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On homotopy groups of the suspended classifying spaces

ROMAN MIKHAILOV

JIE WU

In this paper, we determine the homotopy groups �4.†K.A; 1// and �5.†K.A; 1//

for abelian groups A by using the following methods from group theory and homotopy
theory: derived functors, the Carlsson simplicial construction, the Baues–Goerss spec-
tral sequence, homotopy decompositions and the methods of algebraic K–theory. As
the applications, we also determine �i.†K.G; 1// with i D 4; 5 for some nonabelian
groups G D†3 and SL.Z/ , and �4.†K.A4; 1// for the 4–th alternating group A4 .

55Q52; 55P20, 55P40, 55P65, 55Q35

1 Introduction

It is well-known that the suspension functor applied to a topological space shifts
homology groups, but “chaotically” changes homotopy groups. For example, one can
take a circle S1 , whose homotopy type is very simple. Its suspension †S1 D S2 has
obvious homology groups, however the problem of investigating the homotopy groups
of S2 is one of the deepest problems of algebraic topology. Consider the following
functors from the category of groups to the category of abelian groups:

�n.†
mK.�; 1//W Gr! Ab; n� 1; m� 1

defined by A 7! �n.†
mK.A; 1//; where †m is the m–fold suspension. It is clear that

�n.†
mK.Z; 1//D �n.S

mC1/; that is the homotopy groups of spheres appear as the
simplest case of a general theory of homotopy groups of suspensions of classifying
spaces.

For the case mD 1; 2 and nD 3; 4 there is the following natural commutative diagram
with exact rows (see Brown–Loday [6]):

(1-1)

0 // �3.†K.G; 1// //

����

G˝G //

����

ŒG;G� // 1

0 // �4.†
2K.G; 1//

����

// G z̋G //

����

ŒG;G� // 1

0 // H2.G/ // G ^G // ŒG;G� // 1
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566 Roman Mikhailov and Jie Wu

where G˝G is the nonabelian square of G in the sense of Brown–Loday [6], G z̋G

(resp. G^G ) is the quotient of G˝G by the normal subgroup generated by elements
g˝ hC h˝g (resp. g˝g;g 2 G ). In particular, for an abelian group A, there are
natural isomorphisms

�3.†K.A; 1//'A˝A;

�4.†
2K.A; 1//' �S

2 K.A; 1/'A z̋A:

The purpose of this article is to determine the homotopy groups �4.†K.A; 1// and
�5.†K.A; 1// for abelian groups A. In order to investigate the structure of these
homotopy groups, we use the following methods of group theory and homotopy theory:
derived functors, the Carlsson simplicial construction, the Baues–Goerss spectral
sequence [4], homotopy decompositions and the methods of algebraic K–theory. The
combination of these different methods provides an effective way for determining these
homotopy groups. As reader will see, some our computations use commutator tricks in
simplicial groups.

The homotopy group �4.†K.A; 1// as a functor on A can be given as follows:

Theorem 1.1 (Theorem 3.4) Let A be any abelian group. Then there is a natural
short exact sequence

.ƒ2.A/˝A/˚2
˚A˝A˝Z=2 � - �4.†K.A; 1// -- Tor.A;A/:

Moreover .ƒ2.A/˝A/˚2 is an (unnatural) summand of �4.†K.A; 1//.

An interesting point of this theorem is that the functor �4.†K.A; 1// has Tor.A;A/
as a natural quotient. For determining the structure of the group �4.†K.A; 1//, one
has to solve the group extension problem in Theorem 1.1. For finitely generated abelian
groups A, we can solve this problem. Given a finitely generated abelian group A, let

ADA1˚

M
r�1

p is a prime

Apr

be the primary decomposition of A, where A1 is torsion free and Apr is a free
Z=pr –module.

Theorem 1.2 (Theorem 3.7) Let A be any finitely generated abelian group. Let
ADA2˚B with B DA1˚

L
pr 6D2 Apr . Then

�4.†K.A; 1//Š
1

2
.A2˝A2/˚ .A2˝B/˚2

˚B˝2
˝Z=2˚ .A˝ƒ2.A//˚2

˚Tor.A2;B/
˚2
˚Tor.B;B/;

where 1
2
.A2˝A2/ is a free Z=4–module with rank of dimZ=2.A2˝A2/.
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One point of this theorem is that the (maximal) elementary 2–group summand A2 of
A plays a key role in the group extension problem. Roughly speaking A2˝A2 is half
down in the group �4.†K.A; 1//.

As the applications of Theorems 1.1 and 1.2, we are able to compute �4.M.Z=2r ; 2//

and their connections with �4.†K.Z=2r ; 1//. As the direct consequences, the homo-
topy groups �4.†RPn/ and �4.†K.†3; 1// are determined. (See Section 3.2 for the
computations of these homotopy groups.)

For the homotopy group �5.†K.A; 1//, as a functor, it can be described by two
exact sequences given in diagram (4-1). Unfortunately it seems too complicated
to produce a canonical functorial short exact sequence description for the functor
�5.†K.A; 1// from diagram (4-1). For any finitely generated abelian group A, we
determine �5.†K.A; 1// in an unfunctorial way by the following steps:

(1) From the Hopf fibration, �5.†K.A; 1//Š �5.†K.A; 1/^K.A; 1//.

(2) Take a primary decomposition of A and write K.A; 1/ as a product of copies
of S1 DK.Z; 1/ and K.Z=pr ; 1/.

(3) By using the fact that

†X �Y '†X _†Y _†X ^Y;

write †K.A; 1/^K.A; 1/ as a wedge of the spaces in the form

X D†mK.Z=pr1

1
; 1/^K.Z=pr2

2
; 1/^ � � � ^K.Z=prt

t ; 1/

with mC t � 3 and m� 1.

(4) By applying the Hilton–Milnor Theorem, �5.†K.A; 1// becomes a summation
of �5.X / for some X in the above form.

For the spaces X in the above form, it is contractible if pi 6D pj for some i 6D j and
�5.X / can be determined in Proposition 4.2 for an odd prime p . The only difficult
part is to compute �5.X / for X given in the form

X D†mK.Z=2r1 ; 1/^ � � � ^K.Z=2rt ; 1/

with mC t � 3 and m� 1. Our computations are then given case-by-case (Proposi-
tions 4.5–4.7 and Theorems 4.10–4.18), in which different methods are involved. An
instructional example is as follows:
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Let AD Z˚Z=2. According to (1), �5.†K.A; 1//Š �5.†K.A; 1/^K.A; 1//. As
in (3),

†K.A; 1/^K.A; 1/'†.S1
�RP1/^ .S1

�RP1/

'†.S1
_RP1 _†RP1/^ .S1

_RP1 _†RP1/

D S3
_

2_
†2RP1 _

2_
†3RP1 _†RP1 ^RP1

_

2_
†2RP1 ^RP1 _†3RP1 ^RP1:

By applying the Hilton–Milnor Theorem as in (4), �5.†K.A; 1/ ^ K.A; 1// is a
summation of

�5.S
3/; �5.†

2RP1/; �5.†RP1 ^RP1/; �5.†.RP1/^3/; : : :

with multiplicities. From Theorem 4.18, we have

�5.†
2RP1/D Z=8

and by Proposition 4.7 and Theorem 4.10, we have

�5.†RP1 ^RP1/D �5.†.RP1/^3/D Z=2˚2:

The group �5.†K.Z˚Z=2// will be determined by filling all possible summands
with multiplicities.

As the applications of our computations on �5.†K.A; 1//, we are able to determine
�5.†RPn/ (Proposition 4.20) and �5.†K.†3; 1// (Proposition 4.21).

In Section 2 we recall certain facts from the homotopy theory, such as the Whitehead
exact sequence, the Carlsson simplicial construction and describe a spectral sequence
(2-9), which converges to ��.†mK.A; 1// for any abelian group A, with E2 –terms
are given by the derived functors of certain polynomial functors. We illustrate how it
works in Theorem 4.18 for computing

�5.†
2K.Z=2r ; 1//D

(
Z=8; if r D 1;

Z=2rC1˚Z=2; if r > 1:

The interesting point is of course how Z=8 shows up in the case r D 1 while it becomes
Z=2rC1˚Z=2 for r > 1. The proof is also based on the computations of the derived
functors of the antisymmetric square z̋ 2 .

There is a natural relation between the problem considered and algebraic K–theory.
Since the plus-construction K.G; 1/!K.G; 1/C is a homological equivalence, there
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is a natural weak homotopy equivalence

†K.G; 1/!†.K.G; 1/C/:

This defines the natural suspension map

�n.K.G; 1/
C/! �nC1.†.K.G; 1/

C//D �nC1.†K.G; 1//

for n� 1. This map was studied by Baues and Conduché [3] in the case of a perfect
group G . We consider the case G DE.R/, ie the group of elementary matrices over a
ring R. In this case the natural map

K3.R/D �3.K.E.R/; 1/
C/! �4.†K.E.R/; 1//

is an isomorphism (Theorem 5.1). The natural relation to K–theory gives a way how
to compute homotopy groups �i.†K.E.R/; 1// for i D 4; 5 for some rings. For
example, the case G D SL.Z/ is considered. As an application of our methods, we
also determine that �4.†K.A4; 1//D Z=4 for the 4–th alternating group A4 .

The article is organized as follows. We give a brief review for the quadratic functors and
the simplicial resolutions in Section 2. The determination of �4.†K.A; 1// is given
in Section 3, where the proofs of Theorems 1.1 and 1.2 are also given. In Section 4,
we give case-by-case computations for �5.†K.A; 1//. In Section 5, we give some
relations to K–theory.

2 The quadratic functors and the simplicial resolutions

2.1 Whitehead quadratic functor

In [19, Chapter II], J H C Whitehead introduce the universal quadratic functor �2 from
abelian groups to abelian groups as follows: Let A be any abelian group. Then �2.A/

is the group generated by the symbols  .x/, one for each x 2A, subject to the defining
relations

(1)  .�x/D  .x/;

(2)  .xCyC z/�  .xCy/�  .yC z/�  .xC z/C  .x/C  .y/C  .z/D 0:

Note According to [19, page 61], the group �2.A/ is abelian and so the multiplication
in �2.A/ is denoted by C. Define

 .x;y/D  .xCy/�  .x/�  .y/:

The following proposition helps for determining the group �2.A/.
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Proposition 2.1 [19, Theorem 5] Let A be an abelian group with a basis fai j i 2 Ig

for a well-ordered index set I , and the defining relations fb� � 0g. Then the group
�2.A/ is combinatorial defined by the set of symbolic generators  .ai/, i 2 I , and
 .ai ; aj /, i; j 2 I with i < j with defining relations  .b�/� 0 and  .ai ; b�/� 0.

Example 2.2 We list some examples of the group �2.A/. The first two examples are
direct consequences of the above proposition.

(1) Let A be a free abelian group with a basis fai j i 2 Ig for a well-ordered index
set I . Then �2.A/ i s the free abelian group with a basis given by  .ai/, i 2 I ,
and  .ai ; aj /, i; j 2 I with i < j .

(2) If A is a cyclic group of finite order m generated by a1 , then �2.A/ is cyclic
of order m or 2m, according as m is odd or even, generated by  .a1/.

(3) Let AD
L

i2I Ai for a well-ordered index set I . Then [19, Theorem 7]

�2.A/Š
M
i2I

�2.Ai/˚
M

i;j2I
i<j

Ai ˝Aj :

(4) For a general abelian group A, there is a short exact sequence [9, formula (13.8),
page 93]

A˝A �
t- �2.A/ -- A˝Z=2;

where t.a˝ b/D  .a; b/D  .aC b/�  .a/�  .b/.

2.2 Lower homology of K.A; 2/

The homology of Eilenberg–Mac Lane spaces K.A; n/ has been studied in the classical
reference of Eilenberg and Mac Lane [9] and other papers. See also [5] for the functorial
description of homology groups of K.A; 2/ in all dimensions.

Lemma 2.3 [9, Theorems 20.5 and 21.1] Let A be any abelian group. Then

(1) H2.K.A; 2//DA;

(2) H3.K.A; 2//D 0;

(3) H4.K.A; 2//D �2.A/.

The homology H5.K.A; 2// becomes a special functor on A. Let R2.A/ denote
H5.K.A; 2//. The group R2.A/ for finitely generated abelian group A can be com-
puted as follows [9, Section 22]:
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(1) If A is a cyclic group of order infinite or odd, then R2.A/D 0.

(2) If AD Z=2r Z with r � 1, then R2.A/Š Z=2.

(3) Let ADA1˚A2 . Then K.A; 2/'K.A1; 2/�K.A2; 2/. By using Künneth
theorem together with the fact that H1.K.A; 2// D H3.K.A; 2// D 0 from
Lemma 2.3, we have

H5.K.A; 2//ŠH5.K.A1; 2//˚H5.K.A2; 2//˚Tor.H2.K.A1; 2//;H2.K.A2; 2///:

Thus

(2-1) R2.A1˚A2/ŠR2.A1/˚R2.A2/˚Tor.A1;A2/:

Recall the definition of the derived functors in the sense of Dold–Puppe [8]. Let F

be an endofunctor in the category of abelian groups and A an abelian group. Take a
projective resolution P�!A. Let N�1 be the inverse map to the normalization map
due to Dold–Kan. Then N�1P� is a free simplicial resolution of A. Then, the i –th
derived functor of F applied to the abelian group A, is defined as follows:

LiF.A/D �i.F.N
�1P�//; i � 0:

It is a well-known fact that this definition does not depend on a choice of a projective
resolution. In this notation, one has a natural isomorphism

R2.A/DL1�2.A/:

2.3 Whitehead exact sequence

Let X be a .r � 1/–connected CW–complex, r � 2: There is the following long exact
sequence of abelian groups [19, Theorem 1]:

(2-2) � � � !HnC1.X /! �n.X /! �n.X /
hn
!Hn.X /! �n�1.X /! � � � ;

where �n.X /D Im.�n.skn�1.X //! �n.skn.X /// (here ski.X / is the i –th skeleton
of X ), hn is the n–th Hurewicz homomorphism.

The Hurewicz theorem is equivalent to the statement �i.X /D0; i � r: J H C Whitehead
computed the term �rC1.X /: In the following theorem, assertion (1) was given in [19,
Theorem 14] and assertion (2) was given the earlier paper [18]. According to the remarks
in the end of [19, Section 14], assertion (2) has been discussed by G W Whitehead [17]
as well.

Theorem 2.4 Let X be a .r � 1/–connected CW–complex with r � 2: Then

(1) If r D 2, then �3.X /Š �2.�2.X //;

(2) If r > 2, then �rC1.X /Š �r .X /˝Z=2.
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The isomorphism �2.�2.X //! �3.X / is constructed as follows: Let �W S3! S2

be the Hopf map and let x 2 �2.X / be written as the composite

S2 zx- sk2.X / � - sk3.X /:

Then the composite

S3 �- S2 zx- sk2.X / � - sk3.X /

defines an element ��.x/ 2 �3.X /. According to [19, Section 13], the mapping

(2-3) �1W �2.�2.X //! �3.X /;  .x/ 7! ��.x/;

is a well-defined isomorphism of groups. The construction of the isomorphism �r .X /˝

Z=2! �rC1.X / in assertion (2) is similar.

Recall the description of the functors �rC2.X / due to H-J Baues [2]. Consider the
third super-Lie functor

L3
s W Ab! Ab

L3
s .A/D imfA˝A˝A

l
!A˝A˝Agdefined as

where

l.a˝b˝ c/D fa; b; cg WD a˝b˝ cCb˝a˝ c� c˝a˝b� c˝b˝a; a; b; c 2A:

Observe that L3
s .A/D kerfA˝ƒ2.A/

r
!ƒ3.A/g; where ƒi.A/ is the i –th exterior

power of A and the map r is given as

r.a˝ b ^ c/D a^ b ^ c; a; b; c 2A:

Let the complex X be simply connected. Given an abelian group A, define the map

qW �2.A/˝A! L3
s .A/˚�2.A/˝Z=2

by setting

q.2.a/˝ b/D�fb; a; agC .2.aC b/� 2.a/� 2.b//˝ 1; a; b 2A:

Define the group �2
2
X D �2

2
.�2.�2X /! �3X / as the pushout:

(2-4)

�2.�2.X //˝ .�2.X /˚Z=2/
q˚ id //

�1˝ id
��

L3
s .�2.X //˚�2.�2.X //˝Z=2

��

�3.X /˝ .�2.X /˚Z=2/ // �2
2
.X /
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Theorem 2.5 [2, Theorem 3.1] Let X be a .r � 1/–connected CW–complexes with
r � 2.

(1) If r D 2, then there is a natural short exact sequence

0! �2
2 .X /! �4.X /!R2.�2.X //! 0:

(2) If r D 3, then there is a natural exact sequence

0! �4.X /˝Z=2˚ƒ2.�3.X //! �5.X /! Tor.�3.X /;Z=2/! 0:

(3) If r � 4, there is a natural exact sequence

0! �rC1.X /˝Z=2! �rC2.X /! Tor.�r .X /;Z=2/! 0:

Let A be an abelian group. Consider the Hurewicz homomorphism

h�W ��.†K.A; 1//! zH�.†K.A; 1//D zH��1.K.A; 1//D zH��1.A/:

Since H�.K.A; 1// is graded commutative ring, the inclusion

ADH1.K.A; 1// � - H�.K.A; 1//

induces a ring homomorphism

�W ƒ.A/ �!H�.K.A; 1//:

By [9, Theorem 19.3], � is a monomorphism and so we may consider ƒn.A/ �

Hn.K.A; 1//DHn.A/.

Lemma 2.6 For every abelian group A, the Hurewicz image

Im.hnC1W �nC1.†K.A; 1//!Hn.A//

contains the subgroup ƒn.A/.

Proof From the naturality, it suffices to show that the statement holds for a free abelian
group A.

When A is a free abelian group, then K.A; 1/ is a (weak) Cartesian product of the
circles. Thus †K.A; 1/ is a wedge of spheres from the suspension splitting that

†X �Y '†X _†Y _†X ^Y

and so the Hurewicz homomorphism induces an epimorphism

h�W �nC1.†K.A; 1// -- Hn.A/Dƒ
n.A/

for a free abelian group A. This finishes the proof.
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2.4 Carlsson construction

Let G� be a simplicial group and X a pointed simplicial set with a base point �.
Consider the simplicial group FG�.X / defined as

FH .X /n D
a

x2Xn

.Gn/x;

ie in each degree FG�.X /n is the free product of groups Gn numerated by elements
of Xn modulo .Gn/�; with the canonical choice of face and degeneracy morphisms. It
is proved in [7] that the geometric realization jFG�.X /j is homotopy equivalent to the
loop space �.jX j^BjGj/. The main example we will consider is the simplicial circle
X D S1 with

S1
0 D f�g; S1

1 D f�; �g; S1
2 D f�; s0�; s1�g; : : : ;S

1
nC1 D f�;x0; : : : ;xng;

where xi D sn � � � ysi � � � s0� and the simplicial group G� with Gn D G for a given
group G , with identity homomorphisms as all face and degeneracy maps. In this case
we use the notation FG.X /D FG�.X /. One has a homotopy equivalence

jFG.S1/j '�†K.G; 1/:

The group FG.S1/n is the n–fold free product of G :

FG.S1/1 DG; FG.S1/2 DG �G; FG.S1/3 DG �G �G; : : :

We can formally identify G�G with s0G�s1G , G�G�G with s1s0G�s2s0G�s2s1G ,
etc, and to define naturally the face and degeneracy maps:

FG�.S1/W : : :

�!: : :
�! �: : :
 �

G �G �G
�!�!�!�! � � �

G �G
�!�!�! � �

G:

Remark Consider the second term FG.S1/2 DG �G and face morphisms d0; d1;

d2W G �G D s0.G/� s1.G/!G defined as

d0W

(
s0.g/ 7! g;

s1.g/ 7! 1;
d1W

(
s0.g/ 7! g;

s1.g/ 7! g;
d2W

(
s0.g/ 7! 1;

s1.g/ 7! g:

There is a natural commutative diagram

(2-5)

�3.†K.G; 1//

'

��

� � // G˝G //

f

��

G // //

'

��

Gab

'

��
�3.†K.G; 1//

� � // .ker.d1/\ ker.d2//=B2
// G // // Gab
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where B2 is the 2–boundary subgroup of G �G and the map f is defined as1

f .g˝ h/D Œs0.g/s1.g/
�1; s0.h/� �B2:

There is a natural description of the 2–boundary (see Ellis and Mikhailov [10], for
example):

B2 D Œ ker.d0/; ker.d1/\ ker.d2/�Œ ker.d1/; ker.d2/\ ker.d0/�

� Œ ker.d2/; ker.d0/\ ker.d1/�:

Diagram (2-5) implies that f is a natural isomorphism.

In the case GDZ; the simplicial group FG.S1/ is identical to the Milnor construction
F.S1/; with F.S1/n a free group of rank n, for n� 1 W

F.S1/W : : :

�!: : :
�! �: : :
 �

F3

�!�!�!�! � � �

F2

�!�!�! � �
Z:

In this case there is a homotopy equivalence

jF.S1/j '�S2

and the construction F.S1/ provides a combinatorial model for the computation of
homotopy groups of the 2–sphere S2 . The construction F.S1/ was studied from the
group-theoretical point of view in Wu [20]. It is easy to find the simplicial generators of
the homotopy classes of �i.F.S

1//D �iC1.S
2/ for i D 3; 4; 5. In order to find these

simplicial generators, consider the sequence of maps between Milnor simplicial con-
structions F.S4/!F.S3/!F.S2/!F.S1/ such that the induced homomorphisms
ZD �2.F.S

2//! �2.F.S
1//D Z and ZD �3.F.S

3//! �3.F.S
2//D Z=2 are

1We use the standard commutator relations: Œg; h�D g�1h�1gh
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epimorphisms and define the homotopy classes of �3.S
2/ and �4.S

3/ respectively.

F.S3/4

�!: : :
�! �: : :
 �

Z

# # �2

F.S2/4

�!: : :
�! �: : :
 �

F.S2/3

�!�!�!�! � � �

Z

# # # �

F.S1/4

�!: : :
�! �: : :
 �

F.S1/3

�!�!�!�! � � �

F.S1/2
�!�!�! � �

Z

For n� 3; the homotopy class of �n.S
n�1/ defined as �n�1.F.S

n�2// is generated
by

Œs0.�n�2/; s1.�n�2/�

in F.Sn�2/n�1 (see Wu [20]), where �n�2 is a generator of F.Sn�2/n�2 D Z. That
is, we can define the simplicial suspension maps

�i
W F.S iC1/iC1! F.S i/iC1

�i
W �iC1! Œs0.�i/; s1.�i/�; i � 1:by

Since the generators of �i.S
2/ are presented by suspensions over Hopf fibration

for i D 3; 4; 5, the simplicial generators of �i.F.S
1//; i D 2; 3; 4 are given by the

following elements:

w2.x0;x1/D Œx0;x1�(2-6)

w3.x0;x1;x2/D ŒŒx0;x2�; Œx0;x1��(2-7)

w4.x0;x1;x2;x3/D ŒŒŒx0;x3�; Œx0;x1��; ŒŒx0;x2�; Œx0;x1���:(2-8)

Here we use the natural notation

xj WD si � � � ysj � � � s0.�1/; j D 0; : : : ; i

for the basis elements in F.S1/iC1
2.

2One can continue the process of construction of elements wnC1.x0; : : : ;xn/ by the following
law: wnC1.x0; : : : ;xn/D Œwn.x0; : : : ; yxn�1;xn/; wn.x0; : : : ;xn�1/�: In this case, the 16–commutator
bracket w5.x0; : : : ;x4/ corresponds to the element of order 2 in �6.S

2/ , but the 32–commutator bracket
w6.x0; : : : ;x5/ lies in the simplicial boundary subgroup BF.S1/6 [9]. The construction of a simplicial
generator of the 3–torsion in �6.S

2/ is more tricky: it is possible to find its simplicial representative
which is a product of six brackets of the commutator weight six.
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2.5 Spectral sequence

Consider an abelian group A and its two-step flat resolution

0!A1!A0!A! 0:

By Dold–Kan correspondence, we obtain the following free abelian simplicial resolution
of A:

N�1.A1 ,!A0/W : : :
�!�!�! � �

A1˚ s0.A0/
�!�! �

A0:

Applying Carlsson construction to the resolution N�1.A1 ,! A0/, we obtain the
following bisimplicial group:

FN�1.A1,!A0/2.Sn/3

�!�!�!�! � � �

FN�1.A1,!A0/2.Sn/2
�!�!�! � �

N�1.A1 ,!A0/2

###"" ###"" ###""

FA1˚s0.A0/.Sn/3

�!�!�!�! � � �

FA1˚s0.A0/.Sn/2
�!�!�! � �

A1˚ s0.A0/

##" ##" ##"

FA0.Sn/3

�!�!�!�! � � �

FA0.Sn/2
�!�!�! � �

A0

Here the m–th horizontal simplicial group is Carlsson constructionFN�1.A1,!A0/m.Sn/.
By the result of Quillen [14], we obtain the following spectral sequence:

(2-9) E2
p;q D �q.�p.†

nK.N�1.A1 ,!A0/; 1//H) �pCq.†
nK.A; 1//:

Consider now a nonabelian analog of this spectral sequence, for nD 1. Suppose now
that a group G is arbitrary, not necessary abelian. Consider a simplicial resolution
of G :

G�!G;
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ie G� is a simplicial group with �0.G�/ D G; �i.G�/ D 0; i > 0: Consider the
following bisimplicial group:

G2 �G2 �G2

�!�!�!�! � � �

G2 �G2

�!�!�! � �
G2

###"" ###"" ###""

G1 �G1 �G1

�!�!�!�! � � �

G1 �G1

�!�!�! � �
G1

##" ##" ##"

G0 �G0 �G0

�!�!�!�! � � �

G0 �G0

�!�!�! � �
G0

Again, by the result of Quillen [14], we obtain the following spectral sequence:

(2-10) E2
p;q D �q.�p.†K.G�; 1///H) �pCq.†K.G; 1//:

If G� is a free simplicial resolution, the spectral sequence (2-10) contains a lot of
canonical differentials of a complicated nature:

H4.G/

��

�2.L3
s ..G�/ab/˚�2..G�/ab/˝Z=2/ �2.�2..G�/ab// H3.G/

��

�1.L3
s ..G�/ab/˚�2..G�/ab/˝Z=2/ �1.�2..G�/ab// H2.G/

L3
s .Gab/˚�2.Gab/˝Z=2 �2.Gab/ Gab
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3 On group �4.†K.A; 1//

3.1 The group �4.†K.A; 1// for an abelian group A

Let A be an abelian group. Consider the homotopy commutative diagram of fibre
sequences

(3-1)

†K.A; 1/^K.A; 1/
H - †K.A; 1/ - K.A; 2/D BK.A; 1/

pull

†K.A; 1/^K.A; 1/

wwwwww
f- K.A; 2/_K.A; 2/

?
�- K.A; 2/�K.A; 2/;

�

?

where H is the Hopf fibration. Thus we have the following lemma:

Lemma 3.1 There are isomorphisms

�n.†K.A; 1/^K.A; 1//Š �n.†K.A; 1//Š �n.K.A; 2/_K.A; 2//

for n� 3. In particular, �3.†K.A; 1//Š �3.†K.A; 1/^K.A; 1//ŠA˝A.

By Lemma 2.3, we have:

Lemma 3.2 The lower homology of the wedge K.A; 2/_K.A; 2/ are the following:

H2.K.A; 2/_K.A; 2//DA˚A,

H3.K.A; 2/_K.A; 2//D 0,

H4.K.A; 2/_K.A; 2//D �2.A/˚�2.A/,

H5.K.A; 2/_K.A; 2//DR2.A/˚R2.A/:

Lemma 3.3 The Hurewicz image

hnW �n.K.A; 2/_K.A; 2// �!Hn.K.A; 2/_K.A; 2//

is zero for n� 3.

Proof The commutative diagram

�n.K.A; 2/_K.A; 2//
hn- Hn.K.A; 2/_K.A; 2//

�n.K.A; 2/�K.A; 2//D 0
?

hn- Hn.K.A; 2/�K.A; 2//
?

\

implies the assertion.
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Theorem 3.4 Let A be any abelian group. Then there is a natural short exact sequence

.ƒ2.A/˝A/˚2
˚A˝A˝Z=2 � - �4.†K.A; 1// -- Tor.A;A/:

Moreover .ƒ2.A/˝A/˚2 is an (unnatural) summand of �4.†K.A; 1//.

Proof Let X DK.A; 2/_K.A; 2/ and let Y DK.A; 2/�K.A; 2/DK.A˚A; 2/.
From Lemmas 3.2 and 3.3, there is a short exact sequence

R2.A/˚R2.A/ � - �4.X / -- �4.X /:

The inclusion j W X D K.A; 2/_K.A; 2/ � - Y D K.A; 2/ �K.A; 2/ induces a
commutative diagram

(3-2)

H5.X /DR2.A/˚R2.A/ � - �4.X / -- �4.X /

H5.Y /DR2.A˚A/

j�

?

\

Š

�
- �4.Y /

j�

?
- �4.Y /D 0:

j�

?

By formula (2-1),

H5.K.A; 2/�K.A; 2//DH5.K.A˚A; 2//DR2.A/˚R2.A/˚Tor.A;A/

and so the cokernel of j�W H5.X /!H5.Y / is Tor.A;A/. On the other hand, from
Theorem 2.5(1), there is a commutative diagram of short exact sequences

�2
2
.X / � - �4.X / -- R2.�2.X //DR2.A˚A/

�2
2
.Y /

?
� - �4.Y /

j�

?
 -- R2.�2.Y //DR2.A˚A/:

Š

?

The composite

 ı�W R2.A˚A/
Š-

��4.Y / --
 R2.A˚A/

is a natural self epimorphism for any abelian group A. It is an isomorphism for
any finitely generated abelian A and so an isomorphism for any abelian group A by
considering the direct limit. Thus j�W �4.X /! �4.Y / is an epimorphism and, from
diagram (3-2), there is a short exact sequence

(3-3) �2
2 .X /

� - �4.X / -- Tor.A;A/:
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Let ZD†K.A; 1/^K.A; 1/ and let f W Z!X be the map in diagram (3-1). Consider
the commutative diagram

(3-4)

�3.Z/˝Z=2D �2
2
.Z/ �

Š- �4.Z/ - �4.Z/ - H4.Z/ - �3.Z/D 0

�2
2
.X /

f�

?
� - �4.X /

f�

?
-- �4.X /;

f� Š

?

where �2
2
.Z/ ! �4.Z/ is an isomorphism because its cokernel R2.�2.Z// D 0.

From the definition (2-4) of the functor �2
2

,

f�W �
2
2 .Z/ �! �2

2 .X /

is a monomorphism with retracting homomorphism �0W �2
2
.X /! �2

2
.Z/. By the

short exact sequence (3-3), �4.Z/! �4.Z/ is a monomorphism and so there is a
short exact sequence

(3-5) A˝A˝Z=2D�4.Z/ � - �4.Z/ -- H4.Z/DH3.K.A; 1/^K.A; 1//:

Note that H1.K.A; 1//D A and H2.K.A; 1//D ƒ
2.A/. By the Künneth theorem,

there is a natural short exact sequence

.A˝ƒ2.A//˚2 � - H4.Z/
 0-- Tor.A;A/:

Consider the composite

�AW �
2
2 .X /D �

2
2 .�2.A˚A/!A˝A/

� - �4.X /
f �1
�- �4.Z/ -- H4.Z/

 0-- Tor.A;A/;

which is natural on any abelian group A. If A is a free abelian group, then �A D 0.
For any abelian group A, choose any free abelian group A0 with an epimorphism
gW A0�A. From the definition (2-4) of �2

2
,

�2
2 .g/W �

2
2 .�2.A0˚A0/!A0˝A0/ �! �2

2 .�2.A˚A/!A˝A/
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is an epimorphism. By the naturality of �A , we have �A D 0 because �A0
D 0. Now,

from diagram (3-4), there is a commutative diagram of natural short exact sequences

A˝A˝Z=2 DDD A˝A˝Z=2

�2
2
.X /

	

?

\

� - �4.†K.A; 1//
?

\

-- Tor.A;A/

.A˝ƒ2.A//˚2

??
� - H4.Z/

??
-- Tor.A;A/:

Š

?

It follows that there is a natural (on A) isomorphism

�2
2 .X /ŠA˝A˝Z=2˚ .A˝ƒ2.A//˚2:

Since .A ˝ ƒ2.A//˚2 is an (unnatural) summand of H4.Z/, it is an (unnatural)
summand of �4.†K.A; 1//. The proof is finished.

Corollary 3.5 Let p be an odd prime integer. Then

�4.†K.Z=pr ; 1//D Z=pr

and the Hurewicz homomorphism

�4.†K.Z=pr ; 1//!H4.†K.Z=pr ; 1//

is an isomorphism.

Proof In this case, A˝A˝Z=2D 0. Since Z=pr is cyclic, ƒ2.A/˝AD 0 and
hence the result follows.

For completely determining the group �4.†K.A; 1//, we have to consider the divisibil-
ity problem of the elements in the subgroup A˝A˝Z=2D�4.Z/��4.†K.A; 1//D

�4.Z/. We solve this problem for any finitely generated abelian group A.

Lemma 3.6 Let A be any abelian group and let j W M.A; 1/! K.A; 1/ be a map
such that j�W H1.M.A; 1// ! H1.K.A; 1// is an isomorphism. Then there is an
(unnatural) splitting exact sequence

�4.†M.A; 1/^M.A; 1// �
Ô-

.†j^j/��4.†K.A; 1/^K.A; 1//
Ô-- .A˝ƒ2.A//˚2:
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Proof Let X D†M.A; 1/^M.A; 1/ and let ZD†K.A; 1/^K.A; 1/. The assertion
follows from the commutative diagram of short exact sequences

�4.X / � - �4.X / -- H4.X /D Tor.A;A/

�4.Z/

Š

?
� - �4.Z/

?
-- H4.Z/;

?

\

where the bottom row is short exact by Equation (3-5).

Given a finitely generated abelian group A, let

ADA1˚

M
r�1

p is a prime

Apr

be the primary decomposition of A, where A1 is torsion free and Apr is a free
Z=pr –module.

Theorem 3.7 Let A be any finitely generated abelian group. Let ADA2˚B with
B DA1˚

L
pr 6D2 Apr . Then

�4.†K.A; 1//Š
1

2
.A2˝A2/˚ .A2˝B/˚2

˚B˝2
˝Z=2˚ .A˝ƒ2.A//˚2

˚Tor.A2;B/
˚2
˚Tor.B;B/;

where 1
2
.A2˝A2/ is a free Z=4–module with rank of dimZ=2.A2˝A2/.

Proof Let X D†M.A; 1/^M.A; 1/. By Lemma 3.6, it suffices to show that

�4.X /Š
1

2
.A2˝A2/˚ .A2˝B/˚2

˚B˝2
˝Z=2˚Tor.A2;B/

˚2
˚Tor.B;B/:

Observe that there is a homotopy decomposition

X '
_

r;s�0
p;q prime

†M.Apr ; 1/^M.Aqs ; 1/;

where we allow r; s to be 0 for having the factor A1 to be appeared. Thus there is a
decomposition

(3-6) �4.X /Š
M

r;s�0
p;q prime

�4.†M.Apr ; 1/^M.Aqs ; 1//:
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Let r; s � 1 and let p and q be positive prime integers. From [12, Corollary 6.6], there
is a homotopy decomposition

(3-7) †M.Z=pr ; 1/^M.Z=qs; 1/

'

�
� if p 6D q;

M.Z=pminfr;sg; 3/_M.Z=pminfr;sg; 4/ if p D q and maxfpr ; qsg> 2:

By taking �4 to above decomposition, we have

(3-8) �4.†M.Z=pr ; 1/^M.Z=qs; 1//ŠZ=pr
˝Z=qs

˝Z=2˚Tor.Z=2r ;Z=2s/

if maxfpr ; qsg > 2. Clearly this formula also holds for the case where pr D 1 or
qs D 1. For the case pr D qs D 2, we claim that

(3-9) �4.†M.Z=2; 1/^M.Z=2; 1///D Z=4:

Let Y D†M.Z=2; 1/^M.Z=2; 1/. From the short exact sequence

�4.Y /D Z=2 � - �4.Y / -- H4.Y /D Z=2;

the group �4.Y / D Z=4 or Z=2˚Z=2. Suppose that �4.Y / D Z=2˚Z=2. Then
there exists an element ˛ 2 �4.Y / of order 2 which has the nontrivial Hurewicz image.
Since ˛ is of order 2, the map ˛W S4! Y extends to a map z̨W M.Z=2; 4/! Y with

z̨�W H4.M.Z=2; 4// �!H4.Y /

an isomorphism. Let
j W M.Z=2; 3/ �! Y

be the canonical inclusion. Then j�W H3.M.Z=2; 3//!H3.Y / is an isomorphism.
Then

.j ; z̨/W M.Z=2; 3/_M.Z=2; 4/ �! Y

is a homotopy equivalence because it induces an isomorphism on homology, which
contradicts that the Steenrod operation Sq2

W H 3.Y IZ=2/! H 5.Y IZ=2/ is an iso-
morphism. Thus �4.Y /D Z=4.

Now the assertion follows from decomposition (3-6) and the computational formu-
lae (3-8) and (3-9).

Corollary 3.8 Let A2 be any elementary 2–group. Then there is a natural short exact
sequence

.A2˝ƒ
2.A2//

˚2 � - �4.†K.A2; 1// -- 1

2
.A2˝A2/;

where 1
2
.A2˝A2/ is a free Z=4–module. Moreover this splits off unnaturally.
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Proof By Theorem 3.4, there is a natural short exact sequence

.A2˝ƒ
2.A2//

˚2 � - �4.†K.A2; 1// -- �4.†K.A2; 1//=.A2˝ƒ
2.A2//

˚2:

By Theorem 3.7, the quotient group �4.†K.A2; 1//=.A2˝ƒ
2.A2//

˚2 is free Z=4–
module for any finite dimensional elementary 2–groups. The assertion follows by
taking direct limits.

Remark 3.9 The summand 1
2
.A2 ˝A2/ is subquotient functor of �4.†K.A; 1//

on A in the following sense. For any abelian group A, the Z=2–component A2 is
given by the image of

Sq1
�W H2.AIZ=2/ �!H1.AIZ=2/:

Thus A 7! A2 is a subfunctor of the identity functor on abelian groups. Then
�4.†K.A2; 1// is a subfunctor of �4.†K.A; 1// on A and so

1

2
.A2˝A2/D �4.†K.A2; 1//=.A2˝ƒ

2.A2//
˚2

is a subquotient functor of �4.†K.A; 1// on A.

3.2 Applications

As an application, we compute �i.M.Z=pr ; 2// for i � 4. By the Hurewicz Theorem,
�2.M.Z=pr ; 2//D Z=pr . From the Whitehead exact sequence (2-2), we have

(3-10) �n.M.Z=pr ; 2//D �n.M.Z=pr ; 2//

for r � 3 because Hi.M.Z=pr ; 2/D 0 for i � 3. It follows directly that

�3.M.Z=pr ; 2//D �3.M.Z=pr ; 2//

D �2.Z=p
r /D

�
Z=pr if p > 2;

Z=2rC1 if p D 2;

(3-11)

where �2.A/ is computed in Example 2.2. From Theorem 2.5 (1), there is a short
exact sequence

�2
2 .M.Z=pr ; 2// � - �4.M.Z=pr ; 2// -- R2.�2.M.Z=pr ; 2///DR2.Z=p

r /:

From Section 2.2,

R2.Z=p
r /D

�
0 if p > 2;

Z=2 if p D 2:
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By the definition (2-4) of the functor �2
2

, the group �2
2
.M.Z=pr ; 2// is given by the

pushout

�2.Z=p
r /˝ .Z=pr ˚Z=2/

q˚ id- L3
s .Z=p

r /˚�2.Z=p
r /˝Z=2

�3.M.Z=pr ; 2//˝ .Z=pr ˚Z=2/

Š �1˝ id

?
- �2

2
.M.Z=pr ; 2//:

?

Thus �2
2 .M.Z=pr ; 2//Š L3

s .Z=p
r /˚�2.Z=p

r /˝Z=2:

Since Z=pr is cyclic and L3
s .A/ is isomorphic to the kernel of A˝ƒ2.A/!ƒ3.A/,

we have

L3
s .Z=p

r /D 0

and so �2
2 .M.Z=pr ; 2//D

�
0 if p > 2;

Z=2 if p D 2:

A direct consequence is

(3-12) �4.†M.Z=pr ; 2//D 0 for p > 2:

For the case p D 2, we have the short exact sequence

Z=2 � - �4.M.Z=2r ; 2// -- Z=2:

The remaining problem is to decide whether �4.M.Z=2r ; 2// is equal to Z=2˚Z=2
or Z=4. It has been computed in [21] that �4.M.Z=2; 2// D Z=4. For r > 1, the
group �4.M.Z=2r ; 2// seems not recorded in references. We are going to determine
the group �4.M.Z=2r ; 2// using our methods.

Lemma 3.10 Let

j W M.Z=2r ; 2/ �!†K.Z=2r ; 1/

be the canonical map inducing isomorphism on H2 . Then

j�W �4.M.Z=2r ; 2// �! �4.†K.Z=2r ; 1//

is an isomorphism.
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Proof By Theorem 2.5(1), there is a commutative diagram of short exact sequences

�2
2
.M.Z=2r ; 2//D Z=2 �- �4.M.Z=2r ; 2// -- R2.Z=2

r /D Z=2

�2
2
.K.Z=2r ; 2//

j�

?
� - �4.K.Z=2

r ; 2//

j�

?
-- R2.Z=2

r /D Z=2

Š j�

?

From the Whitehead exact sequence

�3.Z=2
r /D Z=2rC1

! �3.†K.Z=2r ; 1//D Z=2r
˝Z=2r

D Z=2r
! 0;

we have

�1˝ idW �2.Z=2
r /˝ .Z=2r

˚Z=2/ �! �3.K.Z=2
r ; 2//˝ .Z=2r

˚Z=2/

is an isomorphism. Similar to the computation of �2
2
.M.Z=2r ; 2//, we have

�2
2 .K.Z=2

r ; 2//D Z=2

with an isomorphism j�W �
2
2
.M.Z=2r ; 2// Š �2

2
.K.Z=2r ; 2//. The assertion then

follows by 5–lemma.

Lemma 3.11 The group

�4.†K.Z=2r ; 1//D

�
Z=2˚Z=2 if r > 1;

Z=4 if r D 1:

Proof Let Z D †K.Z=2r ; 1/^K.Z=2r ; 1/ and let H W Z! †K.Z=2r ; 1/ be the
Hopf map. From Equation (3-5), there is a commutative diagram of exact sequence

�4.Z/D Z=2 � - �4.Z/ -- H4.Z/D Z=2r

�4.†K.Z=2r ; 1//

H�

?
�- �4.†K.Z=2r ; 1//

Š H�

?
- H4.†K.Z=2r ; 1//;

H�

?

where the bottom row is left exact because H5.†K.Z=2r ; 1//DH4.Z=2
r /D 0.

If r > 1, then �4.Z/ is a summand of �4.Z/Š �4.†K.Z=2r ; 1// by Theorem 3.7.
Thus �4.Z/D Z=2 is also a summand of �4.†K.Z=2r ; 1//. It follows that

�4.†K.Z=2r ; 1//D Z=2˚Z=2 if r > 1:
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If r D 1, by Corollary 3.8, �4.†K.Z=2; 1//D Z=4 and so

�4.†K.Z=2; 1//Š �4.†K.Z=2; 1//D Z=4:

The proof is finished.

Since �4.†K.Z=2r ; 1//!�4.†K.Z=2r ; 1// is a monomorphism, from Lemmas 3.10
and 3.11, we have the following:

Corollary 3.12 Let
j W M.Z=2r ; 2/ �!†K.Z=2r ; 1/

be the canonical map inducing isomorphism on H2 . Then

(1) �4.M.Z=2; 2//D Z=4 and

j�W �4.M.Z=2; 2//! �4.†K.Z=2; 1//

is an isomorphism;

(2) For r > 1, �4.M.Z=2r ; 2//D Z=2˚Z=2 and

j�W �4.M.Z=2r ; 2//D Z=2˚Z=2! �4.†K.Z=2r ; 1//D Z=2˚Z=2r

is a monomorphism.

Note that M.Z=2; 2/D†RP2 and †K.Z=2; 1/D†RP1 with the canonical inclusion
j W †RP2 ,!†RP1 . A consequence of Corollary 3.12 (1) on the suspended projective
spaces are as follows.

Corollary 3.13 Let j W †RP2!†RPn be the canonical inclusion with 3� n�1.

(1) For 4� n�1, j�W �4.†RP2/D Z=4! �4.†RPn/ is an isomorphism.

(2) For nD 3, j�W �4.†RP2/D Z=4! �4.†RP3/ is a splitting monomorphism.
Moreover

�4.†RP3/Š �4.†RP2/˚ZD Z=4˚Z:

Proof Assertion (1) and the first part of assertion (2) are direct consequences of
Corollary 3.12. For the second part of assertion (2), notice that RP3 D SO.3/. From
the commutative diagram

�4.†SO.3/^SO.3// Š- �4.†RP1 ^RP1/

�4.†SO.3//

H�

?
- �4.†RP1/;

Š H�

?
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�4.†SO.3//Š �4.†SO.3/^SO.3//˚�4.B SO.3//we have

Š �4.†RP1/˚�3.SO.3//

Š Z=4˚Z

and hence the result follows.

Another consequence is as follows:

Corollary 3.14 Let †3 be the third symmetric group. Then �4.†K.†3; 1//DZ=12:

Proof Recall that the integral homology groups of †3 are 4–periodic with the fol-
lowing initial terms:

H1.†3/D Z=2; H2.†3/D 0; H3.†3/D Z=6; H4.†3/D 0:

Let X D†K.†3; 1/. The Whitehead exact sequence has the following form:

�4.X / � - �4.X / - H3.†3/DZ=6 - �3.X /DZ=4 -- �3.X /DZ=2:

The inclusion †2 D Z=2!†3 induces an isomorphism

�i.†K.Z=2; 1//D Z=2
Š- �i.†K.†3; 1//D Z=2

for i D 2; 3. By Theorem 2.5 (1) together with Lemma 3.11, the inclusion †2 D

Z=2!†3 induces an isomorphism

�4.†K.Z=2; 1//D Z=4
Š- �4.†K.†3; 1//

and hence the result holds.

4 On group �5.†K.A; 1//

4.1 Some properties of the functor A 7! �5.†K.A; 1//

From Hopf fibration

†K.A; 1/^K.A; 1/ - †K.A; 1/ - K.A; 2/;
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it suffices to compute �5.†K.A; 1/^K.A; 1//. Let ZD†K.A; 1/^K.A; 1/. Since
Z is 2–connected, from Theorem 2.5(2), there are natural exact sequences

(4-1)

�4.†K.A; 1//˝Z=2˚ƒ2.A˝A/� _

��
H6.Z/ // �5.Z/ //

����

�5.Z/ // // H5.Z/;

Tor.A˝A;Z=2/

where �5.Z/!H5.Z/ is onto by Equation (3-5). The group �4.†K.A; 1// has been
determined by Theorems 3.4 and 3.7.

Proposition 4.1 Let A be a free abelian group. Then there is a natural short exact
sequence

.ƒ2.A/˝A˝Z=2/˚2
˚A˝2

˝Z=2˚ƒ2.A˝A/

,! �5.†K.A; 1//� .ƒ3.A/˝A/˚2
˚ƒ2.A/˝2:

Proof Since A is a free abelian group, the Hurewicz homomorphism h�W ��.Z/!
zH�.Z/ is onto because Z is a wedge of spheres. Thus there is a short exact sequence

�5.Z/ � - �5.Z/ -- H5.Z/:

By Theorem 3.4, �4.Z/Š .ƒ
2.A/˝A/˚2˚A˝A˝Z=2 for a free abelian group A.

The assertion follows from diagram (4-1).

Proposition 4.2 If A is a torsion abelian group with the property that 2W A!A is an
isomorphism, then there is a natural short exact sequence

ƒ2.A˝A/ � - �5.†K.A; 1// -- H4.K.A; 1/^K.A; 1//:

Proof It suffices to show that the Hurewicz homomorphism h�W �6.Z/!H6.Z/ is
onto. We may assume that A is finitely generated because we can take direct limit for
general case whence the finitely generated case is proved. Then A is a direct sum of
the primary p–torsion groups Z=pr for some r � 1 and odd primes p . According
to [11], there is homotopy decomposition

†K.Z=pr ; 1/'X1 _ � � � _Xp�1;

where xHq.Xi IZ/ 6D 0 if and only if q � 2i mod 2p � 2. Together with the de-
composition formula (3-7) for the smash product of Moore spaces, up to 6–skeleton,
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†K.A; 1/^K.A; 1/ is homotopy equivalent to a wedge of spheres and Moore spaces.
It follows that the Hurewicz homomorphism

�6.†K.A; 1/^K.A; 1// �!H6.†K.A; 1/^K.A; 1//

is onto and hence the result holds.

From the above proof, we also have the following:

Proposition 4.3 Let A be any abelian group. Let Z1=2Dfm=2
r 2Q jm2Z; r � 0g.

Then there is natural short exact sequence

ƒ2.A˝A/˝Z1=2
� - �5.†K.A; 1//˝Z1=2

-- H4.K.A; 1/^K.A; 1//˝Z1=2:

For computing the group �5.†K.A; 1//, as one see from the above, the tricky part is
the 2–torsion. Whence A contains 2–torsion summands, the Hurewicz homomorphism
�6.Z/!H6.Z/ is no longer epimorphism in general and so �5.Z/! �5.Z/ is not
a monomorphism in general. Also the group �5.Z/ in diagram (4-1) admits nontrivial
extension. The computation of the group �5.†K.A; 1// for finitely generated abelian
groups A can be given by the following steps:

Step 1 Take a primary decomposition of A and write K.A; 1/ as a product of copies
of S1 DK.Z; 1/ and K.Z=pr ; 1/.

Step 2 By using the fact that †X � Y ' †X _†Y ' †X ^ Y for any spaces X

and Y , one gets

†.X1 �X2/^ .X1 �X2/'†.X1 _X2 _X1 ^X2/^ .X1 _X2 _X1 ^X2/

'†

 
X^2

1 _X^2
2 _X^2

1 ^X^2
2

_

2_
X1 ^X2 _

2_
X^2

1 ^X2 _

2_
X1 ^X^2

2

!
:

From this, †K.A; 1/^K.A; 1/ is then homotopy equivalent to a wedge of the spaces
in the form

X D†mK.Z=pr1

1
; 1/^K.Z=pr2

2
; 1/^ � � � ^K.Z=prt

t ; 1/

with mC t � 3 and m� 1.
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Step 3 By applying the Hilton–Milnor Theorem, we have

�.†X _†Y /'�†X ��†Y ��†..�†X /^ .�†Y //

'�†X ��†Y ��†

 
1_

i;jD1

X^i
^Y ^j

!
:

Thus �n.†X _†Y /Š �n.†X /˚�n.†Y /˚�n

 
1_

i;jD1

†X^i
^Y ^j

!
:

Note that the connectivity of X^i ^ Y ^j tends to 1 as i; j !1. By repeating
the above procedure, �n.†K.A; 1/^K.A; 1// is isomorphism to a direct sum of the
groups �n.X / with X given in the form above.

Notice that

†mK.Z=pr1

1
; 1/^K.Z=pr2

2
; 1/^ � � � ^K.Z=prt

t ; 1/' �

if the primes pi 6D pj for some i 6D j . Thus we only need to compute

�5.†
mK.Z=pr1 ; 1/^K.Z=pr2 ; 1/^ � � � ^K.Z=prt ; 1//

for a prime p . If t D 0, the homotopy group �5.S
m/ is known by �5.S

3/ D

�5.S
4/D Z=2 and �5.S

5/D Z. For an odd prime p , this homotopy group can be
determined by Proposition 4.2. The rest work in this section is of course to compute
�5.†

mK.Z=2r1 ; 1/^K.Z=2r2 ; 1/^� � �^K.Z=2rt ; 1// with mCt �3. When mCt �

5, we have

�5.X /D

�
0 if mC t > 5;

Z=2minfr1;:::;rt g if mC t D 5 with t � 1

for X D †mK.Z=2r1 ; 1/^K.Z=2r2 ; 1/^ � � � ^K.Z=2rt ; 1/. The first less obvious
case is mC t D 4, which will be discussed in the next subsection.

4.2 The group �5.†
mK.Z=2r1; 1/^K.Z=2r2; 1/^� � �^K.Z=2rt ; 1// for

mC t D 4 and m; t � 1

We first consider the case t D 1.

Lemma 4.4 The Hurewicz homomorphism

h5W �5.†
2K.Z=2r ; 1//!H5.†

2K.Z=2r ; 1//

is onto for any r � 1.
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Proof Let X D†2K.Z=2r ; 1/. Consider the Whitehead exact sequence

�5.X /
h5- H5.X /! �4.X /D Z=2! �4.X /!H4.X /D 0:

Thus the Hurewicz homomorphism h5 is onto if and only if �4.X / 6D 0.

Let f W S3! X be a map representing the generator for �3.X /D Z=2r . From the
remark to Theorem 2.4, �4.X /D 0 if and only if the composite

S4 �- S3 f- X

is null homotopic, if and only if the map f W S3!X extends to a map zf W †CP2!X

because †CP2 is the homotopy cofibre of �W S4! S3 .

Suppose that there exists a map zf W †CP2!X such that zf jS4 D f . By taking mod 2

cohomology, there is commutative diagram

H 5.†CP2IZ=2/ �
zf �

H 5.X IZ=2/D Z=2

H 3.†CP2IZ=2/DH 3.S3IZ=2/

Š Sq2

6

�
zf �Df �

Š
H 3.X IZ=2/D Z=2:

Sq2

6

It follows that Sq2
W H 3.X IZ=2/ �!H 5.X IZ=2/

is an isomorphism. On the other hand, from the fact that X D †2K.Z=2r ; 1/

and Sq2
W H 1.K.Z=2r ; 1/IZ=2/! H 3.K.Z=2r ; 1// is zero, Sq2

W H 3.X IZ=2/!
H 5.X IZ=2/ is zero. This gives a contradiction. The assertion follows.

Proposition 4.5 �5.†
3K.Z=2r ; 1//D Z=2 for r � 1.

Proof Let X D†3K.Z=2r ; 1/. Consider the Whitehead exact sequence

�6.X /
h6- H6.X /! �5.X /D Z=2! �5.X /!H5.X /D 0:

By Lemma 4.4, h6W �6.X /!H6.X / is onto. Thus �5.X /Š �5.X /D Z=2.

Now we consider the case t D 2.

Proposition 4.6 Let r1; r2 � 1. Then

�5.†
2K.Z=2r1 ; 1/^K.Z=2r2 ; 1//D

�
Z=2˚Z=2minfr1;r2g if maxfr1; r2g> 1;

Z=4 if r1 D r2 D 1:
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Proof Let X D†2K.Z=2r1 ; 1/^K.Z=2r2 ; 1/. By Lemma 4.4, there exists a map

fi W S
5
�!†2K.Z=2ri ; 1/; i D 1; 2;

which induces an epimorphism

fi�W H5.S
5/ -- H5.†

2K.Z=2ri ; 1/:

Let j W Y D†2M.Z=2r1 ; 1/^M.Z=2r2 ; 1/ ,! X be the canonical inclusion. Then
the map

f W Y _S5
^K.Z=2r2 ; 1/_K.Z=2r1 ; 1/^S5 .j ;f1^id;id^f2/- X

induces an isomorphism on Hj . IZ=2/ for j � 6. Thus

f�W �k

�
Y _S5

^K.Z=2r2 ; 1/_K.Z=2r1 ; 1/^S5
�
�! �k.X /

is an isomorphism for k � 5. Note that

�k.S
5
^K.Z=2r2 ; 1//D �k.K.Z=2

r1 ; 1/^S5/D 0

for k � 5. Thus
j�W �k.Y /! �k.X /

is an isomorphism for k � 5. In particular, �5.Y /Š �5.X /.

If max r1; r2 > 1, from decomposition (3-7), we have

†2M.Z=2r1 ; 1/^M.Z=2r2 ; 1/'M.Z=2minfr1;r2g; 4/_M.Z=2minfr1;r2g; 5/

and so

�5.Y /Š�5.M.Z=2minfr1;r2g; 4//˚�5.M.Z=2minfr1;r2g; 5//DZ=2˚Z=2minfr1;r2g:

Consider the case r1 D r2 D 1. From formula (3-9) and the Freudenthal Suspension
Theorem,

�5.†
2M.Z=2; 1/^M.Z=2; 1//Š �4.†M.Z=2; 1/^M.Z=2; 1//Š Z=4:

The proof is finished.

The last case is t D 3.

Proposition 4.7 Let r1; r2; r3 � 1 and let r Dminfr1; r2; r3g. Then

�5.†K.Z=2r1 ; 1/^K.Z=2r2 ; 1/^K.Z=2r3 ; 1//

D

�
Z=2˚Z=2r if maxfr1; r2; r3g> 1;

Z=2˚Z=2 if r1 D r2 D r3 D 1:
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Proof Let X D†K.Z=2r1 ; 1/^K.Z=2r2 ; 1/^K.Z=2r3 ; 1/. Let f1 be the composite

S6 g- †3K.Z=2r1 ; 1/Š†K.Z=2r1 ; 1/^S1
^S1 � - X;

where g is a map which induces epimorphism on H6. / by Lemma 4.4. Similarly, we
have the maps

fi W S
6
�!†K.Z=2r1 ; 1/^K.Z=2r2 ; 1/^K.Z=2r3 ; 1/; i D 2; 3;

by replacing K.Z=2r1 ; 1/ by K.Z=2ri ; 1/. Let Y D†M.Z=2r1 ; 1/^M.Z=2r2 ; 1/^

M.Z=2r3 ; 1/ and let j W Y ,!X be the canonical inclusion. The map

Y _S6
_S6

_S6 .j ;f1;f2;f3/- X

induces an isomorphism on Hk. IZ=2/ for k � 6 and so

.j ; f1; f2; f3/�W �5.Y _S6
_S6

_S6/D �5.Y / �! �5.X /

is an isomorphism.

If maxfr1; r2; r3g> 1, from decomposition (3-7),

Y 'M.Z=2r ; 4/_M.Z=2r ; 5/_M.Z=2r ; 5/_M.Z=2r ; 6/

�5.Y /D Z=2˚Z=2r
˚Z=2r :and so

If r1 D r2 D r3 D 1, there is a homotopy decomposition [21, Corollary 3.7]

†RP2
^RP2

^RP2
'†CP2

^RP2
_†4RP2

_†4RP2:

By [21, Lemma 6.34 (2)],

�5.†CP2
^RP2/D 0

�5.†RP2
^RP2

^RP2/D Z=2˚Z=2;and so

which finishes the proof.

Remark 4.8 For the case X D†K.Z=2; 1/^K.Z=2; 1/^K.Z=2; 1/, the Hurewicz
homomorphism

�5.X /D Z=2˚Z=2 �!H5.X /D Z=2˚Z=2

is an isomorphism and so, in the Whitehead exact sequence,

H6.X / �! �5.X /D Z=2

Algebraic & Geometric Topology, Volume 10 (2010)



596 Roman Mikhailov and Jie Wu

is onto. This gives an example that the morphism H6.Z/! �5.Z/ in diagram (4-1)
may not be zero, which is the only example in the case mC t D 4. More examples
will be shown up in the case mC t D 3 in the next subsections.

4.3 The group �5.†K.Z=2r; 1//Š �5.†K.Z=2r; 1/^K.Z=2r; 1//

Lemma 4.9 Let X D†K.Z=2r ; 1/^K.Z=2r ; 1/ with r � 1. Then mod 2 Hurewicz
homomorphism

�6.X /
h6- H6.X / - H6.X IZ=2/

is zero.

Proof Recall that the mod 2 cohomology ring

H�.K.Z=2r ; 1/IZ=2/ŠE.u1/˝P .u2/

with the r –th Bockstein ˇr .u1/ D u2 . Let xi (and yi ) denote the basis for the
homology Hi.K.Z=2r IZ=2/. The Steenrod operations and the Bockstein on lower
homology are given by

Sq2
� x4 D x2 Sq2

� y4 D y2

ˇr .x4/ D x3 ˇr y4 D y3

ˇr .x2/ D x1 ˇr y2 D y1:

The Z=2–vector space s�1 zHk.X IZ=2/ with k � 6 has a basis given by the table:0BB@
k D 6 x1y4 x2y3 x3y2 x4y1

5 x1y3 x2y2 x3y1

4 x1y2 x2y1

3 x1y1

1CCA
Let ˛ 2H6.X IZ=2/ be a spherical class. Then

s�1˛ D �1x1y4C �2x2y3C �3x3y2C �4x4y1

for some �i 2 Z=2. Observe that for any spherical class,

ˇs.˛/D Sqt
�.˛/D 0

for any s; t � 1. By applying Sq2
� to ˛ , we have

0D Sq2
�.s
�1˛/

D �1 Sq2
�.x1y4/C �2 Sq2

�.x2y3/C �3 Sq2
�.x3y2/C �4 Sq2

�.x4y1/

D �1x1y2C 0C 0C �4x2y1
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in s�1H4.X IZ=2/. Thus

(4-2) �1 D �4 D 0

By applying the Bockstein ˇr to ˛ , we have

0D ˇr .s
�1˛/

D �1ˇr .x1y4/C �2ˇr .x2y3/C �3ˇr .x3y2/C �4ˇr .x4y1/

D �1x1y3C �2x1y3C �3x3y1C �4x3y1

D .�1C �2/x1y3C .�3C �4/x3y1

and so �1C �2 D �3C �4 D 0:

Together with Equation (4-2), we have �i D 0 for 1� i � 4. Thus ˛ D 0 and hence
the result holds.

Theorem 4.10 �5.†K.Z=2; 1//Š �5.†K.Z=2; 1/^K.Z=2; 1//D Z=2˚Z=2.

Proof Let X D†K.Z=2; 1/^K.Z=2; 1/. Notice that

H6.X /D Z=2˚Z=2ŠH6.X IZ=2/:

From diagram (4-1), there is an exact sequence

H6.X /D Z=2˚Z=2 � - �5.X / - �4.X / -- H5.X /D Z=2˚Z=2:

By Corollary 3.8,
�4.X /Š �4.†K.Z=2; 1//Š Z=4:

From Theorem 2.5(2), there is a short exact sequence

�4.X /˝Z=2˚ƒ2.�3.X //D Z=2 � - �5.X / -- Tor.�3.X /;Z=2/D Z=2:

Thus the group �5.X / is of order 4. It follows that the monomorphism

H6.X /D Z=2˚Z=2 � - �4.X /

is an isomorphism and hence the result holds.

Lemma 4.11 Let r1; r2�1 with maxfr1; r2g>1. Then there is a short exact sequence

Z=2˚Z=2 � - �5.†K.Z=2r1 ; 1/^K.Z=2r2 ; 1// -- Z=2:
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Proof Let ADZ=2r1˚Z=2r2 . Let X D†K.Z=2r1 ; 1/^K.Z=2r2 ; 1/. Then X is
a retract of †K.A; 1/^K.A; 1/. From Theorem 3.7,

�4.X /D Z=2r1 ˝Z=2r2 ˝Z=2D Z=2

is a summand of �4.X / and so

�4.X /Š �4.X /˚H4.X /

D �4.X /˚H3.K.Z=2
r1 ; 1/^K.Z=2r2 ; 1//

Š �4.X /˚Tor.Z=2r1 ;Z=2r2/

Š Z=2˚Z=2minfr1;r2g:

The assertion follows from Theorem 2.5(2).

There is a canonical choice of skeleton skn.K.Z=2r ; 1// with

skn.K.Z=2
r ; 1/D skn�1.K.Z=2

r ; 1/[ en:

This induces a choice of skeleton

skn.†K.Z=2r1 ; 1/^K.Z=2r2 ; 1//D†
[

iCj�n

ski.K.Z=2
r1 ; 1//^ skj .K.Z=2

r2 ; 1//:

Lemma 4.12 Let r1; r2 � 1. Let r Dminfr1; r2g. Let

X D†K.Z=2r1 ; 1/^K.Z=2r2 ; 1/:

Then

(1) sk4.X /'M.Z=2r ; 3/_S3 ;

(2) If r1 D r2 D 1, then sk5.X /' S5 _S5 _†RP2 ^RP2 ;

(3) If maxfr1; r2g> 1, then sk5.X /' S5 _S5 _M.Z=2r ; 3/_M.Z=2r ; 4/;

(4) The group

�5.X / Š �5.†M.Z=2r1 ; 1/^M.Z=2r2 ; 1//

D

8̂̂<̂
:̂

Z=2˚Z=2 if r1 D r2 D 1;

Z=4˚Z=2 if minfr1; r2g D 1

and maxfr1; r2g> 1;

Z=2˚Z=2˚Z=2 if r1; r2 > 1:
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Proof We may assume that r1 � r2 and so r D r1 . Let xi (yi ) be a basis for
Hi.K.Z=2r1 ; 1/IZ=2/ (Hi.K.Z=2r2 ; 1/IZ=2/), which represents the i –dimensional
cell in the space K.Z=2rk ; 1/. Then

s�1 zH�.sknC1.X /IZ=2/

has a basis given by xiyj with iCj �n and i; j �1. In particular, s�1 zH�.sk4.X/IZ=2/
has a basis fx1y1;x1y2;x2y1g with the Bockstein ˇr1

.x2y1/Dx1y1 . There is (unique
up to homotopy) 2–local 3–cell complex with this homological structure which is
given by S4_M.Z=2r ; 3/. Thus sk4.X /' S4_M.Z=2r ; 3/, which is assertion (1).

For (2) and (3), observe that s�1 zH�.sk5.X /IZ=2/ has a basis

fx1y1;x1y2;x2y1;x1y3;x2y2;x3y3g:

Let j W †M.Z=2r1 ; 1/^M.Z=2r2 ; 1/ � - sk5.X /

be the canonical inclusion. For i D 1; 2, the composite

S5 g- †2K.Z=2ri ; 1/Š†K.Z=2ri ; 1/^S1 � - †K.Z=2r1 ; 1/^K.Z=2r2 ; 1/;

in which g is map that inducing isomorphism on H5. IZ=2/ as in Lemma 4.4, induces
a map

fi W S
5
�! sk5.X /:

By inspecting homology, the map

.f1; f2; j /W S
5
_S5

_†M.Z=2r1 ; 1/^M.Z=2r2 ; 1/ �! sk5.X /

induces an isomorphism on mod 2 homology and so it is a homotopy equivalent
localized at 2. If maxfr1; r2g> 1, then from decomposition (3-7),

†M.Z=2r1 ; 1/^M.Z=2r2 ; 1/'M.Z=2r ; 3/_M.Z=2r ; 4/

and so sk5.X /'S5_S5_M.Z=2r ; 3/_M.Z=2r ; 4/ in this case. Thus assertions (2)
and (3) follow.

(4) splits into two cases.

Case I maxfr1; r2g> 1. By the definition of the Whitehead’s functor � ,

�5.X /D Im.�5.sk4.X //! �5.sk5.X //

D Im.�5.S
4
_M.Z=2r ; 3//! �5.S

5
_S5

_M.Z=2r ; 3/_M.Z=2r ; 4///

D �5.M.Z=2r ; 3/_M.Z=2r ; 4//
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because

M.Z=2r ; 3/_M.Z=2r ; 4///'†M.Z=2r1 ; 1/^M.Z=2r2 ; 1/

D .S4
_M.Z=2r ; 3//[ e5:

Now it suffices to compute

�5.M.Z=2r ; 3/_M.Z=2r ; 4//D �5.M.Z=2r ; 3//˚�5.M.Z=2r ; 4//:

It is straight forward to see that �5.M.Z=2r ; 4//DZ=2 represented by the composite

S5 �- S4 � - M.Z=2r ; 4/:

If r D minfr1; r2g D 1, then �5.M.Z=2r ; 3/ D Z=4 according to [21, Proposition
5.1].

If r Dminfr1; r2g> 1, we compute �5.M Z=2r ; 3/. Observe that this is in the stable
range and so

�5.M.Z=2r ; 3//Š �s
5.M.Z=2r ; 3//:

Now we are working in the stable homotopy category. Since �W S5!S4 is of order 2,
there is a map

z�W M.Z=2; 5/ �! S4

such that z�jS5 ' �. Since the identity map of M.Z=2; 5/ is of order 4 (see for instance
Toda [16, Theorem 4.4]), there is a commutative diagram

S5 �
j- M.Z=2; 5/

M.Z=2r ; 3/
pinch -

�

x�

S4

z�

?
Œ2r � - S4;

where the bottom row is the cofibre sequence. The composite x�W S5!M.Z=2r ; 3/

represents an element in �s
5
.M.Z=2r ; 3// that maps down to �s

5
.S4/D Z=2.�/. Since

the map j W S5!M.Z=2; 5/ is of order 2, the composite x�ıj is of order 2. It follows
that

(4-3) �5.M.Z=2r ; 3//Š �s
5.M.Z=2r ; 3//Š �s

5.S
4/˚�s

5.S
3/Š Z=2˚Z=2:

Case II r1 D r2 D 1. In this case, similar to the above arguments,

(4-4) �5.X /D �5.†RP2
^RP2/D �5.†RP2

^RP2/:
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We compute this homotopy group. Note that

†RP2
^RP2

D sk4.X /[ e5
D .S4

_M.Z=2; 3/[ e5:

There is a cofibre sequence

S4 f- S4
_M.Z=2; 3/

g- †RP2
^RP2;

where the composite

S4 f- S4
_M.Z=2; 3/

proj- S4

is of degree 2 because

Sq1
�W H5.†RP2

^RP2
IZ=2/D Z=2 �!H4.†RP2

^RP2
IZ=2/D Z=2˚Z=2

is not zero, and the composite

S4 f- S4
_M.Z=2; 3/

proj- M.Z=2; 3/

is homotopic to the composite

S4 �- S3 �
j- M.Z=2; 3/

because �4.M.Z=2; 3//D Z=2 and

Sq2
�W H5.†RP2

^RP2
IZ=2/D Z=2 �!H3.†RP2

^RP2
IZ=2/D Z=2

is an isomorphism. Since

�5.†RP2
^RP2/D �5.†RP2

^RP2/;

g�W �5.S
4
_M.Z=2; 3// �! �5.†RP2

^RP2/

is an epimorphism. By applying the Hilton–Milnor Theorem,

�5.S
4
_M.Z=2; 3//Š �4.�.S

4
_M.Z=2; 3///

Š �4.�S4
��.M.Z=2; 3//��†.�S4

^�M.Z=2; 3///

Š �4.�S4/˚�4.�.M.Z=2; 3///

Š �5.S
4/˚�5.M.Z=2; 3//

Š Z=2˚�5.M.Z=2; 3//:

From [21, Proposition 5.1], �5.M.Z=2; 3//D Z=4 generated by the homotopy class
of any map �W S5!M.Z=2; 3/ such that the composite

S5
!M.Z=2; 3/! S4
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is homotopic to �, the generator for �5.S
4/DZ=2, and, for any such a choice of map

� , the element 2Œ�� is given by the homotopy class of the composite

S5 �- S4 �- S3 �
j- M.Z=2; 3/:

From the fact that g ıf ' �, the composite

�5.S
4/

f�- �5.�5.S
4
_M.Z=2; 3///

g�- �5.†RP2
^RP2/

is zero. Observe that
f�.�/D 2�C Œj ı � ı ��D 2Œ��:

Thus g�.2Œ��/D 0 and so �5.†RP2 ^RP2/ is a quotient group Z=2˚Z=2. On the
other hand, from Theorem 2.5(2), there is short exact sequence

Z=2 � - �5.†RP2
^RP2/D �5.†RP2

^RP2/ -- Z=2:

It follows that �5.†RP2 ^RP2/D Z=2˚Z=2. The proof is finished.

Let Len3.2r /D sk3.K.Z=2
r ; 1// be the 3–dimensional lens space.

Lemma 4.13 Let r1; r2 � 1. Let

X1 D†M.Z=2r1 ; 1/^M.Z=2r2 ; 1/;

X2 D†Len3.2r1/^Len3.2r2/;

X D†K.Z=2r1 ; 1/^K.Z=2r2 ; 1/:

Then there is a commutative diagram

�5.X1/
Š- �5.X1/

�5.X2/

Š

?
�
Ô- �5.X2/

?

\

Ô-- Z=2r1 ˚Z=2r2

H6.X / - �5.X /

Š

?
- �5.X /

??
-- .Z=2minfr1;r2g/˚2;

??

where the rows are exact and the middle a splitting short exact sequence.
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Proof As in the proof in Lemma 4.12, s�1 zHk.X / for k � 6 has a basis

fxiyj j i C j � 6; i; j � 1g:

Thus sk4.X /�X1 � sk5.X /�X2 � sk7.X /

and so the commutative diagram follows, where

�5.X1/Š �5.X2/Š �5.X /

are given by Lemma 4.12. Since sk5.X /�X2 , �5.X2/! �5.X / is onto.

Now we show that the middle row in the diagram splits off. By taking the suspension,
there is a commutative diagram of short exact sequences

�5.X2/ � - �5.X2/ -- H5.X2/

�6.†X2/

Š

?
�- �6.†X2/

?
-- H6.X2/;

Š

?

where the left column is an isomorphism because

�5.X2/Š �5.X1/Š �6.†X1/Š �6.†X2/:

Thus by the 5–Lemma,

(4-5) �5.X2/Š �6.†X2/:

From Lemma 4.4, there is a map

gW S5
�!†2K.Z=2r ; 1/

inducing an isomorphism on H5. IZ=2/. It follows that

(4-6) †2Len3.2r /D†2sk3.K.Z=2
r ; 1//' S5

_†2M.Z=2r ; 1/

and so

†X2 D†
2Len3.2r1/^Len3.2r2/

' .S5
_†2M.Z=2r1 ; 1//^Len3.2r2/

'†5Len3.2r2/_†2Len3.2r2/^M.Z=2r1 ; 1/

' S8
_M.Z=2r2 ; 6/_M.Z=2r1 ; 6/_M.Z=2r2 ; 3/^M.Z=2r1 ; 1/:

(4-7)

Thus �6.†X2/Š Z=2r1 ˚Z=2r2 ˚�6.†X2/
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and hence the result holds.

Theorem 4.14 Let r > 1. Then

�5.†K.Z=2r ; 1//Š �5.†K.Z=2r ; 1/^K.Z=2r ; 1//Š Z=2˚Z=2r
˚Z=2r :

Proof Let X D†K.Z=2r ; 1/^K.Z=2r ; 1/. By Lemma 4.13,

�5.X /Š Z=2r
˚Z=2r

˚ Im.�5.X /! �5.X //:

From Lemma 4.12,

�5.X /D Z=2˚3:

By Lemma 4.4, the composite

�6.X /!H6.X /D Z=2r
˚Z=2r

!H6.X IZ=2/

is zero. Thus

H6.X /D Z=2r
˚Z=2r

�! �5.X /D Z=2˚Z=2˚Z=2

detects two copies of Z=2–summands in �5.X /. The proof is finished.

4.4 The group �5.†K.Z=2r1; 1/^K.Z=2r2; 1// with r1 < r2

Our computation is given by analyzing the cell structure. Let xi be a basis for
zHi.K.Z=2r1 ;Z=2// and let yi be a basis for zHi.K.Z=2r2 IZ=2//. Then

s�1 zHk.†K.Z=2r1 ; 1/^K.Z=2r2 ; 1/; k � 6;
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has a basis fxiyj j iCj � 6g. From the assumption that r1< r2 , the Steenrod operation
and Bockstein are indicated by the following diagram

(4-8)

k D 6 x2y3 x1y4 x3y2 x4y1

k D 5 x1y3

ˇr1

?�

ˇ r 2

0

x2y2 x3y1

ˇr2

?�

ˇ r 1

k D 4 x1y2

Sq2
�

?�

ˇ r 1

x3y1

Sq2
�

?

k D 3 x1y1

�

ˇ r 1

where the dashed arrows mean that the next Bockstein ˇr2
, which comes from

H�.K.Z=2r2 ; 1//, does not actually happen in the Bockstein spectral sequence up to
this range.

Lemma 4.15 Let r2 > r1 � 1 and let X D †K.Z=2r1 ; 1/^K.Z=2r2 ; 1/. Then the
suspension

EW �5.X / �! �6.†X /

is an isomorphism.

Proof From formula (4-5) together with the fact that �n�1.skn.Y //Š �n�1.Y /,

�5.sk6.†Len3.2r1/^Len3.2r2/// �! �6.sk7.†Len3.2r1/^Len3.2r2///:

Notice that sk6.X /D sk6.†Len3.2r1/^Len3.2r2//[ e6
[ e6
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indicated by the elements x1y4 and x4y1 in diagram (4-8). Then there is a commutative
diagram of right exact sequences

�5.S
5 _S5/

f�- �5.Z/ -- �5.sk6.X //

�6.S
6 _S6/

Š

?
†f�- �6.†Z/

Š

?
-- �6.sk7.†X //;

E

?

where Z D sk6.†Len3.2r1/^Len3.2r2// and f W S5_S5! Y is the attaching map
for sk6.X /. The assertion follows by the 5–lemma.

Theorem 4.16 Let r2 > r1 � 1. Then

�5.†K.Z=2r1 ; 1/^K.Z=2r2 ; 1//D

8<:
Z=2˚Z=4 if r1 D 1; r2 D 2;

Z=2˚Z=8 if r1 D 1; r2 � 3;

Z=2˚Z=2r1˚Z=2r1C1 if r2 > r1 > 1:

Proof From Lemma 4.15, it suffices to compute �6.†
2K.Z=2r1 ; 1/^K.Z=2r2 ; 1//:

Let X D sk7.†
2K.Z=2r1 ; 1/^K.Z=2r2 ; 1//: From splitting formula (4-7),

sk7.†
2Len3.2r1/^Len3.2r2//

'M.Z=2r2 ; 6/_M.Z=2r1 ; 6/_M.Z=2r1 ; 4/_M.Z=2r1 ; 5/:

Let Y D sk7.†
2Len3.2r1/^Len3.2r2//. Then s�2 zH�.Y IZ=2/ has a basis listed in

diagram (4-8) excluding the elements x1y4 and x4y1 . Let Pn.2r /DM.Z=2r ; n� 1/.
The mod homology zH�.Pn.2r /IZ=2/ has a basis ur

n�1
and vr

n whose degrees are
jur

n�1
j D n� 1, vr

nj D n and the Bockstein ˇr .v
r
n/D ur

n�1
. Since X D Y [ e7[ e7 ,

there is a cofibre sequence

S6
1 _S6

2

f- P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/
g- X

q- S7
1 _S7

2 ;

where g�.u
r1

6
; v

r2

7
Iu

r2

6
; v

r2

7
Iu

r1

4
; v

r1

5
Iu

r1

5
; v

r1

6
/

D s2.x1y3;x2y3Ix3y1;x3y2Ix1y1;x2y1Ix1y2;x2y2/

for catching the corresponding elements in zH�.X IZ=2/. Here the map f is the
attaching map with f jS6

1
; f j

S6
2

corresponding to the homological classes s2.x4y1/

and s2.x1y4/, respectively. Namely, the induced boundary map qW X ! S7
1
_S7

2
has

the homological property that q�W H7.X IZ=2/!H7.S
7
1
_S7

2
/ is given by

q�.x2y3/D q�.x3y2/D 0; q�.s
2.x4y1//D �1; q�.s

2.x1y4//D �2;
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where �j is the basis for H7.S
7
j IZ=2/. For j D 1; 2, let Xj be the homotopy cofibre

of fj . Then there is a commutative diagram

(4-9)

S6
1
_S6

2

f- P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/
g- X

q- S7
1
_S7

2

S6
j

[

6

f jS6
j- P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/

wwwwwwwww
gj- Xj

�j

6

qj - S7
j :

[

6

Statement 1 �j�W zH�.Xj IZ=2/! zH�.X IZ=2/ is a monomorphism. Moreover,

Im.�1�W H7.X1IZ=2/!H7.X IZ=2//

has the basis given by fs2.x2y3/; s
2.x3y2/; s

2.x4y1/g and

Im.�2�W H7.X2IZ=2/!H7.X IZ=2//

has the basis given by fs2.x2y3/; s
2.x3y2/; s

2.x1y4/g. Thus a basis for zH�.Xj IZ=2/
can be listed in diagram (4-8) by removing one element.

The statement follows immediately by applying mod 2 homology to diagram (4-9),
where the only simple computation is given by checking the image of �j� .

Statement 2 The composite

�j W S
6
j

f jS6
j- P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/

proj- P7.2r1/

is null homotopic for j D 1; 2.

Consider the commutative diagram of cofibre sequences

S6
j

f jS6
j - P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/

gj- Xj

S6
j

wwwwwwwww
- P7.2r1/

proj

?
- Z:

ı

?

Then dim zH�.ZIZ=2/ D 3 and ı�W H�.Xj IZ=2/ ! H�.ZIZ=2/ is onto. From
diagram (4-8), the Bockstein

ˇt W H7.ZIZ=2/!H6.ZIZ=2/
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is 0 for t<r1 with the first nontrivial Bockstein given by ˇr1
coming from ˇr1

.x2y3/D

x1y3 in diagram (4-8). Note that �6.P
7.2r1//D Z=2r1 generated by the inclusion

x�W S6 ,! P7.2r1/. Then the homotopy class

Œ�j �D kx�

for some k 2 Z. If k � 1 mod 2, then dim zH�.ZIZ=2/ D 1 which contradicts
to that dim zH�.ZIZ=2/ D 3: Thus k must be divisible by 2. Let k D 2tk 0 with
k 0 � 1 mod 2 for some t � 1. If t < r1 , then there is a nontrivial Bockstein ˇt on
zH�.ZIZ=2/ which is impossible from the above. Hence t � r1 and so Œ�j � D 0 in
�6.P

7.2r1//D Z=2r1 . Statement 2 follows.

Statement 3 The composite

 W S6
1

f j
S6

1- P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/
proj- P6.2r1/

is null homotopic.

Consider the commutative diagram of cofibre sequences

S6
1

f jS6
1 - P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/

g1- X1

S6
1

wwwwwwwww
- P6.2r1/

p proj

?
g0 - W:

ı

?

Then dim zH�.W IZ=2/ D 3 and ı�W zH.X1IZ=2/ ! zH�.W IZ=2/ is onto. More-
over, H7.W IZ=2/ has a basis given by ı�.s2.x4y1//. By Statement 1, a basis for
zH�.X1IZ=2/ is listed in diagram (4-8) by removing x1y4 . The canonical projection

pW P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/ �! P6.2r1/

has the property that p�.u
r1

5
/D u

r1

5
, p�.v

r1

6
/D v

r1

6
and p�.x/ D 0 for x to the

other elements in the basis for zH�.P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/IZ=2/. In
particular, p�.v

r1

5
/D 0. Note that

Sq2
� ı�.s

2.x4y1//D ı�.Sq2
�.s

2.x4y1///

D ı�.s
2.x2y1//

D ı�.g1�.v
r1

5
/

D g0� ıp�.v
r1

5
/

D 0:
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It follows that Sq2
�W H7.W IZ=2/!H5.W IZ=2/

is zero. From the exact sequence

�6.S
5/DZ=2

2r1-
0�6.S

5/DZ=2 - �6.P
6.2r1/ - �5.S

5/DZ
2r1- Z;

we have

(4-10) �6.P
6.2r1//D Z=2

generated by the composite

x�W S6 �- S5 � - P6.2r1/:

Thus the homotopy class Œ � D 0 or x�. If Œ � D x�, then Sq2
W H7.W IZ=2/ !

H5.W IZ=2/ is not zero, which is impossible from the above. Hence Œ �D 0. This
finishes the proof for Statement 3.

Statement 4 There is a homotopy decomposition

X ' P7.2r1/_T1 _T2;

where zH�.T1IZ=2/ and zH�.T2IZ=2/ have basis listed by the middle and the right
modules in diagram (4-6), respectively.

From Statements 2 and 3, the attaching map f jS6
1

maps into the subspace P7.2r2/_

P5.2r1/ up to homotopy because, in the range of �6 , we have

�6.P
7.2r1/_P7.2r2/_P5.2r1/_P6.2r1//

Š �6.P
7.2r1//˚�6.P

7.2r2//˚�6.P
5.2r1//˚�6.P

6.2r1//:

Thus there is a homotopy commutative diagram of cofibre sequences

(4-11)

S6
1

f 0 - P7.2r2/_P5.2r1/ - T2

S6
1
_S6

2

?

\

f- P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/

?

\

g - X

i1

?

S6
1

proj

?
f 0 - P7.2r2/_P5.2r1/

proj

?
- T2:

q1

?
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From Statement 2, there is a homotopy commutative diagram of cofibre sequences

S6
1
_S6

2

f- P7.2r1/_P7.2r2/_P5.2r1/_P6.2r1/
g - X

�
?

- P7.2r1/

proj

?

DDDDDDDDDDDDDD P7.2r1/:

q2

?

Now the composite

P7.2r1/_T2

.gj
P7.2

r1 /
;i1/- X

.q2;q1/- P7.22r1
/_T2

is a homotopy equivalence by inspecting the homology and hence the statement.

Computation of the homotopy group From Statement 4, we have

�6.X /Š �6.P
7.2r1/_T1 _T2/Š �6.P

7.2r1//˚�6.T1/˚�6.T2/

Š Z=2r1 ˚�6.T1/˚�6.T2/:

For computing �6.T1/, since T1 D P6.2r1/[ e7 , there is a right exact sequence

�6.S
6/D Z - �6.P

6.2r1//D Z=2 -- �6.T1/;

where �6.P
6.2r1//D Z=2 is given in formula (4-10). From diagram (4-6),

Sq2
�W H7.T1IZ=2/ �!H5.T1IZ=2/

is an isomorphism and so the attaching map S6 ! P6.2r1/ of T1 is nontrivial. It
follows that �6.T1/D 0.

Now we compute �6.T2/. From diagram (4-11), there is a right exact sequence

�6.S
6/DZ

f 0�- �6.P
7.2r2/_P5.2r1//D�6.P

7.2r2//˚�6.P
5.2r1// -- �6.T2/:

Note that a basis for zH�.T2/ can be listed in the right module of diagram (4-6). The
composite

�6.S
6/D Z

f 0�- �6.P
7.2r2//˚�6.P

5.2r1//
proj- �6.P

7.2r2//D Z=2r2

is of degree 2r1 because of the existence of the Bockstein ˇr1
. Moreover the composite

(4-12) S6 f 0- P7.2r2/_P5.2r1/
proj- P5.2r1/

pinch- S5

is homotopic to � because of the existence of the Steenrod operation Sq2
� .
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Case I r1 D 1. According to [21, Proposition 5.1], �6.P
5.2//D Z=4 generated by

the homotopy class of any may S6!P5.2/ such that the composite S6!P5.2/!S5

is �. It follows that there is a right exact sequence

Z
f 0�D.2

r1 ;�/- Z=2r2 ˚Z=4 -- �6.T2/;

where �W Z! Z=4 is an epimorphism. Thus

(4-13) �6.T2/D

�
Z=4 if r2 D 2;

Z=8 if r2 � 3:

Case II r1 > 1. From formula (4-3), we have �6.P
5.2r1// D Z=2˚Z=2. Since

the composite in Equation (4-12) is essential, the composite

�6.S
6/D Z

f 0�- �6.P
7.2r2//˚�6.P

5.2r1//
proj- �6.P

5.2r1//D Z=2˚Z=2

is nontrivial and so there is right exact sequence

Z
.2r1 ;�/- Z=2r2 ˚ .Z=2˚Z=2/ -- �6.T2/

with �W Z! Z=2˚Z=2 nontrivial. It follows that

(4-14) �6.T2/D Z=2r1C1
˚Z=2 for r1 > 1:

The proof is finished now.

4.5 The group �5.†
2K.Z=2r; 1//

We use the spectral sequence induced from Carlsson’s construction for computing this
group. Let A be an abelian group and

0!A1
ı
!A0!A! 0

a two-step flat resolution of A, ie A0 is a free abelian group. The diagram (1-1) implies
that there is a natural isomorphism

�4.†
2K.A; 1//'A z̋A;

z̋ 2.A/DA z̋A WDA˝A=.a˝ bC b˝ a; a; b 2A/:where
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Given a free abelian group xA; Theorem 2.5 (2) implies the following natural exact
sequence:

�5.†
2K. xA; 1//

� � // �5.†
2K. xA; 1// // // H5.†

2K. xA; 1//

xA z̋ xA˝Z=2˚ƒ2. xA/
� � // �5.†

2K. xA; 1// // // ƒ3. xA/

The spectral sequence (2-9) for nD 2, gives the following diagram of exact sequences:

(4-15)

L1ƒ
3.A/

��
A z̋A˝Z=2˚ƒ2.A/

� � //

��

�5.†
2K.A;1// // // L1

z̋ 2.A/

�0.�5.†
2K.N�1.A1

ı
!A0/;1///

� � //

����

�5.†
2K.A;1// // //

�1.�4†
2K.N�1.A1

ı
!A0/;1//

ƒ3.A/

Consider the first derived functor of the functor z̋ 2 . The short exact sequence

LSP2.A/!L˝2 .A/!L z̋ 2.A/

in the derived category has the following model:

ƒ2.A1/
� � ı2 //

� _

��

A1˝A0

ı1 //
� _

��

SP2.A0/
� _

��

A1˝A1
� �
ı0

2 //

����

.A1˝A0/˚ .A0˝A1/

����

ı0
1 // A0˝A0

����

SP2.A1/
� �

ı00
2 // A1˝A0

ı00
1 // A0 z̋A0
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ı2.a1 ^ a01/D a1˝ ı.a
0
1/� a01˝ ı.a1/with

ı1.a1˝ a0/D a0ı.a1/

ı02.a1˝ a01/D .a1˝ ı.a
0
1/;�a01˝ ı.a1//

ı01.a1˝ a0; a
0
1˝ a00/D ı.a1/˝ a0C ı.a

0
1/˝ a00

ı002.a1a01/D a1˝ ı.a
0
1/C a01˝ ı.a1/

ı001.a1˝ a0/D @.a1/ z̋ a0

for a0; a
0
0
2A0; a1; a

0
1
2A1: For n� 2; looking at the resolution Z

n
!Z of the cyclic

group Z=n, we obtain the following representative of the element L z̋ 2.Z=n/ in the
derived category:

Z
2n
! Z

n
! Z=2:

In particular,

L1 z̋
2.Z=2k/D Z=2kC1; k � 1:(4-16)

Here L1 z̋
2 denotes the first derived functor of z̋ 2 (see Section 2.2).

We will use the following:

Lemma 4.17 [20, Lemma 2.1] Let G� be a simplicial group and let n� 0. Suppose
that �0.G�/ acts trivially on �n.G�/. Then the homotopy group �n.G�/ is contained
in the center of Gn=BGn , where BGn is the n–th simplicial boundary subgroup
of Gn .

Theorem 4.18 The homotopy group

�5.†
2K.Z=2r ; 1//D

�
Z=8 if r D 1;

Z=2rC1˚Z=2 if r > 1:

Proof The proof splits into two cases.

Case 1 r D 1. The natural epimorphism Z! Z=2 induces the homomorphisms

�n.S
3/D �n.†

2K.Z; 1//! �n.†
2K.Z=2; 1//D �n.†

2RP1/; n� 1:

The diagram (4-15) together with (4-16) implies the following short exact sequences:

(4-17)

Z=2 �5.S
3/

��

Z=2 � � // �5.†
2RP1/ // // Z=4
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Consider this map simplicially, at the level of the natural map between the Carlsson
constructions F.S2/D FZ.S2/! FZ=2.S2/:

F.S2/4

�!: : :
�! �: : :
 �

F.S2/3

�!�!�!�! � � �

Z

# # #

FZ=2.S2/4

�!: : :
�! �: : :
 �

FZ=2.S2/3

�!�!�!�! � � �

FZ=2.S2/2

Here FZ=2.S2/k is the free product of
�
k
2

�
copies of Z=2. In particular

FZ=2.S2/4 D hsj si.�/ 0� i < j � 3 j .sj si.�//
2
D 1i:

Using the description of the element (2-7), we see that the simplicial cycle which
defines the image of �5.S

3/ in �5.†
2RP1/ can be chosen of the form

ŒŒs2s1.�/; s1s0.�/�; Œs2s1.�/; s2s0.�/�� 2 FZ=2.S2/4:

With the help of Lemma 4.17, we have

ŒŒs2s1.�/; s1s0.�/�; Œs2s1.�/; s2s0.�/��D ŒŒ.s2s1.�/; s1s0.�/�; .s2s1.�/s2s0.�//
2�

� ŒŒs2s1.�/; s1s0.�/�; .s2s1.�/; s2s0.�//�
2 mod BZ=2.S2/4

since ŒŒs2s1.�/; s1s0.�/�; s2s1.�/s2s0.�/� is a cycle in FZ=2.S2/: That is, the image
of the element �5.S

3/ is divisible by 2 in �5.†
2RP1/. The diagram (4-17) implies

the result.

Case 2 r > 1. Now the diagram (4-15) together with (4-16) implies the following
short exact sequence

(4-18) 0! Z=2! �5.†
2K.Z=2r ; 1//! Z=2rC1

! 0:

Therefore, �5.†
2K.Z=2r ; 1// is either Z=2rC2 or Z=2rC1˚Z=2.
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By Theorem 2.5 (2), the Whitehead exact sequence for †2K.A; 1/ has the following
form:

(4-19)

A z̋A˝Z=2˚ƒ2.A/� _

��
H4.A/ // �5.†

2K.A; 1//

����

// �5.†
2K.A; 1// // H3.A/

Tor.A;Z=2/

For AD Z=2r it is of the following form:

(4-20)

Z=2� _

��
�5.†

2K.Z=2r ; 1//
� � //

����

�5.†
2K.Z=2r ; 1// // // Z=2r

Z=2

The natural projection Z=2r � Z=2 induces the map

(4-21)

Z=2� _

��

' // Z=2� _

��
�5.†

2K.Z=2r ; 1//

����

// �5.†
2RP1/

����
Z=2

0 // Z=2

where the lower map is zero since the induced map Tor.Z=2r ;Z=2/! Tor.Z=2;Z=2/
is zero. The fact that �5.†

2RP1/ D Z=8 together with diagram (4-19) implies
that �5.†

2RP1/ D Z=4. Hence �5.†
2K.Z=2r ; 1// D Z=2˚ Z=2; since there

is no any endomorphism Z=4 ! Z=4 with zero map on quotients Z=2 ! Z=2
(as in diagram (4-21)). The diagram (4-20) and exact sequence (4-18) implies that
�5.†

2K.Z=2r ; 1//D Z=2rC1˚Z=2.

4.6 Applications

Proposition 4.19 The group �5.†RP1/D Z=2˚Z=2˚Z=2.
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Proof Consider the Whitehead exact sequence

�6.†RP1/ h-
0H6.†RP1/D Z=2 - �5.†RP1/

- �5.†RP1/D Z=2˚Z=2 - H5.†RP1/D 0;

where �5.†RP1/D Z=2˚Z=2 by Theorem 4.10 and the Hurewicz homomorphism

h6W �6.†RP1/!H6.†RP1/

is zero because, otherwise, it would induces a splitting of †RP5 which is impossible by
inspecting the Steenrod operation on mod 2 homology. Thus the order of �5.†RP1/
is 8. We have to determine the group �5.†RP1/. By the definition,

�5.†RP1/D Im.�5.†RP3/! �5.†RP4//:

Thus the inclusion †RP3!†RP1 induces an epimorphism

�5.†RP3/ -- �5.†RP1/:

Note that RP3 D SO.3/ and so, by the Hopf fibration,

�5.†SO.3//Š �5.B SO.3//˚�5.†SO.3/^SO.3//

Š �4.SO.3//˚�5.†RP3
^RP3/

Š Z=2˚�5.†RP3
^RP3/:

From Lemmas 4.12 and 4.13,

�5.†RP3
^RP3/Š �5.†RP3

^RP3/˚Z=2˚Z=2

Š �5.†RP2
^RP2/˚Z=2˚Z=2

Š Z=2˚Z=2˚Z=2˚Z=2:

It follows that its quotient �5.†RP1/ must be an elementary 2–group and so hence
the result.

Proposition 4.20 For the suspended projective spaces,

�5.†RPn/D

8̂̂̂̂
<̂
ˆ̂̂:

Z=2 if nD 1;

Z=2˚3 if nD 2;

Z=2˚5 if nD 3;

Z=2˚3 if nD 4;

Z=2˚2 if 3� n�1:
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Proof When nD1, �5.S
2/DZ=2 from Toda’s table [15]. When nD2, �5.†RP2/D

Z=2˚3 is given in [21, Theorem 6.36]. When nD 3, �5.†RP3/ has been computed
in Proposition 4.19. For n> 4, since sk6.†RP1/D†RP5 ,

�5.†RPn/Š �5.†RP1/D Z=2˚Z=2

by Theorem 4.14. The remaining case is �5.†RP4/. Let F be the homotopy fibre
of the pinch map †RP6 - †RP6=RP4 DM.Z=2; 6/. By inspecting the Serre
spectral sequence to the fibre sequence

�M.Z=2; 6/ - F - �†RP6;

the canonical injection j W †RP4 ! F induces an isomorphism on Hk. IZ=2/ for
k � 6 and so

j�W �k.†RP4/ �! �k.F /

is an isomorphism for k � 5. In particular, �5.†RP4/ Š �5.F /. From the exact
sequence

�5.�M.Z=2; 6//D Z=2 - �5.F / - �5.†RP6/D Z=2˚Z=2;

the group �5.F / is of order at most 8 and so is �5.†RP4/. From Proposition 4.19,

�5.†RP1/D Im.�5.†RP3/! �5.†RP4//D Z=2˚3:

It follows that �5.†RP4/D Z=2˚3 and hence the result follows.

Proposition 4.21 �5.†K.†3; 1//' Z=2˚Z=2:

Proof This follows from the analysis of the map between the Whitehead exact se-
quences (2-2) induced by the natural map Z=2 ,!†3 W

H5.Z=2/ // �5.†RP1/ // �5.†RP1/ // H4.Z=2/

H5.†3/ // �5.†K.†3; 1// // �5.†K.†3; 1// // H4.†3/
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Here the natural isomorphism �5.†RP1/! �5.†K.†3; 1// follows from the dia-
gram:

L2�
2
2
.Z=4� Z=2/

��

L2�
2
2
.Z=4� Z=2/

��

�3
2
.Z=4� Z=2; Z=2 ,! Z=4/

��

�3
2
.Z=4� Z=2; Z=2 ,! Z=12/

��

�5.†RP1/ //

����

�5.†K.†3; 1//

����

L1�
2
2
.Z=4� Z=2/ L1�

2
2
.Z=4� Z=2/

This completes the proof.

5 Relation to K –theory

As we mentioned in the introduction, there is a natural relation between the problem
considered and algebraic K–theory. Since the plus-construction K.G; 1/!K.G; 1/C

is a homological equivalence, there is a natural weak homotopy equivalence

†K.G; 1/!†.K.G; 1/C/:

This defines the natural suspension map

�n.K.G; 1/
C/! �nC1.†.K.G; 1/

C//D �nC1.†K.G; 1//

for n� 1.

Given a group G and its maximal perfect normal subgroup P CG; one has natural
isomorphism �n.K.P; 1/

C/ ' �n.K.G; 1/
C/; n � 2 since K.P; 1/C is homotopy

equivalent to the universal covering space of K.G; 1/C .
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For a perfect group G , the Whitehead exact sequences form the following commutative
diagram:

(5-1)

H4.G/ // �2.H2.G//

����

// �3.K.G; 1/
C/

����

// // H3.G/

H4.G/ // H2.G/˝Z=2 // �4.†K.G; 1// // // H3.G/

Here we will look at the applications of the following two classical constructions:

(1) Let R be a ring and G DE.R/; the group generated by elementary matrices. The
group E.R/ is perfect and the plus-construction K.E.R/; 1/C also denoted zK.R/,
defines the algebraic K–theory of R: Kn.R/D �n.K.E.R/; 1/

C/; n� 2:

(2) Let †1 be the infinite permutation groups and A1 is the infinite alternating
subgroup. There is the following description of stable homotopy groups of spheres [13]:

(5-2) �S
n D �n.K.†1; 1/

C/D �n.K.A1; 1/
C/; n� 2:

5.1 Computation for the group E.R/

Let R be a ring. In this case, one has the natural homomorphisms:

Kn.R/! �nC1.†K.E.R/; 1//; n� 2:

For nD 2; clearly one has the natural isomorphism

(5-3) K2.R/'H2.E.R//' �3.†K.E.R/; 1//:

It is shown in [1] that the map �2.K2.R//!K3.R/ factors as

�2.K2.R//�K2.R/˝K1.Z/
?
!K3.R/;

where ? is the product in algebraic K–theory: ?W Ki.S/˝Kj .T /!KiCj .S ˝T /.
Hence the diagram (5-1) has the following form:

(5-4)

H4.E.R// // �2.K2.R//

����

// K3.R/

����

// // H3.E.R//

H4.E.R// // K2.R/˝K1.Z/

?
66

// �4.†K.E.R/; 1// // // H3.E.R//

and the natural map

(5-5) K3.R/! �4.†K.E.R/; 1//
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is an isomorphism. From Equations (5-3) and (5-5) together with the fact that SL.Z/D
E.Z/, we have the following:

Theorem 5.1 The natural homomorphism

Kn.R/ �! �nC1.†K.E.R/; 1//

is an isomorphism for nD 2; 3. In particular,

�3.†K.SL.Z/; 1//ŠK2.Z/Š Z=2,

�4.†K.SL.Z/; 1//ŠK3.Z/Š Z=48:

Remark 5.2 The isomorphism (5-5) and Carlsson construction FE.R/.S1/ gives a
way, for an element of K3.R/; to associate an element from FE.R/.S1/3 DE.R/�

E.R/�E.R/ (uniquely modulo BFE.R/.S1/):

K3.R/ ///o/o/o

'

++

E.R/�E.R/�E.R/
ZFE.R/.S1/3

BFE.R/.S1/3
jJ

xx

E.R/�E.R/�E.R/

BFE.R/.S1/3

section

OO

It is interesting to represent in this way known elements from K3.R/ for rings. For
R D Z, x 2 SL.Z/ D E.Z/; denote by x.1/;x.2/;x.3/ the correspondent elements
in the free cube SL.Z/�SL.Z/�SL.Z/. Take the following commuting elements of
SL.Z/:

uD

0@1 0 0

0 �1 0

0 0 1

1A ; v D

0@1 0 0

0 1 0

0 0 �1

1A
The structure of the element (2-7), diagram (5-4) and well-known facts about structure
of K2.Z/ imply that, using the above notation, the element

ŒŒu.2/; v.3/�; Œu.1/; v.3/��

corresponds to the element of order 2 in K3.Z/. It would be interesting to see an element
of SL.Z/�SL.Z/�SL.Z/ which corresponds to the generator of K3.Z/D Z=48.
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Consider the case RD Z and nD 5. In this case, E.Z/D SL.Z/ and we have the
following commutative diagram with exact horizontal sequences:

Z˚ .Z=2/2 // // .Z=2/3 // 0 // Z=2

H5 SL.Z/ // �4. zK.Z//
//

��

K4.Z/

��

// Z=2 � � // Z=4

����
H5.SL.Z// // �5.†K.SL.Z/; 1// // �5.†K.SL.Z/; 1// // Z=2

0 // Z=2

and the following commutative diagram:

.Z=2/2
� � // .Z=2/3 // // Z=2

�2
2
.�2.K2.Z//!K3.Z//

� � //

��

�4. zK.Z//

��

// // R2.K2.Z//

��
�4.†K.SL.Z/; 1//˝Z=2 � � // �5.†K.SL.Z/; 1// // Tor.�3.†K.SL.Z//; 1/;Z=2/

Z=2 � � // .Z=2/2 // // Z=2

Simple analysis shows that the suspension map �4. zK.Z//! �5.†K.SL.Z/; 1// is
an epimorphism and therefore we have the following theorem:

Theorem 5.3 The Hurewicz homomorphism

�5.†K.SL.Z/; 1//!H4.SL.Z//D Z=2

is an isomorphism.

Remark Since K4.Z/D 0; we see that the natural homomorphism

K4.Z/! �5.†K.SL.Z/; 1//

is not an isomorphism.

5.2 Computation for the group A4

Here we will use (5-2) for certain computations.

Algebraic & Geometric Topology, Volume 10 (2010)



622 Roman Mikhailov and Jie Wu

Theorem 5.4 Let A4 be the 4–th alternating group. Then �4.†K.A4; 1//D Z=4.

Proof First recall that3

H1.A4/D Z=3; H2.A4/D Z=2; H3.A4/D Z=6; H4.A4/D 0;

H2.A1/D Z=6; H3.A1/D Z=12; �3.†K.A4; 1//D Z=6

Consider the Whitehead exact sequence for the space †K.A4; 1/:

�3.†K.A4;1//
� � // �4.†K.A4;1// // H3.A4/ // �2.H1.A4// // �3.†K.A4;1// // // H2.A4/

Z=6 // Z=3 // Z=6 // // Z=2

Since R2.�2†K.A4; 1//DR2.Z=3/D 0; we have

�3.†K.A4; 1//D �
2
2 .Z=3 ,! Z=6/:

It follows from the definition of the functor �2
2

that it is isomorphic to the pushout:

Z=3˝ .Z=3˚Z=2/ //

��

0

��

Z=6˝ .Z=3˚Z=2/ // �2
2
.Z=3 ,! Z=6/

That is, �2
2
.Z=3 ,! Z=6/D Z=2 and there is the following short exact sequence:

0! Z=2! �4.†K.A4; 1//! Z=2! 0:

We come to the extension problem: is it Z=2˚Z=2 or Z=4?

Consider the monomorphism A4 ,!A1 and the map between corresponding White-
head sequences:

�3.†K.A4; 1//
� � //

��

�4.†K.A4; 1// //

��

H3.A4/ //

��

�2.H1.A4//

��
�3.†K.A1; 1// // �4.†K.A1; 1// // H3.A1/ // �2.H1.A1//

3These computations were done with the help of HAP-system. The authors thank Graham Ellis for
these computations
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which is

(5-6)

Z=2 � � //

��

�4.†K.A4; 1// //

��

Z=6 //

��

Z=3

��

�2
2
.0! Z=6/ // �4.†K.A1; 1// // Z=12 // 0

It is easy to see that �2
2
.0!Z=6/DZ=2 and that �2

2
.Z=3 ,!Z=6/! �2

2
.0!Z=6/

is an isomorphism. We obtain the following diagram:

(5-7)

Z=2 � � // �4.†K.A4; 1//

��

// // Z=2
� _

��

Z=2 // �4.†K.A1; 1// // // Z=12

Now we use the isomorphism (5-2). Consider the suspension

K.A1; 1/
C
!�†K.A1; 1/

C
'�†K.A1; 1/

and the corresponding map between Whitehead sequences:

H4.A1/ // �2.�
S
2
/

����

// �S
3

// //

��

H3.A1/

H4.A1/ // �S
2
˝Z=2 // �4.†K.A1; 1// // H3.A1/

Since �S
3 D Z=24; �S

4 D 0;

we conclude that the Whitehead sequence for K.A1; 1/
C has the following form:

H4.A1/
� � // �2.�

S
2
/ // �S

3
// // H3.A1/

Z=2 � � // Z=4 // Z=24 // // Z=12

We conclude that the map

�S
3 ! �4.†K.A1; 1//
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is an isomorphism and that the map

H4.A1/! �2
2 .0! Z=6/

is the zero map. The diagram (5-7) has the following form:

Z=2 � � // �4.†K.A4; 1//

��

// // Z=2
� _

��

Z=2 � � // Z=24 // // Z=12

The result follows.
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