isotopy and negative de/stabilization.

A convenient way to depict Legendrian and transverse knots is through their front
projections to the xz plane. The front projection of a generic Legendrian knot has no
vertical tangencies and has only double points and semicubical cusps as singularities.
At each double point, the arc of more negative slope passes over the arc of more positive
slope. Any front of this type is the front projection of a Legendrian knot.

Figure 1: Forbidden segments in the front projection of a transverse knot

On the other hand, the front projection of a generic transverse knot is a standard knot
diagram, with only double points as singularities, but with two restrictions: any point in
the projection with a vertical tangency must be oriented upwards, and at a crossing, we
cannot simultaneously have the overcrossing arc pointing to the left, the undercrossing
arc pointing to the right, and the overcrossing arc of greater slope than the undercrossing
arc. See Figure 1. Any knot projection without these forbidden segments is the front
projection of a transverse knot, unique up to transverse isotopy, and two transverse
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Figure 2: Obtaining the front of the transverse pushoff from a Legendrian front

knots are transversely isotopic if and only if their front projections are isotopic through
diagrams that do not contain any forbidden segments.

With front projections, it is easy to see the correspondence between Legendrian and
transverse knots. The front of a Legendrian knot can be turned into the front of its
positive transverse pushoff by smoothing out upward-pointing cusps and replacing
downward-pointing cusps by loops; see Figure 2. In a related vein, we define the positive
and negative stabilizations S˙.L/ of a Legendrian knot L to be the Legendrian knots
whose fronts are obtained from the front of L by adding in a zigzag whose cusps
point downward or upward; see Figure 3. Both stabilizations are well-defined up to
Legendrian isotopy. It is clear from the front picture that a Legendrian knot and its
negative stabilization have positive transverse pushoffs that are transversely isotopic.
A result due in the R3 case to [7] states that two Legendrian knots are related by
Legendrian isotopy and negative de/stabilization if and only if their positive transverse
pushoffs are related by transverse isotopy.

SC S�

Figure 3: Positive and negative stabilizations of a Legendrian front

2.2 Grid diagrams

Closely related to front projections is another fruitful method of representing Legendrian
knots, via grid diagrams. A grid diagram is an n�n square grid with a collection of n

X ’s and n O ’s in the grid, such that each row or column contains exactly one X and
one O , and no square in the grid contains both an X and an O .

One obtains a knot (or link) diagram from a grid diagram by connecting O ’s to X ’s
horizontally, connecting X ’s to O ’s vertically, and stipulating that horizontal segments
always pass over vertical segments whenever they cross. (Note that this is the opposite
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of the standard convention for grid diagrams.) In this way, any knot can be represented
by a grid diagram. Indeed, we can view a grid diagram G as (the front of) a Legendrian
knot L.G/ by turning it 45ı clockwise, smoothing upward- and downward-pointing
corners, and turning leftward- and rightward-pointing corners into cusps. See Figure 7
below. Any Legendrian knot is Legendrian isotopic to a knot obtained in this way from
some grid diagram.

There is a sequence of elementary moves on grid diagrams, the Cromwell moves [4],
that relate any two grid diagrams that represent topologically isotopic knots: torus
translation, commutation, and stabilization/destabilization. The stabilization moves
divide further into (essentially) four types, labeled X:NW, X:NE, X:SW, and X:SE in
the notation of [22]. Of the Cromwell moves, torus translation, commutation, and
X:NW and X:SE de/stabilization preserve Legendrian isotopy type, while X:NE (resp.
X:SW) stabilization is positive (resp. negative) stabilization in the Legendrian category.

2.3 Braids and transverse knots

In some sense, the role played by grid diagrams for Legendrian knots is played by
braids for transverse knots. Let

�rot D ker.dz�y dxCx dy/

denote the rotationally symmetric tight contact structure on R3 . There is an orientation-
preserving diffeomorphism � of R3 , given by �.x;y; z/D .x; 2y;xyCz/, that sends
�rot to �std . We can define transverse knots for �rot in the same way as transverse knots
for �std , and � sends a knot transverse to �rot to a knot transverse to �std . Thus we can
view any knot transverse to �rot as a transverse knot in the sense of Section 2.1.

The closed curve f.cos t; sin t; 0/ j 0� t � 2�g traces out an unknot T0 transverse to
�rot . We can then view any braid B as a transverse knot as follows. Embed the closure
of B in a solid torus, and embed this solid torus as a small tubular neighborhood of T0 .
The braid then becomes a knot (or link) T .B/ in R3 transverse to �rot , and can be
mapped to a transverse knot �.T .B// in .R3; �std/ via the contactomorphism � .

Braids that are conjugate in the braid group yield transversely isotopic knots. More
interestingly, let a positive braid stabilization be the operation that replaces a braid
B 2 Bn by B�n 2 BnC1 . Then we have the following result.

Proposition 2.1 (Transverse Markov Theorem [18; 25]) Let B1;B2 be braids. Then
T .B1/;T .B2/ are transversely isotopic in .R3; �rot/ if and only if B1;B2 are related by
a sequence of braid conjugations and positive braid stabilizations and destabilizations.
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2.4 Translating between the three pictures

Given a braid word B , one can create the front of a Legendrian knot L.B/ in a natural
way as shown in Figure 4, cf [13]. Draw the braid from left to right; each positive
crossing becomes part of the front in the obvious way, while each negative crossing
is represented by a zigzag and crossing in the front. The corresponding left and right
ends of the braid are then connected through arcs with one left cusp and one right cusp
apiece.

B

Figure 4: The Legendrian front L.B/ obtained from a braid word B

We note that L.B/ is associated to a braid word and not a braid isotopy class. If B

changes by braid isotopy, L.B/ changes by a combination of Legendrian isotopies
and negative Legendrian de/stabilizations: replacing �i�iC1�i by �iC1�i�iC1 pre-
serves Legendrian isotopy type, while introducing �i�

�1
i or ��1

i �i corresponds to
one negative stabilization. Thus, for B a braid, L.B/ is only well-defined up to
negative Legendrian de/stabilization; however, the positive transverse pushoff L.B/C
constitutes a well-defined transverse isotopy class.

In addition, it is straightforward to check that changing B by positive braid stabilization
preserves the Legendrian isotopy, while conjugating B in the braid group changes L.B/

at most by negative Legendrian de/stabilization (for the latter, see also the appendix on
the Legendrian satellite construction in [17]). We conclude by the Transverse Markov
Theorem that if two braids B1;B2 have transversely isotopic knot closures in .R3; �rot/,
then the positive transverse pushoffs L.B1/C , L.B2/C are transversely isotopic knots
in .R3; �std/. In fact, any braid B , viewed as a transverse knot in .R3; �rot/, is the
same as L.B/C , viewed as a transverse knot in .R3; �std/.

Proposition 2.2 Let � be the contactomorphism between .R3; �rot/ and .R3; �std/

from Section 2.3. If B is a braid and T .B/ is the transverse knot in .R3; �rot/

corresponding to B , then �.T .B// and L.B/C are transversely isotopic knots in
.R3; �std/.
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x

y

z

T .B
.n/
0
/

B

T .B/

x

z

�.T .B
.n/
0
//

B

�.T .B//

Figure 5: Transverse knots T .B
.n/
0 /;T .B/ in �rot and the corresponding

fronts of transverse knots in �std

Proof Under � , the standard transverse unknot T0 in �rot maps to an unknot whose
front projection is a figure 8. For any n, view the trivial n–component braid B

.n/
0

as
the transverse link in �rot defined by

T .B
.n/
0
/D f.cos t; sin t; k�/ j 0� t � 2�; k D 0; : : : ; n� 1g

for small � > 0. The front projection of �.T .B.n/
0
// is a collection of n figure 8’s that

differ by � translations in the z direction; see Figure 5.

Let B be a braid with n strands. In cylindrical coordinates .r; �; z/ on R3 , we can
choose T .B/ to agree with T .B

.n/
0
/ except in a neighborhood of � D 5�=4, where

the entire braid B lives. Then the front of �.T .B// agrees with �.T .B.n/
0
// except

in the braiding region near .x; z/D .�1=
p

2; 1=2/.

In the braiding region for the front of �.T .B//, we can draw B in the standard way,
such that each strand goes from left to right without vertical tangencies. We can then
modify the front of �.T .B// by a transverse isotopy so that the n figure 8’s do not
intersect anywhere outside of the braiding region. The result is a transverse front that
is transversely isotopic to the front of L.B/C ; see Figure 6. The result follows.

We next turn to the relation between grid diagrams and braids. Given any grid dia-
gram G , one can construct a braid B.G/ as follows (cf [4; 5; 16]). Connect O ’s to
X ’s horizontally as usual. When an O lies vertically above an X , connect them; when
an O lies vertically under an X , draw two vertical line segments, one from the O

down to the bottom of the grid diagram, one from the X up to the top of the grid
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T .B/

L.B/

�.T .B//

L.B/C

Figure 6: Transverse isotopy between �.T .B// and L.B/C . The top row
is as in Figure 5. The middle row shows the positive transverse pushoff of
L.B/ , resulting in a transverse front that is isotopic to the front for �.T .B// .
The bottom row shows a detail of the braiding region for the fronts of L.B/;
L.B/C ; and L.B/C after a transverse isotopy.

diagram. Whenever two line segments cross, have the horizontal segment cross over
the vertical segment as before. We can now orient all segments so that O ’s point to
X ’s horizontally as usual, and all vertical segments are oriented upwards. The result
can be viewed as a braid from the bottom of the grid diagram to the top. See Figure 7.
We remark that the closure of B.G/ is isotopic to the knot given by G , and that any
braid is B.G/ for some grid diagram G .

To a grid diagram G , we have now associated a Legendrian knot L.G/ and a braid
B.G/. The following result is a compatibility result for these two constructions as well
as the construction L.B/.

Proposition 2.3 If G is a grid diagram, then L.G/C and L.B.G//C are transversely
isotopic; that is, the Legendrian knots L.G/ and L.B.G// are related by Legendrian
isotopy and negative de/stabilization.

Proof Let G be an n� n grid diagram, and suppose B.G/ has m strands. One can
associate to B.G/ a natural .nC 2m/� .nC 2m/ grid diagram G0 within which the
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G

L.G/

B.G/

Figure 7: Constructing a Legendrian knot L.G/ and a braid B.G/ from a
grid diagram G . In this example, we read B.G/ bottom to top to get B.G/D
��1

1
��1

2
��1

1
��1

2
.

original diagram G appears, such that L.B.G// is Legendrian isotopic to Sk
�.L.G

0//

for some k ; see Figure 8. (More precisely, k is the number of appearances of subwords
of the form ��1

i ��1
iC1

in B.G/.) There are m “braid” parts of the new grid diagram,
each of which begins at an X , goes up out of G , curves around G to the right, and
ends at an O . We can eliminate each of these parts in succession, via grid commutation
and two grid destabilizations, one a Legendrian isotopy and one a negative Legendrian
destabilization; see Figure 9 for an illustration. The end result is L.G/, whence
L.B.G// is Legendrian isotopic to SmCk

� .L.G//, and the proposition follows.

We remark that one can obtain another braid B0.G/ from a grid diagram G such that
Proposition 2.3 also holds. Instead of forcing all vertical segments to point upwards, we
instead force all horizontal segments to point leftwards. This yields a braid B0.G/ by
reading from right to left. The two braids B.G/ and B0.G/ are almost never identical
or even conjugate, but they do represent the same transverse knot.

To see this, define the diagonal mirror G0 of a grid diagram G to be the grid diagram
obtained by reflecting in the main (upper left to lower right) diagonal and interchanging
all X ’s and O ’s. The diagonal mirror represents the same topological knot as the
original grid diagram, and in fact represents the same Legendrian knot up to Legendrian
isotopy. This follows from the fact that the diagonal mirror replaces a Legendrian front
in the xz plane with its reflection in the z axis, corresponding to the contactomorphism
.x;y; z/ 7! .�x;�y; z/ of .R3; �std/, which is just a rotation in the xy plane and
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B.G/

G0

G

Figure 8: Destabilizing a grid diagram G0 obtained from B.G/ to recover G .
The diagram G0 , viewed as a Legendrian knot, is itself some number of
negative destabilizations of L.B.G// (2 in this case).

Figure 9: Decomposing the diagonal dashed arrow in Figure 8 into a compo-
sition of commutations and destabilizations. The first two steps are commuta-
tions; the final step is two grid destabilizations, both preserving transverse
type.

preserves Legendrian knots up to isotopy. Now B0.G/ is the same braid as B.G0/ and
thus corresponds to the same transverse knot as B.G/.

We summarize the results from this section in the following diagram, where G , B ,
L, and T represent grid diagrams, braids, Legendrian knots/links in .R3; �std/, and
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transverse knots/links in .R3; �std/ respectively.

G
L.G/ //

B.G/

��

L

LC

��
B

�.T .B//DL.B/C

// T

The equality at the bottom of this diagram is Proposition 2.2, while Proposition 2.3
states that the square commutes.

3 Proof of Theorem 1.1

For a; b � 0, we write the two relevant 4–braids as

B1.a; b/D �3�
�2
2 �2aC2

3
�2�
�1
3 ��1

1 �2�
2bC2
1

B2.a; b/D �3�
�2
2 �2aC2

3
�2�
�1
3 �2bC2

1
�2�
�1
1 :

We now break the proof of Theorem 1.1 into several parts.

Proposition 3.1 The knot given by the closure of B1.a; b/ (or B2.a; b/) is prime.

Proof Let K.a; b/ denote the closure of B1.a; b/. Since braid index minus 1 is addi-
tive under connected sum, if K.a; b/ is composite, then one of its direct summands must
be a knot of braid index 2, ie, some torus knot T .2; 2nC1/ for some integer n¤ 0;�1.
It thus suffices to show that for any a; b � 0 and n¤ 0;�1, P .T .2; 2nC 1//.x; z/

does not divide P .K.a; b//.x; z/, where P .K/.x; z/ is the HOMFLY-PT polynomial
of K , defined as usual by P . /D 1, xP . /�x�1P . /D zP . /.

It is straightforward to check, by induction and the HOMFLY-PT skein relation, that

P .K.a; b//.x; 0/D x�2a�2b�6
�� 2a� 2C .3aC 3� b/x2C .b� a/x4

�

P .T .2; 2nC 1//.x; 0/D x�2n�2.�nC .nC 1/x2/

P .K.a; b//.x; 2i/D�.�x2/�a�b�3
�
2.1C a/.1C 2b/

C .3C 3aC 7bC 8ab/x2C .aC 3bC 4ab/x4
�

P .T .2; 2nC 1//.x; 2i/D�.�x2/�n�1.nC .nC 1/x2/;

where i Dp�1. If P .T .2; 2nC 1// divides P .K.a; b//, then the first two equations
readily imply that 2aC2C .aCbC1/nD n2 , while the last two equations imply that
2aC2C4bC4abC.aCbC1/nD n2 . It follows that bD 0 and .aC1/.nC2/D n2 .
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Since nC 2 divides n2 , we have jnC 2j D j gcd.nC 2; n2/j � .gcd.nC 2; n//2 � 4,
and a quick check shows that n must be one of �1; 0; 2. Thus nD 2 and aD 0; but
K.0; 0/ is (the mirror of) 10132 and hence prime.

To apply the y� invariant to B1.a; b/ and B2.a; b/, we need grid diagrams for both
braids. It is possible to create grid diagrams directly from the braids, but to facilitate
the computation we need particular diagrams.

Proposition 3.2 Let G1.a; b/ and G2.a; b/ be the .2aC 2b C 9/� .2aC 2b C 9/

and .2aC 2bC 10/� .2aC 2bC 10/ grid diagrams depicted in Figures 10 and 11.
Then B.G1.a; b// and B.G2.a; b// represent the same transverse knots as B1.a; b/

and B2.a; b/, respectively.

2aC 3‚ …„ ƒ2b C 2‚ …„ ƒ

1

2

3

4

Figure 10: The grid diagram G1.a; b/ for B1.a; b/ , along with the braid
B0.G1.a; b// with strands numbered. The solid box denotes a pattern consist-
ing of X ’s on the diagonal and O ’s on the second subdiagonal; the dashed
box has X ’s on the first superdiagonal and O ’s on the first subdiagonal.

Proof The braids B.G1.a; b// and B.G2.a; b// have a large number of strands. It is
easier to work with B0.G1.a; b// and B0.G2.a; b//, where B0 is the braid constructed
by stipulating that all horizontal segments point leftward; see Section 2.4. It was shown
in Section 2.4 that B.G/ and B0.G/ represent the same transverse knot for any grid
diagram G .
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2aC 3‚ …„ ƒ2b C 2‚ …„ ƒ

1

2

3

4

Figure 11: The grid diagram G2.a; b/ for B2.a; b/ , along with the braid B0.G2.a; b//

We readily calculate from the grid diagrams that B0.G1.a; b// and B0.G2.a; b// are
4–braids given by

B0.G1.a; b//D �2aC3
3

�2�
�1
3 ��2

1 �2bC1
2

�1�
�1
2 �1

B0.G2.a; b//D �2aC2
3

�2�1�3�2�1�3�2�
2bC1
3

��1
1 ��1

2 ��2
1 ��1

2 ��1
1 ��1

2 :

From relations in the braid group, we find that

B0.G2.a; b//D �2aC2
3

�2�
�1
3 �2bC2

1
�2�
�1
1 �3�

�2
2

and thus B0.G2.a; b// is conjugate to B2.a; b/.

The braids B1.a; b/ and B0.G1.a; b// are not conjugate, but are related by conjugation
and exchange moves. For our purposes, we recognize two exchange moves on 4–braids,
related by conjugation:

� �1 exchange: b1�
�1
1

b2�1b3$ b1�1b2�
�1
1

b3 , where b1; b2; b3 are braids in
the subgroup generated by �2; �3

� �3 exchange: b1�
�1
3

b2�3b3$ b1�3b2�
�1
3

b3 , where b1; b2; b3 are braids in
the subgroup generated by �1; �2 .

Since an exchange move is a composition of conjugations, one positive braid stabi-
lization, and one positive destabilization, it does not change the transverse type of the
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braid; see [3, Figure 8]. Now we have

B0.G1.a; b//
conj�1����! �1�

2aC3
3

�2�
�1
3 ��2

1 �2bC1
2

�1�
�1
2

D ��1
2 ��1

3 �2aC3
2

�1�
�1
2 �3�2�

�1
1 �2bC1

2
�1�
�1
2

exch�3����! ��1
2 �3�

2aC3
2

�1�
�1
2 ��1

3 �2�
�1
1 �2bC1

2
�1�
�1
2

D ��1
2 �3�

2aC3
2

�3�
�1
2 ��1

1 �2�
�1
3 �2bC1

2
�1�
�1
2

exch�1����! ��1
2 �3�

2aC3
2

�3�
�1
2 �1�2�

�1
3 �2bC1

2
��1

1 ��1
2

conj�3����!B1.a; b/;

where “conj �k ” is conjugation by �k , B 7! �kB��1
k

.

We now use y� to show that G1.a; b/ and G2.a; b/ are of different transverse types;
more precisely, if we define transverse knots

Ti.a; b/DL.Gi.a; b//C D �.T .Bi.a; b///

in .R3; �std/ for i D 1; 2, then T1.a; b/ and T2.a; b/ are not transversely isotopic.
This will complete the proof of Theorem 1.1.

Recall from [22] that if T is a transverse knot, then y�.T / is an element of the knot Floer
homology bHFK.m.T //, where m.T / is the topological mirror of T . If T DL.G/C
for a grid diagram G , then bHFK.m.T // can be combinatorially computed from G

as in [15]. It is easier to consider a variant eHFK.m.T // of bHFK.m.T //, in which
there is a corresponding element z�.T / (D j�.y�/ in [16]); then z�.T /D 0 if and only
if y�.T /D 0 [16, Section 4].

We assume some familiarity with the combinatorial definition of eHFK over Z=2 from
[15] (or [16; 22]). If T D L.G/C for an n� n grid diagram G , then the complex
eCFK.m.T // is generated by n! states labeled by permutations of f1; : : : ; ng. A state
.�.1/; : : : ; �.n// can be depicted in the grid as a set of n points f.i; �.i//g, where
.i; j / is the intersection of vertical line i and horizontal line j ; here the vertical (resp.
horizontal) lines are numbered left to right (resp. bottom to top) starting with 1. The
differential @ on eCFK.m.T // is represented pictorially by

@
�

b

b �
D
X

b

b

;

where the sum is over all rectangles not containing any X ’s, O ’s, or other points
in the state. If @.y/ contains x as a term, then we write x  y and y ! x . The
transverse invariant z� is the image in eHFK.m.T // of the state xC given by the upper
right corners of the X ’s.
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Proposition 3.3 We have z�.T1.a; b//D 0 and hence y�.T1.a; b//D 0.

b

b
b

b

b
b
b

b
b

b
b
b
b

(a) y1

b

b
b

b

b

b
b

b
b

b
b
b
b

(b) y2

b

b

b

b

b

b

b

b
b

b
b
b
b

(c) y3

Figure 12: Three grid states of G1.a; b/ . The shaded boxes indicate terms
contributing to the differentials of these states.

Proof Write e D 2bC 7 and f D 2aC 2bC 9; then the state xC is the permuta-
tion .1; 6; 5; 7; 8; : : : ; e; 3; 2; 4; eC1; : : : ; f /D .1; 6; 5; .: : :/1; e; 3; 2; 4; .: : :/2/, where
.: : :/1 D 7; : : : ; e� 1 and .: : :/2 D eC 1; : : : ; f . Define three further states

y1 D .1; 6; 5; .: : :/1; e; 2; 3; 4; .: : :/2/
y2 D .1; 5; 6; .: : :/1; 2; e; 3; 4; .: : :/2/
y3 D .1; 4; 6; .: : :/1; 2; 5; 3; e; .: : :/2/:

It is then easy to check (Figure 12) that

@.y1/D .1; 6; 5; .: : :/1; e; 3; 2; 4; .: : :/2/C .1; 6; 5; .: : :/1; 2; e; 3; 4; .: : :/2/
@.y2/D .1; 6; 5; .: : :/1; 2; e; 3; 4; .: : :/2/C .1; 4; 6; .: : :/1; 2; e; 3; 5; .: : :/2/
@.y3/D .1; 4; 6; .: : :/1; 2; e; 3; 5; .: : :/2/;

and so
@.y1Cy2Cy3/D .1; 6; 5; .: : :/1; e; 3; 2; 4; .: : :/2/D xC:

Thus xC is null-homologous and z�.T1.a; b//D 0.

Proposition 3.4 We have z�.T2.a; b//¤ 0 and hence y�.T2.a; b//¤ 0.

Proof We will only need to consider states of the form

.�.1/; �.2/; �.3/; �.4/; �.5/; 6; 7; 8; : : : ; 2aC 2bC 11/;

which we abbreviate as �.1/; �.2/; �.3/; �.4/; �.5/. In this notation, xC for G2.a; b/

is 1; 5; 4; 3; 2. To determine whether xC is null-homologous, we work as in [16].
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Let A0 D∅ and B0 D fxCg, and inductively define Ak ;Bk as follows: let

Ak D fstates x 62 Ak�1 jy! x for some x 2Bk�1g
Bk D fstates y 62Bk�1 jy! x for some x 2 Akg:

This process terminates at some point; let A;B be the free vector spaces over Z=2
generated by elements of all Ak ;Bk respectively, and let C 0 D A˚B . Then the
differential @ on eCFK induces a map DW A!B , and xC is null-homologous in eCFK
if and only if xC 2 B is in the image of D .

For the grid G2.a; b/, we successively calculate the Ak and Bk as follows; see the
appendix for the relevant pictures.

xC D 1; 5; 4; 3; 2
	
B0 D fxCg

y1 D 1; 4; 5; 3; 2 y1! xC

y2 D 1; 5; 3; 4; 2 y2! xC

y3 D 1; 5; 4; 2; 3 y3! xC

9
=
;A1 D fy1;y2;y3g

x1 D 4; 1; 5; 3; 2 x1 y1

x2 D 3; 5; 1; 4; 2 x2 y2

x3 D 2; 5; 4; 1; 3 x3 y3

9
=
;B1 D fx1;x2;x3g

y4 D 4; 1; 5; 2; 3 y4! x1

y5 D 3; 5; 1; 2; 4 y5! x2

y6 D 2; 4; 5; 1; 3 y6! x3

y7 D 2; 5; 3; 1; 4 y7! x3

9
>>=
>>;
A2 D fy4;y5;y6;y7g

x4 D 4; 2; 5; 1; 3 x4 y4;y6

x5 D 3; 5; 2; 1; 4 x5 y5;y7

x6 D 4; 1; 2; 5; 3 x6 y4

x7 D 2; 4; 1; 5; 3 x7 y6

9
>>=
>>;
B2 D fx4;x5;x6;x7g

y8 D 1; 4; 2; 5; 3 y8! x6;x7

y9 D 4; 1; 2; 3; 5 y9! x6

y10 D 5; 1; 2; 4; 3 y10! x6

y11 D 2; 4; 1; 3; 5 y11! x7

9
>>=
>>;
A3 D fy8;y9;y10;y11g

x8 D 4; 2; 1; 3; 5 x8 y9;y11

x9 D 5; 2; 1; 4; 3 x9 y10

�
B3 D fx8;x9g

y12 D 5; 2; 1; 3; 4 y12! x8;x9

	
A4 D fy12g:

We have B4 D A5 D∅ and the process terminates here.
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The subcomplex C is generated by xC;x1; : : : ;x9;y1; : : : ;y12 . Below is the ma-
trix for the adjoint (transpose) of the map DW A ! B , with rows corresponding
to xC;x1; : : : ;x9 and columns corresponding to y1; : : : ;y12 , along with its row
reduction:

0
BBBBBBBBBBBBBBBBBBB@

1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 1 0 0 0

0 0 1 0 0 1 0 0 0 0

0 0 0 1 1 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1

1
CCCCCCCCCCCCCCCCCCCA

row reduce������!

0
BBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCA

:

We see that Œ1; 0; 0; 0; 0; 0; 0; 0; 0; 0� is not in the row space of the row-reduced matrix,
and hence xC is not in the image of D . We conclude that z�.T2.a; b// is not null-
homologous.

Propositions 3.3 and 3.4 show that T1.a; b/ and T2.a; b/ are different as transverse
knots, and Theorem 1.1 follows.

Appendix: Grid states for G2.a; b/

On the next two pages, we depict the grid states xi ;yi from the proof of Proposition
3.4. For each state, the rectangles comprising the differential for the y states, or the
adjoint differential for the x states, are shaded, with darker shading for rectangles from
previous states and lighter shading for the others. Some rectangles overlap.
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Figure 14: Grid states for G2.a; b/; here .a; b/D .1; 1/ .
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