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On the tunnel number
and the Morse–Novikov number of knots

ANDREI PAJITNOV

Let L be a link in S3 ; denote by MN .L/ the Morse–Novikov number of L and by
t.L/ the tunnel number of L . We prove that MN .L/6 2t.L/ and deduce several
corollaries.

57M25, 57M27, 57R35, 57R70; 57R19, 57R45

1 Introduction

1.1 Background

Let L be a link in S3 , that is, an embedding of several copies of S1 to S3 . First off,
we recall the definition of three numerical invariants of L. In the sequel N.L/ denotes
a closed tubular neighbourhood of L.

(A) (Tunnel number) An arc  in S3 is called a tunnel for L if  \L consists
of the two endpoints of  . The tunnel number t.L/ is the minimal number m of
disjoint tunnels 1; : : : ; m such that the closure of S3 nN.L[ 1 [ � � � [ m/ is a
handlebody. The tunnel number was introduced by B Clark [1]; this invariant was
studied in the works of T Kohno [11], T Kobayashi [9], T Kobayashi and Y Rieck [10],
M Lustig and Y Moriah [13], K Morimoto [15; 14; 16], K Morimoto, M Sakuma and
Y Yokota [17; 18], M Scharlemann and J Schultens [23; 24] and others. M Scharlemann
and J Schultens [23] proved that t.nK/> n for any n (here nK stands for the connected
sum of n copies of the knot K ). They proved also that t.nK/> 2

5
nt.K/ if K is not

a 2–bridge knot [24]. T Kohno [11] gave an estimate of tunnel number of knots in
terms of quantum invariants. K Morimoto, M Sakuma and Y Yokota [18] computed
the tunnel number of all prime knots with 6 10 crossings.

For any two knots K1;K2 we have t.K1 #K2/6 t.K1/Ct.K2/C1. K Morimoto [15]
constructed knots K1; K2 such that t.K1 # K2/ < t.K1/C t.K2/. T Kobayashi and
Y Rieck [10] define the growth rate for a knot K by the formula

grt .K/D lim sup
m!1

t.mK/�mt.K/

m� 1
:
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It follows from results of [24] that grt .K/> �1� 2
3
t.K/.

(B) (Bridge numbers) Let S3 D H1 [ H2 be a Heegaard splitting of S3 ; put
†DH1\H2 , and gD g.†/. We say (following H Doll [2]) that L is in an n–bridge
position with respect to † if † intersects L in 2n points and †\Hi is a union of
n trivial arcs in Hi for i D 1; 2. The g–bridge number bg.L/ of L is defined as the
minimal number n such that L can be put in an n–bridge position with respect to a
Heegaard decomposition of genus g . Thus b0.L/ is the classical bridge number as
defined by H Schubert [25]. We have

t.L/6 gC bg.L/� 1:

(C) (Morse–Novikov numbers) Pick an orientation preserving trivialisation of the
normal bundle of L. The corresponding diffeomorphism of disc bundles �W L�D2!

N.L/ will be called framing of L. Let CL denote the closure of S3 nN.L/. A
Morse function f W CL! S1 is called regular if its restriction to the boundary @N.L/
is the canonical fibration over the circle: .f ı �/.l; z/ D z=jzj. The number of the
critical points of index i of a regular Morse function f will be denoted by mi.f /;
the total number of critical points of f will be denoted by m.f /. The minimal value
of m.f / over all possible framings � and Morse maps f W CL ! S1 is called the
Morse–Novikov number of the link L and denoted by MN .L/ (see Veber, Pajitnov
and Rudolph [26]).

The Morse–Novikov theory of circle-valued maps (see Novikov [19] and Pajitnov [20;
21]) allows one to obtain homological lower bounds for MN .L/ as follows. Let NCL

be the infinite cyclic covering induced by f from the covering R! S1 . Denote the
ring ZŒ t; t�1� by ƒ, and the ring Z..t// by yƒ. The yƒ–module

N�.L/DH�. NCL/˝ƒ yƒ

is called the Novikov homology of the link L. The rank and torsion numbers of the
yƒ–module N1.L/ are denoted respectively by b1.L/ and q1.L/. We have then [26]

MN .L/> 2.b1.L/C q1.L//:

In case when the Novikov numbers are not sufficient to determine the MN .L/ the
twisted Novikov numbers (introduced by H Goda and the author in [5]) are useful.

As for upper bounds for MN .L/, not much is known. H Goda announced in [4] that
MN .L/6 2 for every prime link L with 6 10 crossings. M Hirasawa proved that for
every 2–bridge knot K we have MN .K/6 2 (unpublished). In the papers [22; 7] of
L Rudolph and M Hirasawa it is proved that MN .K/6 4gf .K/ where gf .K/ is the
free genus of K , that is, the minimal possible genus of a Seifert surface † bounding
K such that S3 n† is an open handlebody.

Algebraic & Geometric Topology, Volume 10 (2010)



On the tunnel number and the Morse–Novikov number of knots 629

1.2 Main results

The main result of this work is the following theorem.

Theorem 1.1 For every link L in S3 we have

(1) MN .L/6 2t.L/:

The following corollaries are easily deduced.

Corollary 1.2 For every g we have

MN .L/6 2.gC bg.L/� 1/:

Corollary 1.3 For every tunnel number 1 knot K we have MN .K/6 2. In particular
this holds for any .1; 1/–knot K .

Corollary 1.4 For every link L we have

q1.L/C b1.L/6 t.L/:

Corollary 1.5 For every knot K

grt .K/> �t.K/C q1.K/:

2 Proof of Theorem 1.1

Let m D t.L/. Pick a framing �W L � D2 ! N.L/. Then the manifold CL D

S3 nN.L/ is obtained from @CL by attaching m one-handles and then attaching a
handlebody of genus mC1 to the resulting cobordism. So we obtain a Morse function
gW CL!R which is constant on @CL and has the following Morse numbers: m0.g/D

0; m1.g/Dm; m2.g/DmC1; m3.g/D 1. Pick any Morse map hW CL! S1 such
that hj@CL is the canonical fibration: .h ı�/.l; z/D z=jzj. The 1–form induced by
h from the canonical volume form on S1 will be denoted by dh. Consider a closed
1–form !� D dgC �dh. For � > 0 sufficiently small !� is a Morse form with the
same Morse numbers as dg . The De Rham cohomology class of the 1–form

1

�
!� D

1

�
dgC dh

is the same as that of dh; therefore this form is the differential of a Morse map
g1W CL! S1 homotopic to h. 1 Observe that the map g1 is a regular Morse map;

1 A similar perturbation argument was used by J C Sikorav in another context; see Pajitnov [20].
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it has one local maximum, and the standard elimination procedure (see for example
Lemmas 3.1 and 3.2 of [26] for details) gives us a regular Morse function f W CL!S1

with m0.f /D 0; m1.f /6 m; m2.f /6 m; m3.f /D 0. Thus MN .L/6 2m.

3 Examples

Theorem 1.1 can be used in two ways. A lot of information is available about the tunnel
numbers, and this implies new estimates for the Morse–Novikov numbers of knots. On
the other hand, the Novikov torsion number q1.K/ is an invariant which is easy to
compute, and in many cases this gives new information about the sequence of tunnel
numbers t.nK/ for a given knot K . Let us consider two examples:

(A) (Pretzel knots) Let q; r be positive integers; denote by P the .2r C 1/–stranded
pretzel knot P .2qC1;�2q�1; 2qC1; : : : ; 2qC1/. The knot P for q D 1; r D 2 is
depicted below.

Figure 1: Pretzel knot

It is clear that t.P/6 2r . An easy computation of the Alexander module via the Seifert
matrix gives

N1.P/�
�
yƒ=XY yƒ

�r

where X Dqt�.qC1/; Y D .qC1/t�q . Thus q1.P/D r . Since q1.mK/Dmq1.K/

for any knot K , we deduce that

1

2
nt.P/6 nq1.P/6 t.nP/:

In particular the growth rate of the knot satisfies grt .K/> �1
2
t.K/.

(B) (A twisted 52 # 52 ) Let K be the knot obtained from the connected sum 52 # 52

by twisting (see Figure 2).

An easy computation shows that

N1.K/�
�
yƒ=S yƒ

�2
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Figure 2: The twisted 52 # 52 knot

where S D 2t2�3tC2 is the Alexander polynomial of the knot 52 . Thus q1.K/D 2.
Since t.K/6 3 we obtain

2

3
nt.K/6 nq1.K/6 t.nK/:

We have therefore grt .K/> �1
3
t.K/.

4 Relations with previously known results

A theorem of M Hirasawa says that MN .K/ 6 2 if K is a two-bridge knot. Since
t.K/ 6 b.K/� 1 our theorem implies this result. Observe that M Hirasawa’s proof
uses H Schubert’s presentation of 2–bridge knots, and can not be generalized to the
case of arbitrary bridge number.

The inequality (1) implies also the upper bound

MN .K/6 4gf .K/

obtained by L Rudolph and M Hirasawa [22; 7]. Indeed, J H Lee [12] has shown that
t.K/6 2gf .K/.

In many cases the estimate of Theorem 1.1 is better than the free genus estimate. For
example, let K be the pretzel knot K D P .�2l; q; r/ where l > 2 and q; r > 3 are
odd numbers. Then t.K/6 2, and the Alexander polynomial of the knot equals

A.t/D l tqCr
� .2l � 1/tqCr�1

C � � � � .2l � 1/t C l

(see the work [8] of D Kim and J Lee). Therefore K is not fibred, and 4 >MN .K/> 2.
As for the genus of K , we have g.K/ > deg A.t/=2D .qC r/=2, therefore the free
genus of K is not less than .qC r/=2.
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Theorem 1.1 leads to quick proofs of results about the Morse–Novikov numbers already
known. The simplest cases are: the link An (the boundary of n–twisted unknotted
annulus) and the twist knots Kn . See Figures 3 and 4. We shall assume that n > 2.

Figure 3: The knot K2

Figure 4: The link A2

Since the tunnel number of these links equals 1 we have MN .An/6 2; MN .Kn/6 2.
It is easy to show that q1.Kn/D q1.An/D 1 [26; 6], thus

MN .An/D 2; MN .Kn/D 2:

In the paper [4] H Goda announced the computation of the Morse–Novikov numbers
of all prime knots and links with 6 10 crossings. His theorem (which is based on the
results of [3]) says that for every nonfibred prime link L with 6 10 crossings we have
MN .L/D 2.

Since the tunnel numbers of prime knots with 6 10 crossings are known from the work
of K Morimoto, M Sakuma and S Yokota [18], our Theorem 1.1 provides a quick proof
of H Goda’s results at least for knots with 6 8 crossings. Indeed, it is proved in [18]
that among the prime knots with 6 8 crossings only the knots 816; 817; 818 have
the tunnel number 2; the tunnel number of all the others equals 1. Since these three
knots are fibred, we deduce that every nonfibred prime knot with 6 8 crossings has the
tunnel number equal to 1 and therefore its Morse–Novikov number is equal to 2.
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5 Open questions and further remarks

(1) One of the main conjectures in the Morse–Novikov theory of knots and links is
the following (M Boileau, C Weber):

(2) MN .K1 # K2/DMN .K1/CMN .K2/:

The example of K Morimoto [15] shows that there are knots K1;K2 with t.K1 #K2/<

t.K1/C t.K2/. Moreover, T Kobayashi [9] proved that for every N there are knots
K1 and K2 such that t.K1 # K2/ 6 t.K1/C t.K2/�N . In view of the relations
between the tunnel and the Morse–Novikov numbers established in the present paper,
these results provide a number of potential counterexamples to the conjecture (2).

(2) The Novikov homology N�.K/ can be considered as homology with local coeffi-
cients with respect to the representation

�W �1.CK /! ZŒZ�� Dƒ� � yƒ� D GL.1; yƒ/;

where the first arrow is the meridian homomorphism �1.CK /! Z � ZŒZ�� . Thus
Corollary 1.4 can be reformulated as follows:

t.K/> m yƒ.H1.CK ; �//

where m yƒ.N / stands for the minimal number of generators over yƒ of the module N .
For an arbitrary representation we have a weaker (obvious) inequality:

Proposition 5.1 For every representation �W �1.CK / ! GL.n;R/ (where R is a
principal ring) we have

t.K/> 1

n

�
mR

�
H1.CK ; �/

��
� 1:

Question Is it true that

t.K/Dmax
�

�1

n

�
mR.H1.CK ; �/

��
� 1

�
?

In other words, is the information deduced from the twisted homology sufficient to
determine the tunnel number of any knot?
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