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An involution on the K –theory
of bimonoidal categories with anti-involution

BIRGIT RICHTER

We construct a combinatorially defined involution on the algebraic K–theory of the
ring spectrum associated to a bimonoidal category with anti-involution. Particular
examples of such are braided bimonoidal categories. We investigate examples such as
K.ku/ , K.ko/ and Waldhausen’s A–theory of spaces of the form BBG , for abelian
groups G . We show that the involution agrees with the classical one for a bimonoidal
category associated to a ring and prove that it is not trivial in the above mentioned
examples.

55S25, 19D23; 19D10

1 Introduction

Several multiplicative cohomology theories possess a spectrum model that is the ring
spectrum associated to a bimonoidal category. The passage from bimonoidal categories
to spectra uses the additive structure of the bimonoidal category; its multiplication is
then used to obtain the ring structure. For instance, in the case of singular cohomol-
ogy with coefficients in a ring R, H�.�IR/, we can view the ring R as a discrete
bimonoidal category. The associated spectrum is the Eilenberg–Mac Lane spectrum
of the ring R, HR. In general, we denote the spectrum associated to a bimonoidal
category R by HR.

The main result of Baas, Dundas, Richter and Rognes [3] identifies the algebraic
K–theory of HR with an algebraic K–theory construction defined by Baas, Dundas
and Rognes [4], K.R/, which uses the ring-like features of R, namely uses addition
and multiplication in R to build K–theory. We will recall the construction of K.R/
in Section 2.

In some examples, one can therefore read off some extra structure on K.R/ using this
equivalence. For instance, if R is a ring with anti-involution, then there is an involution
on the K–theory of the ring R and this yields an involution on

K.RR/'K.HR/'Kf .R/
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316 Birgit Richter

where RR denotes the discrete category associated to the ring R and Kf .R/ is the
free K–theory of R. For the bipermutative category of finite dimensional complex
vector spaces, VC , we obtain that

K.VC/'K.HVC/DK.ku/

where ku denotes the connective spectrum associated to complex topological K–theory.
As complex conjugation gives rise to an action of the group of order two on ku, we
obtain an induced action of Z=2Z on K.ku/ and hence on K.VC/.

The aim of this paper is to place these two examples in a broader context and to
investigate further examples. On the one hand we will construct an involution on K.R/
for every strict bimonoidal category with anti-involution. Particular examples of such
categories are braided bimonoidal categories. Hence in the special case where the
braiding is symmetric we obtain bipermutative categories as a class of examples. We
prove that in the classical case of K–theory of a ring with anti-involution our involution
coincides with the classical one. Furthermore, we will consider bimonoidal categories
with group actions and investigate how these relate to the constructed involution. We
close with the example of the involution on Waldhausen’s A–theory of a space X for
spaces of the form X D BBG for an abelian group G . We show that in several cases
such as K.ko/, K.ku/ and A.BBG/, our involution is nontrivial.

The advantage of our construction of an involution is that it is relatively easy to describe:
it is of a purely combinatorial nature that mimics the construction of the involution on
the algebraic K–theory of rings with anti-involution.

Acknowledgements The author would like to thank Kobe University for the hospitality
during her stay in March 2008 which was partially supported by Grant-in-Aid for
Scientific Research (C) 19540127 of the Japan Society for the Promotion of Science.
She thanks Christian Ausoni for asking a question that led to an important correction
and Hannah König for spotting some annoying typos.

2 K –theory of bimonoidal categories

Roughly speaking, a (strict) bimonoidal category R is a category with two binary
operations, ˝ and ˚, that let R behave like a rig – a ring without additive inverses.
More precisely, for each pair of objects A;B in R there are objects A˚ B and
A˝B in R and we assume strict associativity for both operations. There are objects
0R 2R and 1R 2R that are strictly neutral with respect to ˚ resp. ˝ and there are
isomorphisms cA;B

˚ W A˚B! B˚A with cB;A
˚ ı cA;B

˚ D id. Everything in sight is
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natural and satisfies coherence conditions. The addition ˚ and the multiplication ˝
are related via distributivity laws.

The complete list of axioms can be found in Elmendorf and Mandell [11, Definition
3.3], with the slight difference that we demand the right distributivity map

dr W A˝B˚A0˝B! .A˚A0/˝B

to be the identity and d` to be a natural isomorphism. Similarly to May [16, VI,
Proposition 3.5] one can see that every bimonoidal category is equivalent to a strict
one, so there it is no loss of generality to assume strictness.

The ring-like features of bimonoidal categories allow us to consider matrices and
algebraic K–theory of such categories. In the following we recall some definitions and
results from Baas, Dundas and Rognes [4].

Definition 2.1 [4, Definition 3.2] The category of n�n–matrices over R, Mn.R/, is
defined as follows. The objects of Mn.R/ are matrices AD .Ai;j /

n
i;jD1 of objects of R

and morphisms from AD .Ai;j /
n
i;jD1 to C D .Ci;j /

n
i;jD1 are matrices �D .�i;j /

n
i;jD1

where each �i;j is a morphism in R from Ai;j to Ci;j .

Lemma 2.2 [4, Proposition 3.3] For a bimonoidal category .R;˚; 0R; c˚;˝; 1R/
the category Mn.R/ is a monoidal category with respect to the matrix multiplication
bifunctor

Mn.R/�Mn.R/
�
�!Mn.R/

.Ai;j /
n
i;jD1 � .Bi;j /

n
i;jD1 D .Ci;j /

n
i;jD1 with Ci;j D

nM
kD1

Ai;k ˝Bk;j :

The unit of this structure is given by the unit matrix object En which has 1R as diagonal
entries and 0R in the other places.

In the following we will assume that the category R is small. As R is bimonoidal,
its set of path components �0.R/ has a structure of a rig, and its group completion,
Gr.�0.R//D .��0R/�0R, is a ring.

Definition 2.3 [4, Definition 3.4] We define the monoid of invertible n�n–matrices
over �0.R/, GLn.�0.R//, to be the n�n–matrices over �0.R/ that are invertible as
matrices over Gr.�0.R//.
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Note that GLn.�0.R// is the pullback in the diagram

GLn.�0R/ //

��

��

GLn.Gr.�0R//
��

��

Mn.�0R/ // Mn.Gr.�0R//:

For instance, if �0.R/ is the rig of natural numbers including zero, N0 , then the
elements in GLn.N0/ are n � n–matrices over N0 that are invertible if they are
considered as matrices with integral entries, ie, GLn.N0/DMn.N0/\GLn.Z/ consists
of matrices in Mn.N0/ with determinant ˙1.

Definition 2.4 [4, Definition 3.6] The category of weakly invertible n� n–matrices
over R, GLn.R/, is the full subcategory of Mn.R/ with objects all matrices A D

.Ai;j /
n
i;jD1 2Mn.R/ whose matrix of �0 –classes ŒA�D .ŒAi;j �/

n
i;jD1 is contained in

GLn.�0.R//.

Matrix multiplication is compatible with the property of being weakly invertible and
hence the category GLn.R/ inherits a monoidal structure from Mn.R/.
We recall the definition of the bar construction of monoidal categories from [4, Defini-
tion 3.8].

Definition 2.5 Let .C; �; 1/ be a monoidal category. The bar construction of C , B.C/,
is a simplicial category. Let Œq� be the ordered set Œq�Df0< 1< : : : < qg. An object A

in Bq.C/ consists of the following data.
(a) For each 0 6 i < j 6 q there is an object Aij in C .

(b) For each 0 6 i < j < k 6 q there is an isomorphism

�ijk
W Aij

�Ajk
!Aik

in C such that for all 0 6 i < j < k < l 6 q the following diagram commutes:

.Aij �Ajk/ �Akl

�ijk � id
��

Š
// Aij � .Ajk �Akl/

id ��jkl

��

Aik �Akl
�ikl

// Ail Aij �Ajl
�ij l

oo

A morphism f W A! B in BqC consists of morphisms f ij W Aij ! Bij in C such
that for all 0 6 i < j < k 6 q ,

f ik�ijk
D  ijk.f ij

�f jk/W Aij
�Ajk

! Bik :

Here, the  ijk W Bij �Bjk ! Bik denote the structure maps of B .
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The simplicial structure is as follows: if 'W Œq�! Œp� 2� the functor '�W Bp.C/!
Bq.C/ is obtained by precomposing with ' . In order to allow for degeneracy maps si

we use the convention that all objects of the form Aii are the unit of the monoidal
structure.

The K–theory of the bimonoidal category R can now be defined as usual. We take the
bar constructions of the monoidal categories GLnR for all n > 0, realise them, take
the disjoint union of all of these and group complete with respect to the block sum of
matrices.

Definition 2.6 [4, Definition 3.12] For any bimonoidal category R its K–theory is

K.R/D�B

�G
n>0

jBGLnRj
�
:

Note that K.R/ is weakly equivalent to

Z� jBGLRjC:

Here, GLR is a suitable stabilization of the categories GLnR analogous to the stabi-
lization of invertible matrices over a ring.

The main result of [3] states that K.R/ is weakly equivalent to the algebraic K–theory
of the ring spectrum associated to R, HR, if R is a small topological bimonoidal
category satisfying the following conditions:

� All morphisms in R are isomorphisms.
� For every object X 2R the translation functor X ˚ .�/ is faithful.

3 Bimonoidal categories with anti-involution

In order to define an involution of K.R/ we need to assume some extra structure on
our bimonoidal category R, namely the existence of an anti-involution on R. David
Barnes considers involutions on monoidal categories in Barnes [5, Section 7]. We have
to incorporate the full bimonoidal structure, but some of our axioms below relate to his.

Definition 3.1 An anti-involution in a strict bimonoidal category R consists of a
functor �W R!R with � ı � D id and such that there are natural isomorphisms

(1) �A;BW �.A˝B/! �.B/˝ �.A/

for all A;B 2R. In addition, the functor � and the isomorphisms � have to satisfy
the following properties.
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(a) The functor � is strictly symmetric monoidal with respect to .R;˚; 0R; c˚/
[15, XI.2].

(b) The multiplicative unit 1R is fixed under � , ie, �.1R/ D 1R and �1R;A D

id�.A/ D �A;1R .

(c) The isomorphisms � are associative in the sense that the diagram

�.A˝B˝C /
�A˝B;C

//

�A;B˝C

��

�.C /˝ �.A˝B/

id˝�A;B

��

�.B˝C /˝ �.A/
�B;C˝ id

// �.C /˝ �.B/˝ �.A/

commutes for all A;B;C 2R.

(d) The distributivity isomorphisms dr and d` and the isomorphisms � render the
following diagrams commutative:

�.A˝B˚A˝C /
�.d`/

//

�A˝B˚�A˝C

��

�.A˝ .B˚C //

�A;B˚C

��

�.B/˝ �.A/˚ �.C /˝ �.A/
dr
// .�.B/˚ �.C //˝ �.A/

�.A˝C ˚B˝C /
�.dr /

//

�A˝C˚�B˝C

��

�..A˚B/˝C /

�A˚B;C

��

�.C /˝ �.A/˚ �.C /˝ �.B/
d`
// �.C /˝ .�.A/˚ �.B//

For a bimonoidal category with anti-involution .R; �; �/ the objects that are fixed
under the anti-involution � do not form a bimonoidal category in general. They carry a
permutative structure with respect to ˚.

Remark 3.2 In the case of rings an anti-involution is a map from a ring R to the ring
Ro where Ro has the same additive structure as R but has reversed multiplication. In a
similar spirit one can define a bimonoidal category Ro for any bimonoidal category R
where the multiplicative structure is reversed. However, the right distributivity in Ro

is then no longer the identity because it corresponds to the left distributivity law in R.
An anti-involution for a bimonoidal category R can be viewed as a lax morphism of
bimonoidal categories from R to Ro by adapting [2] to a setting with dr ¤ id.
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Definition 3.3 A morphism F W .R; �; �/! .R0; �0; �0/ of bimonoidal categories with
anti-involution is a lax bimonoidal functor F W R!R0 with the additional properties
that

F ı � D �0 ıF

and that � and �0 are compatible with the transformations

(2) �A;B
W F.A/˝F.B/! F.A˝B/

in the sense that the diagram

F.�.A//˝F.�.B//
�

// F.�.A/˝ �.B// F.�.B˝A//
F.�/
oo

�0.F.A//˝ �0.F.B// �0.F.B/˝F.A//
�0.�/

//
�0
oo �0.F.B˝A//

commutes for all A;B in R.

We extend the anti-involution � to the category of matrices Mn.R/ coordinatewise, so
for any AD .Ai;j /i;j 2Mn.R/

�..Ai;j /i;j /D .�.Ai;j //i;j :

If the matrix A is an element in GLn.R/ then so is �.A/, and �.En/DEn .

4 The anti-involution on K.R/

Regardless of the special form of a bimonoidal category with anti-involution, .R; �; �/,
the combinatorial nature of the bar construction BGL.R/ allows for a canonical
involution map.

In the following R is always a fixed bimonoidal category with anti-involution.

Definition 4.1 For a matrix of objects A 2 Mn.R/ the transpose of A, At , has
At

i;j DAj ;i as entries. For a morphism �W A! C in Mn.R/ we define �t as

�t
i;j WD �j ;i W Aj ;i DAt

i;j ! C t
i;j D Cj ;i :
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For a general bimonoidal category, the formula that we are used to, namely .A �B/t D
Bt �At does not hold on the nose, but only up to a twist. We have

.A �B/ti;j D .A �B/j ;i D

nM
kD1

Aj ;k ˝Bk;i

.Bt
�At /i;j D

nM
kD1

Bt
i;k ˝At

k;j D

nM
kD1

Bk;i ˝Aj ;k :whereas

Using the structure maps � of the anti-involution on R, we define �W .�.A �B//t !
�.B/t � �.A/t by setting �D

Ln
kD1 �Aj ;k ;Bk;i

. The map � behaves well on mor-
phisms.

Lemma 4.2 For morphisms �W A! C and  W B ! D in Mn.R/ the following
diagram commutes:

.�.A �B//t
�
//

.�.� � //t

��

�.B/t � �.A/t

�. /t � �.�/t

��

.�.C �D//t
�
// �.D/t � �.C /t

Proof The .i; j / matrix component of the diagram above is

Ln
kD1 �.Aj ;k ˝Bk;i/

L
k �Aj ;k ;Bk;i

//

L
k �.�j ;k˝ k;i /

��

Ln
kD1 �.Bk;i/˝ �.Aj ;k/L

k �. k;i /˝ �.�j ;k/

��Ln
kD1 �.Cj ;k ˝Dk;i/

L
k �Cj ;k ;Dk;i

//
Ln

kD1 �.Dk;i/˝ �.Cj ;k/

and this commutes because � is natural.

Definition 4.3 Let
A0;1 � � � A0;q

: : :
:::

Aq�1;q

together with coherent isomorphisms �i;j ;k W Ai;j �Aj ;k !Ai;k , 0 6 i < j < k 6 q ,
be an element in BqGLn.R/.
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We define � W BqGLn.R/! BqGLn.R/ via

� W

A0;1 � � � A0;q

: : :
:::

Aq�1;q

7!

.�.Aq�1;q//t : : : .�.A0;q//t

: : :
:::

.�.A0;1//t :

Let Bi;j denote .�.Aq�j ;q�i//t . The corresponding isomorphisms

�.�/i;j ;k W Bi;j
�Bj ;k

! Bi;k

for 0 6 i < j < k 6 q are given by

(3)

�.�/i;j ;k W �.Aq�j ;q�i//t � .�.Aq�k;q�j //t

��1

��

.�.Aq�k;q�j �Aq�j ;q�i//t
.�.�q�k;q�j ;q�i //t

// .�.Aq�k;q�i//t :

Let ˛D ˛A;B;C W A � .B �C /�! .A �B/ �C be the natural associativity isomorphism in
the monoidal structure of .GLnR; �;En/. We can express ˛ in terms of distributivity
maps and additive twist maps as follows: let � D .�i;j / be the additive twist

�i;j W

nM
kD1

nM
`D1

Ai;k ˝Bk;`˝C`;j �!

nM
`D1

nM
kD1

Ai;k ˝Bk;`˝C`;j

that exchanges the priority of summation of the two sums. Then

(4) ˛ D dr ı � ı d�1
` D � ı d�1

` :

Here, the distributivity law is applied to sums of n entries. This does not cause problems
as addition is assumed to be strictly associative. The fact that ˛ satisfies Mac Lane’s
pentagon axiom [15, VII.1(5)] can be seen by brute-force comparison of terms using
the axioms [11, Definition 3.3].

Lemma 4.4 The associativity isomorphism for matrix multiplication, ˛ , and the
isomorphisms � are compatible, ie, they satisfy

(5) .id ��/ ı� ı �.˛/t D ˛�1
ı .� � id/ ı�:

Proof To ease notation, we will abbreviate A˝B to AB . The .i; j / matrix component
of the equation

.id ��/ ı� ı �.˛/t D ˛�1
ı .� � id/ ı�W �.A � .B �C //t �! �.C /t � .�.B/t � �.A/t /
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that we want to have is part of the diagram:Ln
kD1

Ln
`D1�.Aj ;k.Bk;`C`;i//

� //

�.d`/

��

LL
�

��

Ln
`D1

Ln
kD1�..Aj ;kBk;`/C`;i/

�.dr /

��

LL
�

��

�
�Ln

kD1Aj ;k

�Ln
`D1Bk;`C`;i

�� �.˛/t
//

�

��

�
�Ln

`D1

�Ln
kD1Aj ;kBk;`

�
C`;i

�
�

��

G
dr //

LL
�˝ id

((

Ln
kD1

�Ln
`D1�.Bk;`C`;i/

�
�.Aj ;k/

� � id
��

Ln
`D1�.C`;i/

�Ln
kD1�.Aj ;kBk;`/

�
id ��
��

F
d`oo

LL
id˝�

vv

Ln
kD1

�Ln
`D1�.C`;i/�.Bk;`/

�
�.Aj ;k/

˛�1
//
Ln
`D1�.C`;i/

�Ln
kD1�.Bk;`/�.Aj ;k/

�
Ln

kD1

Ln
`D1�.C`;i/�.Bk;`/�.Aj ;k/

dr

OO

��1

D� //
Ln
`D1

Ln
kD1�.C`;i/�.Bk;`/�.Aj ;k/

d`

OO

Here, the symbol G on the left hand side stands for
Ln

kD1

Ln
`D1 �.Bk;`C`;i/�.Aj ;k/

and the F on the right hand side is short for
Ln
`D1

Ln
kD1 �.C`;i/�.Aj ;kBk;`/. From

the definition of an anti-involution we know that the top triangles and the outer diagram
commute. Naturality of the distributivity transformations makes the bottom triangles
commute and therefore the square in the middle commutes as well.

Lemma 4.5 The isomorphisms �.�/i;j ;k as in (3) are coherent.

Proof Recall that the �i;j ;k are the coherence isomorphisms for the triangle of
matrices .Ai;j /i;j and that Bij D .�.Aq�j ;q�i//t . We have to prove that the following
diagram commutes.

(6)

Bij � .Bjk �Bk`/
˛
//

id ��.�/j ;k;`
��

.Bij �Bjk/ �Bk`

�.�/i;j ;k � id
��

Bij �Bj`

�.�/i;j ;` $$

Bik �Bk`

�.�/i;k;`zz

Bi`

As �.�/j ;k;` is the composition .�.�q�`;q�k;q�j //t ı��1 , as we know from naturality
of � that

��1
ı ..�.�q�k;q�j ;q�i//t � id/D ��1

ı ..�.�q�k;q�j ;q�i//t � idt /

D .id � �.�q�k;q�j ;q�i//t ı��1
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and as we have Lemma 4.4, it suffices to show that the diagram

�.Aq�`;q�k � .Aq�k;q�j �Aq�j ;q�i//t
�.˛/t
//

�.id � .�q�k;q�j ;q�i //t

��

�..Aq�`;q�k �Aq�k;q�j / �Aq�j ;q�i/t

.�.�q�`;q�k;q�j / � id/t
��

�.Aq�`;q�k �Aq�k;q�i/t

�.�q�`;q�k;q�i /t ((

�.Aq�`;q�j �Aq�j ;q�i/t

�.�q�`;q�j ;q�i /tvv

�.Aq�`;q�i/t

commutes. As both transposition and � are functors, the commutativity of this diagram
is equivalent to the equality

�q�`;q�j ;q�i
ı .�q�`;q�k;q�j

� id/ ı˛ D �q�`;q�k;q�i
ı .id ��q�k;q�j ;q�i/

and this holds because the isomorphisms .�q�`;q�j ;q�i/ are coherent.

Remark 4.6 If G is a group, then the inverse map induces a map on the level of
classifying spaces B�W BG ! BGop . Here, Gop is the group G with opposite
multiplication. This map is homotopic to the map �W BG ! BGop which sends
..g1; : : : ;gq/; .t0; : : : ; tq//2BqG to ..gq; : : : ;g1/; .tq; : : : ; t0//2BGop (see Burghe-
lea and Fiedorowicz [7, page 206] for an explicit homotopy). Note that � can be
defined for small strict monoidal categories as well.

Let r W �op!�op [19, (3.14)] be the following functor: on objects r is the identity. If
f D gopW Œp�! Œq� is a morphism in �op then r.f / is the opposite of the monotone
map that is given by

i 7! p�g.q� i/; for all 0 6 i 6 q:

Let CAT denote the category of small categories.

Lemma 4.7 If zBGLn.R/ denotes the bar construction of GLnR with respect to the
simplicial structure

�op r
// �op BGLnR

// CAT;

then � induces a well-defined map of simplicial categories

� W BGLnR! zBGLnR

for all n.
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Proof We use the following abbreviation: for p > 0 let !pW Œp�! Œp� be the map,
that sends i to p � i . Then for any f D gopW Œp�! Œq� we have that r.f / is the
opposite of the map !p ıg ı!q . Let 0 6 i < j < k 6 p and 0 6 k < ` <m 6 q . For
an object .Ai;j / in Bp.GLn.R// with coherence isomorphisms .�i;j ;k/ the involution
maps the pair .Ai;j /i;j to .�.A!p.j/;!p.i//t /i;j and the map r.f / induces

.!p ıg ı!q/
op.�.A!p.j/;!p.i//t /i;j D .�.A

!2
p .g.!q.`///;!

2
p .g.!q.k////t /k;`:

First applying gop and then using the involution � amounts to the composition

.Ai;j /i;j 7! .Ag.i/;g.j//i;j 7! .�.Ag.!q.`//;g.!q.k///t /k;`:

As !2
p is the identity, the two terms agree.

For the coherence condition the composition � ıf gives

.�i;j ;k/i;j ;k 7! .�g.i/;g.j/;g.k//i;j ;k 7! .�.�g.!q.m//;g.!q.`//;g.!q.k///t ı��1/k;`;m

whereas r.f / ı � induces

.�i;j ;k/i;j ;k
� // .�.�!q.m/;!q.`/;!q.k//t ı��1/k;`;m_

��

.�.�!
2
pıg.!q.m//;!

2
pıg.!q.`//;!

2
pıg.!q.k///t ı��1/k;`;m

and this coincides with the above term.

Theorem 4.8 The involution � gives rise to an involution z� on K.R/ for every
bimonoidal category with anti-involution .R; �; �/.

Proof We saw that the involution � is a morphism of simplicial categories

� W BGLnR! zBGLnR;

thus it remains to show that the realization of zBGLnR, j zBGLnRj is homeomorphic
to jBGLnRj and that the involution passes to the group completion.

Let ‡ W j zBGLnRj ! jBGLnRj denote the map on the geometric realization that is
defined as

‡

264 A0;1 � � � A0;q

: : :
:::

Aq�1;q

; .t0; : : : ; tq/

375D
264 A0;1 � � � A0;q

: : :
:::

Aq�1;q

; .tq; : : : ; t0/

375 :
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If ıi W Œq � 1�! Œq� denotes the map that is the inclusion that misses i and is strictly
monotone everywhere else and if �i W ŒqC 1�! Œq� is the surjection that sends i and
iC1 to i and is strictly monotone elsewhere, then note that ıq�i ı!q�1D !q ı ıi and
�q�i ı!qC1 D !q ı �i . These identities ensure that r.di/D dq�i , r.si/D sq�i for
di D .ıi/

op , si D .�i/
op and that ‡ is well-defined.

We define z� as ‡ ı � W jBGLnRj ! jBGLnRj. The composition z� ı z� is the identity
on jBGLnRj because the map � commutes with ‡ and both maps are involutions.

As K.R/ D �B.
F

n>0 jBGLnRj/, we have to show that z� is compatible with the
monoid structure on

F
n>0 jBGLnRj. Note that the following diagram commutes

BqGLnR�BqGLmR ˚
//

.�;�/
��

BqGLnCmR

�
��

zBqGLnR� zBqGLmR
˚
// zBqGLnCmR

and we obtain on the level of classifying spaces that

jBGLnRj � jBGLmRj ˚
//

.jz� j;jz� j/
��

jBGLnCmRj

jz� j
��

j zBGLnRj � j zBGLmRj
˚
// j zBGLnCmRj

commutes as well.

Proposition 4.9 If F W .R; �; �/! .R0; �0; �0/ is a morphism of bimonoidal categories
with anti-involution, then F commutes with the involutions on KR and KR0 , ie,
F ı z� D z� ıF ,

KR z�
//

F
��

KR
F
��

KR0
z�
// KR0:

Let R be an associative ring with unit. An anti-involution on R (called involution in
[7, Definition 1.1]) is a function �W R!R with �.�.a//D a, �.aC b/D �.a/C �.b/

and �.ab/D �.b/�.a/ for all a; b 2R.

Definition 4.10 If R is a ring or a rig, then the category which has the elements of
R as objects and only identity morphisms is a bimonoidal category. We denote this
category by RR and call it the discrete category associated to the ring or rig R. If R

is commutative, then RR is bipermutative.
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If R is a ring then the spectrum associated to RR is the Eilenberg–Mac Lane spectrum
of the ring R. For a rig R, we obtain the Eilenberg–MacLane spectrum of the group
completion Gr.R/.

Note that for a small bimonoidal category with anti-involution .R; �; �/, the set of
path components �0.R/, is a rig with anti-involution.

Corollary 4.11 For a small bimonoidal category with anti-involution .R0; �; �/, the
map K.R0/!K.R�0.R0// commutes with the involutions on K.R0/ and K.R�0.R0//'

Kf .Gr.�0.R0///.

Proposition 4.12 For a ring with anti-involution the involution constructed on K.RR/

agrees with the standard involution on Ki.R/; i > 1.

Proof As GLmRR is a strict monoidal category, the bar construction from Section 2
is equivalent to the ordinary bar construction [3] and the isomorphism from the ordinary
bar construction to the one in the monoidal setting is given by sending a q–simplex of
the ordinary bar construction .B0; : : : ;Bq/ to the triangle in BqGLnRR

A0;1 � � � A0;q

: : :
:::

Aq�1;q

with entries Ai;iC1DBi on the diagonal. The other entries are given by iterated matrix
multiplication of the Bi s and the isomorphisms �ijk are chosen to be identity maps.
On the diagonal the involution � sends .B0; : : : ;Bq/ to .�.Bq/

t ; : : : ; �.B0/
t / and this

is precisely what the standard involution in algebraic K–theory does (compare for
instance [7, Definition 1.12]).

Note that if one is willing to work away from the prime 2, then involutions give rise to
splittings

K.R/�K.R/a �K.R/s

of K.R/ into an antisymmetric part, K.R/a , and a symmetric part, K.R/s . Corollary
4.11 tells us that such splittings are compatible with the path component map.

Remark 4.13 There is no straightforward way to mimic Burghelea’s and Fiedorowicz’s
construction of hermitian K–theory in the setting of bimonoidal categories with anti-
involution. There are two main obstacles: matrix multiplication is not associative any
longer and we do not demand that the structure isomorphism � is the identity. This
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has the effect that the analogue of their category "On [7, 1.2] in the bimonoidal world
does not give a strict category.

Similarly, their bar construction description of "On does not have a direct analogue.
In order to form the one-sided bar construction B1.Sym1

n.R/;GLn.R/;�/ in the
spirit of [7, 1.3] one has to have an action of the monoidal category GLn.R/ on the
category of symmetric matrices Sym1

n.R/. Here, the objects of Sym1
n.R/ are matrices

A 2 GLn.R/ with �.A/t D A and morphisms are morphisms in GLn.R/ that are
untouched by � . But for M 2 Sym1

n.R/ and A 2 GLn.R/ the object .�.A/t �M / �A

will only be symmetric up to isomorphism in general.

The involution on hermitian K–theory [7, 4.1] is induced by the map that sends a
symmetric matrix A to its negative. We know from [3] that K.R/ is equivalent to
K. xR/ for some multiplicative group completion xR of R and matrices over xR have
additive inverses on the level of path components.

We can produce other examples of bimonoidal categories with anti-involution along
the following lines.

Let E denote the bipermutative category of finite sets whose objects are the finite sets
nD f1; : : : ; ng for n 2N0 . By convention 0 is the empty set. The morphisms in E are

E.n;m/D
(
†n nDm;g D h or nDmD 0;

¿ otherwise:

For the full structure see May [16, VI, Example 5.1] or Baas et al [2].

For a discrete group G let _G E be the category with objects ng with n 2 N0 and
g 2 G . We identify all objects 0g to 0 which stands for the empty set and the ng

should be thought of as the set f1; : : : ; ng labelled by g 2G . Morphisms are given by

_G E.ng;mh/D

(
¿ n¤m;

†n nDm;g D h or nDmD 0:

The classifying space of _G E is

B._G E/D
_
G

B.E/D
_
G

�G
n>0

B†n

�
:

We define a bimonoidal structure on _G E as follows. Objects can only be added if
their indices agree:

ng˚mh D

(
.nCm/g g D h;

0 g ¤ h
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and we define the multiplication to be ng˝mh D .n˝m/gh . The additive twist, c˚
on EG , is inherited from E , 0 is the zero object and 1e is the multiplicative unit, if e

denotes the neutral element of the group G .

With this structure _G E is a bimonoidal category; if G is abelian, then _G E is
actually bipermutative.

We can define an anti-involution on _G E for any discrete G via

�.ng/D ng�1 :

Note that the isomorphisms � are not trivial in this case, but

�.ng˝mh/D �..n˝m/gh/D .n˝m/.gh/�1 D .n˝m/h�1g�1

¤ �.mh/˝ �.ng/D .m˝n/h�1g�1

so we define � to be c˝ where c˝ is the multiplicative twist in the bipermutative
structure of E . We have that �.1e/D 1e and condition (7) follows from the equation

d` ı .c˝˚ c˝/D c˝ ı dr

in bipermutative categories and the associativity of � is a consequence of Lemma 5.3.

The path components of _G E constitute the monoid ring N0ŒG� and therefore we
obtain with Corollary 4.11 that the induced map on K–theory

K._G E/!K.N0ŒG�/

is compatible with the involutions on both sides. Note that K.N0ŒG�/'K.ZŒG�/.

5 Braided bimonoidal and bipermutative categories

We will show that braided bimonoidal, and therefore in particular bipermutative cate-
gories, provide examples of bimonoidal categories with anti-involution.

Definition 5.1 A braided bimonoidal category .R;˚; 0R; c˚;˝; 1R; ˇ/ consists of a
permutative category .R;˚; 0R; c˚/ together with a strict braided monoidal category
.R;˝; 1R; ˇ/ (see Mac Lane [15, XI.1]) where ˇ is the braiding

ˇ D ˇA;B
W A˝B �! B˝A:

These two structures interact via distributivity laws. We assume that the right distribu-
tivity isomorphism

dr W A˝B˚A0˝B �! .A˚A0/˝B
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is the identity and that the left distributivity isomorphism is given in terms of dr and
ˇ , such that the following diagram commutes:

(7)

A˝B˚A˝C

ˇ˚ˇ

��

d`
// A˝ .B˚C /

ˇ

��

B˝A˚C ˝A

ˇ˚ˇ

��

dr
// .B˚C /˝A

ˇ

��

A˝B˚A˝C
d`
// A˝ .B˚C /:

In addition we want that R satisfies the remaining axioms of a bipermutative category
in the sense of [11, Definition 3.6].

Note that condition (7) implies that ˇ ıˇ ı dr D dr ı .ˇ˚ˇ/ ı .ˇ˚ˇ/ is satisfied.

Gerald Dunn studied braided bimonoidal categories and the reader might want to
compare the above definition with [10, Definition 3.1]. As a class of examples of
braided bimonoidal categories Dunn considered the category of what he called free
crossed G –sets for a discrete group G [9, example 2.3].

For every permutative category .C;˚; 0C ; c˚/ one can construct the free braided
bimonoidal category Br.C/ along the lines of the construction in [11, Theorem 10.1].
Consider the translation category EBrn of the n–th braid group Brn . Then

Br.C/ WD
G
n>0

EBrn �Brn
Cn

is a braided bimonoidal category (see Dunn [10, Proposition 3.5]). We present a
different class of examples in Section 7.2.

In order to check that braided bimonoidal categories actually are bimonoidal categories
with anti-involution and that they fit in the setting of our definition of K.R/ in Section 2
we will need two technical results.

Lemma 5.2 Property (7) implies that the following diagram commutes:

(8)

A˝B˝C ˚A˝B0˝C

d`
��

dr
// .A˝B˚A˝B0/˝C

d`˝ id
��

A˝ .B˝C ˚B0˝C /
id˝dr

// A˝ .B˚B0/˝C:
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Proof We embed diagram (8) into the following diagram. In order to save space we
use AB for A˝B and ACB for A˚B .

ABC CAB0C
dr

//

ˇ˚ˇ

~~

(I)

d`
��

.ABCAB0/C

d`˝ id
�� .ˇ˚ˇ/˝ id

  
(IV)

A.BC CB0C /

ˇ

~~

(II)

id˝dr
// A.BCB0/C

ˇ

��

ˇ˝ id

  

(III)BCACB0CA

dr
��

.BACB0A/C

dr˝ id
��

.BC CB0C /A
dr˝ id

// .BCB0/CA .BCB0/AC
id˝ˇ

oo

The leftmost subdiagram (I) corresponds precisely to property (7). Diagram (II) com-
mutes because ˇ is natural and diagram (III) displays one of the axioms for a braided
monoidal category and subdiagram (IV) again corresponds to property (7). As the right
distributivity maps are identities, the outer diagram again corresponds to the property
used in (III). Therefore the embedded subdiagram (8) commutes as well.

This result ensures that the axioms used in [2] are satisfied in the setting of braided
bimonoidal categories. The next result is the key ingredient that allows us to interpret
braided bimonoidal categories as bimonoidal categories with anti-involution.

Lemma 5.3 Let R be a braided bimonoidal category. Then the braiding ˇ satisfies

.id˝ˇA;B/ ıˇA˝B;C
D .ˇB;C

˝ id/ ıˇA;B˝C :

Proof Consider the following diagram.

A˝C ˝B
ˇA;C˝ id

''

A˝B˝C

id˝ˇB;C
77

ˇA;B˝C

  

ˇA˝B;C

//

ˇA;B˝ id
��

C ˝A˝B

id˝ˇA;B

��

B˝A˝C

id˝ˇA;C
''

C ˝B˝A

B˝C ˝A
ˇB;C˝ id

77

The two triangles display a coherence relation for braided monoidal categories and
thus they commute. The outer diagram is the Yang–Baxter equation for the braiding
and thus the whole diagram is commutative.
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Proposition 5.4 Every braided bimonoidal category is a bimonoidal category with
anti-involution if one defines � to be the identity and � D ˇ . In particular, every
bipermutative category is a bimonoidal category with anti-involution with � D id and
�D c˝ .

Proof The claim follows directly from Lemma 5.3, because all other parts of the
structure of a bimonoidal category with anti-involution are trivial.

Note that a morphism of bimonoidal categories with anti-involution as in Definition
3.3 specializes to the requirement of being a lax symmetric bimonoidal functor in the
case of bipermutative categories.

6 Group actions

Let G be a discrete group.

Definition 6.1 (a) Let R be a bimonoidal category and let G be a discrete group.
A G –action on R consists of a functor �gW R!R for every g 2G , such that
every �g is a strict bimonoidal functor and

�1 D id; �g ı�h D �gh; for all g; h 2G:

(b) For a bimonoidal category with anti-involution we require each �g in addition
to be a morphism of bimonoidal categories with anti-involution according to
Definition 3.3.

Example 6.2 The bipermutative category of complex vector spaces, VC , with objects
the natural numbers with zero and morphisms

VC.n;m/D

(
¿ n¤m;

U.n/ nDm

carries a Z=2Z–action. On objects the action is trivial, and on morphisms it is given
by complex conjugation of unitary matrices. Note that the action is nontrivial on the
endomorphisms U.1/ of the multiplicative unit.

Example 6.3 Let A ! B be a G–Galois extension of commutative rings in the
sense of [8]. We can consider the discrete bipermutative categories RA and RB as in
Definition 4.10. Then RB is a bipermutative category with G –action.
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Definition 6.4 For a bimonoidal category R with G –action, the G –fixed category is
the subcategory of R containing all objects and morphisms that are fixed under every
�g; g 2G . We denote this category by RG .

The following result is straightforward to see.

Lemma 6.5 The G–fixed category of a strict G–action on a bimonoidal category
(with anti-involution) is again a bimonoidal category (with anti-involution).

Example 6.6 If R is a ring with a G –action, then the G –fixed category of RR is the
bimonoidal category associated to the G –fixed subring of R.

Example 6.7 For the category VC the Z=2Z–fixed category is the bipermutative
category of real vector spaces, VR , whose objects are again the natural numbers, but
whose morphisms are given by

VR.n;m/D

(
¿ n¤m;

O.n/ nDm:

Note that the homotopy fixed point spectrum HVhZ=2Z
C is kuhZ=2Z and this is not

equivalent to the associated spectrum koDHVR . In the case of Eilenberg–Mac Lane
spectra, however, we obtain that

HRhG
DHRhG

R 'H.RG/DHRRG :

Moreover, if A ! B is a G–Galois extension of commutative rings, then HA D

HRA! HRB D HB is a G–Galois extension of commutative S –algebras in the
sense of Rognes [17, Proposition 4.2.1].

Proposition 6.8 Let R be a (symmetric) bimonoidal category with G–action. Then
the weak equivalence [3]

K.R/'K.HR/
is G –equivariant.

Proof All constructions used in [3] are natural with respect to lax (symmetric) bi-
monoidal functors.

Remark 6.9 As G–actions on bimonoidal categories with anti-involution are given
in terms of morphisms of such categories, they can be combined with the external
involution on the bar construction for K.R/.

Algebraic & Geometric Topology, Volume 10 (2010)



An involution on the K–theory of bimonoidal categories with anti-involution 335

7 Examples

7.1 Endomorphisms of a permutative category

Let .C;˚; 0C ; c˚/ be any permutative category. Consider the category of all lax
symmetric monoidal functors from C to itself. Elmendorf and Mandell [11, page 176]
describe how to impose a bimonoidal structure on this category. We denote this category
by End.C/. The addition is given “pointwise”, ie, for two lax symmetric monoidal
functors F;GW C! C one defines

.F ˚G/.C /D F.C /˚G.C /:

The multiplicative structure is given by composition.

If we consider the full subcategory of End.C/ of invertible lax symmetric monoidal
functors and we take the bimonoidal subcategory of End.C/ generated by these under
direct sum and composition which we call Inv.C/. One might think of Inv.C/ as the
group-rig of the category C . We can define an involution on Inv.C/ by sending an
invertible functor F to its inverse

�.F /D F�1

and extending this involution to finite words (under ˚ and ı) in such functors. For
instance, we have

�.G1˚G2/DG�1
1 ˚G�1

2 :

As we have

.G ıF /�1
D F�1

ıG�1

we can choose � to be the identity.

Group actions on (symmetric) bimonoidal categories provide nontrivial examples. If a
discrete group G acts on a (symmetric) bimonoidal category R, then the elements of
the group are objects of the category Inv.R/. For instance the category of complex
vector spaces VC with its Z=2Z–action gives rise to a nontrivial category Inv.VC/.

If R is a ring with G–action, then the category F.R/ with objects n 2 N0 and
morphisms the R–automorphisms of Rn is a bimonoidal category with G –action. The
action is trivial on objects and it sends an automorphism ' to g' for g 2 G where
g' is the morphism that sends v 2Rn to g'.v/.
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7.2 Hopf bimodules

Categories of Hopf bimodules provide a class of examples of (nonstrict) braided
bimonoidal categories. Consider a Hopf algebra H in a symmetric monoidal category.
An object M is an H Hopf bimodule if it is a bimodule over H and simultaneously an
H right- and left-comodule such that the comodule structure maps are morphisms of
H –bimodules. Here, the diagonal on H gives the H –bimodule structure on H ˝M

and M ˝H . Schauenburg showed [18, Theorem 6.3] that the category of H –Hopf
bimodules, H

H
MH

H
, is a braided monoidal category with the tensor product over H ,

if the antipode of the Hopf algebra H is invertible, and that the category H
H
MH

H
is

equivalent to the category of right Yetter–Drinfel 0d H –modules [18, Theorem 5.7 (3)]
if the underlying category has equalizers.

Let us consider the symmetric monoidal category of k –modules for some commutative
ring k with unit, with direct sum as the additive structure. Unadorned tensor products
are tensor products over k . The category of H –bimodules, HMH , over a Hopf
algebra H is then a (non strict) bimonoidal category with the direct sum of k –modules
as additive and the tensor product over H as multiplicative structure. The direct sum
of two k –modules A;B 2HMH is an H –bimodule if we declare the structure maps
to be

H ˝ .A˚B/
d�1
`
// H ˝A˚H ˝B // A˚B

.A˚B/˝H
d�1

r
// A˝H ˚B˝H // A˚B:and

Here, d` and dr denote the distributivity isomorphisms in the underlying category of
k –modules, ie,

d`W A˝B˚A˝B0!A˝ .B˚B0/; dr W A˝B˚A0˝B! .A˚A0/˝B:

Similarly, the left and right comodule structures on A and B ,  A;  
A resp.  B;  

B ,
give rise to a left and a right comodule structure on the sum via

A˚B
 A˚ B

// H ˝A˚H ˝B
d`
// H ˝ .A˚B/

A˚B
 A˚ B

// A˝H ˚B˝H
dr
// .A˚B/˝H:and

It is tedious but straightforward to check that the coherence isomorphisms of the bi-
monoidal category of H –bimodules are actually morphisms of comodules. The explicit
form of the braiding from [18, Theorem 6.3] allows it to check that condition (7) of
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Definition 5.1 is indeed satisfied and that Laplaza’s distributivity axioms [14, Section 1]
are satisfied with the braiding ˇ replacing the multiplicative twist.

7.3 Involutions on A.�/ and A.BBG /

The associated spectrum of the bipermutative category E is the sphere spectrum and
thus the equivalence from [3] identifies K.E/ with the algebraic K–theory of the
sphere spectrum, K.S/, which in turn is equivalent to Waldhausen’s A–theory of
a point, A.�/. Steiner constructed an involution on A.X / for all spaces X in [19,
Theorem 3.10] where he used the model for A.X / that consists of the algebraic K–
theory of the spherical group ring of �X, K.S Œ�X �/. He defined his involution as
the composition of loop inversion, matrix transposition and reversal of multiplication
which in our context is taken care of by the reflection map on the bar construction.
We do not provide a formal proof that Steiner’s and our involution are equivalent
in some suitable sense, but we just note that our definition resembles his. Another
description of involutions on Waldhausen’s K–theory of spaces is due to Vogell [20].
For a construction of spectrum level involutions on S Œ�M � for manifolds M see
Kro [13].

John Rognes drew my attention to the example of finite free G –sets and G –equivariant
bijections. For a group G we consider the following small version of this category.
We define the category EG whose objects are again the finite sets nD f1; : : : ; ng for
n 2N0 with 0D¿ and whose morphisms are given by

EG.n;m/D

(
¿ n¤m;

G o†n nDm:

The classifying space B.EG/ is

(9)
G
n>0

B.G o†n/D
G
n>0

BGn
�†n

E†n:

For an abelian group G we define a bipermutative structure on EG as follows. On
objects, we take the bipermutative structure [2]), and on morphisms we define

.g1; : : : ;gn; �/˚ .g
0
1; : : : ;g

0
m; �

0/D .g1; : : : ;gn;g
0
1; : : : ;g

0
m; � ˚ �

0/

for .g1; : : : ;gn; �/ 2G o†n and .g0
1
; : : : ;g0m; �

0/ 2G o†m .

There are natural isomorphisms

cG
˚W .g1; : : : ;gn; �/˚ .g

0
1; : : : ;g

0
m; �

0/! .g01; : : : ;g
0
m; �

0/˚ .g1; : : : ;gn; �/
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for all .g1; : : : ;gn; �/ and .g0
1
; : : : ;g0m; �

0/ that use the additive twist c˚ from the
structure of E and that shuffle the gi and g0j . It is straightforward to check, that
.EG;˚; 0; cG

˚/ is a permutative category.

As a multiplicative structure we define

.g1; : : : ;gn; �/˝.g
0
1; : : : ;g

0
m; �

0/D .g1g01; : : : ;g1g0m; : : : ;gng01; : : : ;gng0m; �˝�
0/:

Note that for this construction to be functorial, the group G has to be abelian. We can
compare .g1; : : : ;gn; �/˝ .g

0
1
; : : : ;g0m; �

0/ with .g0
1
; : : : ;g0m; �

0/˝ .g1; : : : ;gn; �/

by using natural isomorphisms cG
˝ which are built out of the multiplicative twist

c˝ from E and which reorder arrays like .g1g0
1
; : : : ;g1g0m; : : : ;gng0

1
; : : : ;gng0m/ to

.g0
1
g1; : : : ;g

0
1
gn; : : : ;g

0
mg1; : : : ;g

0
mgn/.

With this multiplicative structure .EG;˝; 1; cG
˝/ is a permutative category and the

multiplicative and additive structure combine to turn EG into a bipermutative category.

We can define an anti-involution on EG by declaring � to be the identity on objects
and on morphisms we define �.g1; : : : ;gn; �/D .g

�1
1
; : : : ;g�1

n ; �/ for all gi 2G and
permutations � . Then � is strictly additive and we can use the multiplicative twist
cG
˝ in E as � in order to obtain natural isomorphisms � from �..g0

1
; : : : ;g0m; �

0/˝

.g1; : : : ;gn; �// to �.g1; : : : ;gn; �/˝ �.g
0
1
; : : : ;g0m; �

0/.

Barratt [6] defined his functor �C for based simplicial sets X and identified its
geometric realization with �1†1jX j. For jX j DBGC we obtain that �1†1BGC
is the infinite loop space associated to the spectrum H.EG/ and therefore this ring
spectrum is the spherical group ring S ŒBG�D†1C .BG/. Its algebraic K–theory is
Waldhausen’s K–theory A.BBG/DK.S Œ�BBG�/'K.S ŒBG�/.

For G abelian, the inverse map on G induces the inverse map on BG and via the map
of H –spaces BG

�
!�BBG this is related to loop inversion. In this sense the induced

involution on K.EG/'A.BBG/ is similar to Steiner’s involution on A.BBG/.

8 Nontriviality

Farrell and Hsiang [12, Lemma 2.4] calculated the effect of the involution of Ki.Z/˝Q:
elements in positive degrees are sent to their additive inverse. We use this fact to prove
the following.

Proposition 8.1 The involutions on K.V/ ' K.ku/, K.VR/ ' K.ko/, K.EG/ '

A.BBG/ (G abelian) are nontrivial.

Algebraic & Geometric Topology, Volume 10 (2010)



An involution on the K–theory of bimonoidal categories with anti-involution 339

Proof We can model the map � W ku ! HZ of commutative ring spectra on the
level of bipermutative categories � W V !RZ by sending an object n to the natural
number n and projecting the set U.n/ of endomorphisms of n to the set fidg. This is
a morphism of bipermutative categories with anti-involution. On the level of K–theory
we obtain an induced map

K.ku/'K.V/
K.�/
�! K.RZ/'Kf .Z/:

Ausoni and Rognes show [1, Theorem 2.5 (a)] that rationally the map K.�/W K.ku/!

K.Z/ is split. As the involution is nontrivial on K�>0.Z/˝Q, it is nontrivial on
K.ku/. Similarly, they show that rationally K.Z/ splits off K.ko/.

Consider the following diagram of bipermutative categories with anti-involution:

EG

��

E

� $$

VV

//
))

V
�
��

VR

�{{

RZ

The maps from E model the unit map from the sphere spectrum S 'HE to S ŒBG�,
ko and ku and are given by the identity on objects and the inclusion of †n into the
respective endomorphisms of n.

Rationally, A.�/'K.E/ agrees with K.Z/ and it splits off A.BBG/, so the involution
is not trivial on A.BBG/.

Ausoni and Rognes also proved in [1] that rationally A.K.Z; 3// is equivalent to
K.ku/. A map of ring spectra A.K.Z; 3//!K.ku/ is given by using the string of
maps

BU.1/! BU˝! GL1.ku/!�1.ku/

and taking the adjoint which is a map from the suspension ring spectrum †1CBU.1/'

S ŒBU.1/� to ku. This yields an induced map on algebraic K–theory K.S ŒBU.1/�/!

K.ku/. We can model this via a functor of categories

F W ES1
! V :

Here, F sends n to n and maps a morphism .z1; : : : ; zn; �/ 2 S1 o†n to the matrix
diag.z1; : : : ; zn/ �E� 2 U.n/ where diag denotes the corresponding diagonal matrix
and E� is the permutation matrix associated to � . The fact that

E� � diag.w1; : : : ; wn/D diag.w��1.1/; : : : ; w��1n/ �E�

for wi 2 S1 ensures the naturality of F .
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As the diagram

.S1 o†n/� .S1 o†m/
//

˚

��

U.n/�U.m/

˚

��

S1 o†nCm
// U.nCm/

commutes, we see that F respects addition. If .e1; : : : ; en/ and .f1; : : : ; fm/ are
ordered bases for Cn respectively Cm , then we choose

.e1˝f1; : : : ; e1˝fm; : : : ; en˝f1; : : : ; en˝fm/

as an ordered basis for Cnm . With this convention, F respects ˝ as well.

However, F is not a functor of bimonoidal categories with anti-involution if we choose
the anti-involution .id; c˝/ on V coming from its bipermutative structure.

Consider the Z=2ZD h�i–action on V from Example 6.2.

Lemma 8.2 The composition x� of the anti-involution .id; c˝/ on V with the group
action of Z=2Z is an anti-involution on V .

Proof If we set x� WD � ı � , then

x� ı x� D � ı � ı � ı � D �2
ı �2
D id

because � and � commute. For two matrices A 2 U.n/ and B 2 U.m/ we have that
c˝ sends x�.A˝B/D xA˝ xB to xB˝ xA. The distributivity constraint from Definition
3.1 just express the fact that d` is given in terms of dr in V . The remaining axioms
are easy to check.

Corollary 8.3 The functor F W ES1! V is a morphism of bimonoidal categories with
anti-involution

F W .ES1; �; cG
˝/ �! .V; x�; c˝/:
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