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The length of unknotting tunnels

DARYL COOPER

MARC LACKENBY

JESSICA S PURCELL

We show there exist tunnel number one hyperbolic 3–manifolds with arbitrarily
long unknotting tunnel. This provides a negative answer to an old question of Colin
Adams.

57M50

1 Introduction

In a paper published in 1995 [1], Colin Adams studied geometric properties of hyper-
bolic tunnel number one manifolds. A tunnel number one manifold is defined to be a
compact orientable 3–manifold M with torus boundary component(s), which contains
a properly embedded arc � , the exterior of which is a handlebody. The arc � is defined
to be an unknotting tunnel of M .

When a tunnel number one manifold M admits a hyperbolic structure, there is a
unique geodesic arc in the homotopy class of � . If � runs between distinct boundary
components, Adams showed that its geodesic representative has bounded length, when
measured in the complement of a maximal horoball neighborhood of the cusps. He
asked a question about the more general picture: does an unknotting tunnel in a
hyperbolic 3–manifold always have bounded length?

In response, Adams and Reid showed that when the tunnel number one manifold is a
2–bridge knot complement, that unknotting tunnels have bounded length [2]. Akiyoshi,
Nakagawa and Sakuma showed that unknotting tunnels in punctured torus bundles
actually have length zero [3], hence bounded length.

Sakuma and Weeks also studied unknotting tunnels in 2–bridge knots [18]. They found
that any unknotting tunnel of a 2–bridge knot was isotopic to an edge of the canonical
polyhedral decomposition of that knot, first explored by Epstein and Penner [8]. They
conjectured that all unknotting tunnels were isotopic to edges of the canonical decom-
position. Heath and Song later showed by example that not all unknotting tunnels could
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be isotopic to edges of the canonical decomposition [10]. However, the question of
whether unknotting tunnels have bounded length remained unanswered.

In this paper we finally settle the answer to this question. We show that, in fact, the
answer is no. There exist tunnel number one manifolds with arbitrarily long unknotting
tunnel.

Theorem 4.1 There exist finite volume one-cusped hyperbolic tunnel number one
manifolds for which the geodesic representative of the unknotting tunnel is arbitrarily
long, as measured between the maximal horoball neighborhood of the cusp.

Note we are not claiming here that the unknotting tunnel in these examples is ambient
isotopic to a geodesic. Such examples can in fact be constructed, but the argument
is more complex and will appear in a companion paper [11]. However, Theorem 4.1
does force the unknotting tunnels in these examples to be arbitrarily long, because the
length of a properly embedded arc is at least that of the geodesic in its homotopy class.

We prove Theorem 4.1 in two ways. The first proof, which appears in Section 4, is
geometric and partially nonconstructive. We analyze the infinite-volume hyperbolic
structures on the compression body C with negative boundary a torus and positive
boundary a genus 2 surface. A guiding principle is that geometric properties of
hyperbolic structures on C should often have their counterparts in finite-volume
hyperbolic 3–manifolds with tunnel number one. For example, any geometrically
infinite hyperbolic structure on C is the geometric and algebraic limit of a sequence of
geometrically finite hyperbolic structures on C , and it is also the geometric limit of a
sequence of finite-volume hyperbolic 3–manifolds with tunnel number one. It is by
finding suitable sequences of hyperbolic structures on C that Theorem 4.1 is proved.
In particular, the proof gives very little indication of what the finite-volume hyperbolic
3–manifolds actually are.

The geometric proof of Theorem 4.1 leads naturally to the study of geometrically finite
structures on the compression body C and their geometric properties. We include some
background material in Section 2 and Section 3. However, we postpone a more extensive
investigation of geometrically finite structures on C to a companion paper [11].

The second proof is more topological, and appears in Section 6. The idea is to start
with a tunnel number one manifold with two cusps. An argument using homology
implies that there exist Dehn fillings on one cusp which yield a tunnel number one
manifold whose core tunnel must be arbitrarily long.

A consequence of the second proof is that the resulting tunnel number one manifold
cannot be the exterior of a knot in a homology sphere. In Section 5, we modify the
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construction of the first proof to show there do exist tunnel number one manifolds with
long tunnel which are the exterior of a knot in a homology sphere. It seems likely
that the Dehn filling construction in Section 6 can be modified to produce hyperbolic
knots in homology spheres with long unknotting tunnels. However, to establish this, a
substantially different method of proof would be required.

Although we construct examples of knots in homology 3–spheres with long unknotting
tunnels, we do not obtain knots in the 3–sphere using our methods. It would be
interesting to determine whether such sequences of knots exist. If they do, can explicit
diagrams of such knots be found?
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2 Background and preliminary material

In this section we will review terminology and results used throughout the paper.

The first step in the proof of Theorem 4.1 is to show there exist geometrically finite
structures on a compression body C with arbitrarily long tunnel. We begin by defining
these terms.

2.1 Compression bodies

A compression body C is either a handlebody, or the result of taking a closed, orientable
(possibly disconnected) surface S cross an interval Œ0; 1�, and attaching 1–handles to
S � f1g. The negative boundary, denoted @�C , is S � f0g. When C is a handlebody,
@�C D∅. The positive boundary is @C n @�C , and is denoted @CC .

Throughout this paper, we will be interested in compression bodies C for which
@�C is a torus and @CC is a genus 2 surface. We will refer to such a manifold as a
.1; 2/–compression body, where the numbers .1; 2/ refer to the genus of the boundary
components.

Let � be the union of the core of the attached 1–handle with two vertical arcs in
S � Œ0; 1� attached to its endpoints. Thus, � is a properly embedded arc in C , and C

is a regular neighborhood of @�C [ � . We refer to � as the core tunnel. See Figure 1.

Note that the fundamental group of a .1; 2/–compression body C is isomorphic to
.Z�Z/�Z. We will denote the generators of the Z�Z factor by ˛ , ˇ , and we will
denote the generator of the second factor by  .
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Figure 1: The .1; 2/–compression body. The core tunnel is the thick line
shown, with endpoints on the torus boundary.

2.2 Hyperbolic structures

Let C be a .1; 2/–compression body. We are interested in complete hyperbolic struc-
tures on the interior of C . We obtain a hyperbolic structure on C n @C by taking a
discrete, faithful representation �W �1.C /! PSL.2;C/ and considering the manifold
H3=�.�1.C //.

Definition 2.1 A discrete subgroup � < PSL.2;C/ is geometrically finite if H3=�

admits a finite-sided, convex fundamental domain. In this case, we will also say that
the manifold H3=� is geometrically finite.

Geometrically finite groups are well understood. In this paper, we will often use the
following theorem of Bowditch (and its corollary, Corollary 2.10 below).

Theorem 2.2 (Bowditch [5, Proposition 5.7]) If a subgroup � < PSL.2;C/ is geo-
metrically finite, then every convex fundamental domain for H3=� has finitely many
faces.

Definition 2.3 For C a .1; 2/–compression body, we will say that a discrete, faithful
representation � is minimally parabolic if for all g 2 �1.C /, �.g/ is parabolic if and
only if g is conjugate to an element of the fundamental group of the torus boundary
component @�C .

Definition 2.4 A discrete, faithful representation �W �1.C /! PSL.2;C/ is a mini-
mally parabolic geometrically finite uniformization of C if � is minimally parabolic,
�.�1.C // is geometrically finite as a subgroup of PSL.2;C/, and H3=�.�1.C // is
homeomorphic to the interior of C .

It is a classical result, due to Bers, Kra, and Maskit (see Bers [4]), that the space of
conjugacy classes of minimally parabolic geometrically finite uniformizations of C
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may be identified with the Teichmüller space of the genus 2 boundary component @CC ,
quotiented out by Mod0.C /, the group of isotopy classes of homeomorphisms of C

which are homotopic to the identity.

In particular, note that the space of minimally parabolic geometrically finite uniformiza-
tions is path connected.

2.3 Isometric spheres and Ford domains

The tool we use to study geometrically finite representations is that of Ford domains.
We define the necessary terminology in this section.

Throughout this subsection, let M DH3=� be a hyperbolic manifold with a single
rank two cusp, for example, the .1; 2/–compression body. In the upper half space
model for H3 , assume the point at infinity in H3 projects to the cusp. Let H be
any horosphere about infinity. Let �1 < � denote the subgroup that fixes H . By
assumption, �1 D Z�Z.

Definition 2.5 For any g 2 � n�1 , g�1.H / will be a horosphere centered at a point
of C , where we view the boundary at infinity of H3 to be C[f1g. Define the set Sg

to be the set of points in H3 equidistant from H and g�1.H /. Sg is the isometric
sphere of g .

Note that Sg is well-defined even if H and g�1.H / overlap. It will be a Euclidean
hemisphere orthogonal to the boundary C of H3 .

At first glance, it may seem more natural to consider points equidistant from H

and g.H /, rather than g�1.H / as in Definition 2.5. However, we use the historical
definition of isometric spheres in order to make use of the following classical result,
which we include as a lemma. A proof can be found, for example, in Maskit’s book
[15, Chapter IV, Section G].

Lemma 2.6 For any g 2 � n�1 , the action of g on H3 is given by inversion in Sg

followed by a Euclidean isometry.

The following is well known, and follows from standard calculations in hyperbolic
geometry.

Lemma 2.7 If

g D

�
a b

c d

�
2 PSL.2;C/;

then the center of the Euclidean hemisphere Sg�1 is g.1/D a=c . Its Euclidean radius
is 1=jcj.
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Let Bg denote the open half ball bounded by Sg . Define F to be the set

F DH3
n

[
g2�n�1

Bg:

Note F is invariant under �1 , which acts by Euclidean translations on H3 .

When H bounds a horoball H1 that projects to an embedded horoball neighborhood
about the rank 2 cusp of M , F is the set of points in H3 which are at least as close to
H1 as to any of its translates under � n�1 . Such an embedded horoball neighborhood
of the cusp always exists, by the Margulis lemma.

Definition 2.8 A vertical fundamental domain for �1 is a fundamental domain for
the action of �1 cut out by finitely many vertical geodesic planes in H3 .

Definition 2.9 A Ford domain of M is the intersection of F with a vertical funda-
mental domain for the action of �1 .

A Ford domain is not canonical because the choice of fundamental domain for �1 is
not canonical. However, for the purposes of this paper, the region F in H3 is often
more useful than the actual Ford domain.

Note that Ford domains are convex fundamental domains. Thus we have the following
corollary of Bowditch’s Theorem 2.2.

Corollary 2.10 M DH3=� is geometrically finite if and only if a Ford domain for
M has a finite number of faces.

2.4 Visible faces and Ford domains

Definition 2.11 Let g 2 � n �1 . The isometric sphere Sg is called visible from
infinity, or simply visible, if it is not contained in

S
h2�n.�1[�1g/

SBh . Otherwise,
Sg is called invisible.

Similarly, suppose g; h 2 � n�1 , and Sg \Sh\H3 is nonempty. Then the edge of
intersection Sg \Sh is called visible if Sg and Sh are visible and their intersection is
not contained in

S
k2�n.�1[�1g[�1h/

SBk . Otherwise, it is invisible.

The faces of F are exactly those that are visible from infinity.

In the case where H bounds a horoball that projects to an embedded horoball neigh-
borhood of the rank 2 cusp of M , there is an alternative interpretation of visibility. An
isometric sphere Sg is visible if and only if there exists a point x in Sg such that for
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all h 2 � n .�1 [ �1g/, the hyperbolic distance d.x; h�1.H // is greater than the
hyperbolic distance d.x;H /. Similarly, an edge Sg \Sh is visible if and only if there
exists a point x in Sg\Sh such that for all k 2�n.�1[�1g[�1h/, the hyperbolic
distance d.x;H / is strictly less than the hyperbolic distance d.x; k�1.H //.

We present a result that allows us to identify minimally parabolic geometrically finite
uniformizations.

Lemma 2.12 Suppose �W �1.C /!PSL.2;C/ is a geometrically finite uniformization.
Suppose none of the visible isometric spheres of the Ford domain of H3=�.�1.C // are
visibly tangent on their boundaries. Then � is minimally parabolic.

By visibly tangent, we mean the following. Set � D �.�1.C //, and assume a neighbor-
hood of infinity in H3 projects to the rank two cusp of H3=� , with �1 < � fixing
infinity in H3 . For any g 2 � n�1 , the isometric sphere Sg has boundary that is a
circle on the boundary C at infinity of H3 . This circle bounds an open disk Dg in C .
Two isometric spheres Sg and Sh are visibly tangent if their corresponding disks Dg

and Dh are tangent on C , and for any other k 2 � n�1 , the point of tangency is not
contained in the open disk Dk .

Proof Suppose � is not minimally parabolic. Then it must have a rank 1 cusp. Apply
an isometry to H3 so that the point at infinity projects to this rank 1 cusp. The
Ford domain becomes a finite sided region P meeting this cusp. Take a horosphere
about infinity. Because the Ford domain is finite sided, we may take this horosphere
about infinity sufficiently small that the intersection of the horosphere with P gives a
subset of Euclidean space with sides identified by elements of �.�1.C //, conjugated
appropriately.

The side identifications of this subset of Euclidean space, given by the side identifications
of P , generate the fundamental group of the cusp. But this is a rank 1 cusp, hence
its fundamental group is Z. Therefore, the side identification is given by a single
Euclidean translation. The Ford domain P intersects this horosphere in an infinite
strip, and the side identification glues the strip into an annulus. Note this implies two
faces of P are tangent at infinity.

Now conjugate back to our usual view of H3 , with the point at infinity projecting to
the rank 2 cusp of the .1; 2/–compression body H3=�.�1.C //. The two faces of P

tangent at infinity are taken to two isometric spheres of the Ford domain, tangent at a
visible point on the boundary at infinity.
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Remark The converse to Lemma 2.12 is not true. There exist examples of geometri-
cally finite representations for which two visible isometric spheres are visibly tangent,
and yet the representation is still minimally parabolic. We see examples of this in [11].

We next prove a result which will help us identify representations which are not discrete.

Lemma 2.13 Let � be a discrete, torsion free subgroup of PSL.2;C/ such that
M DH3=� has a rank two cusp. Suppose that the point at infinity projects to the cusp,
and let �1 be its stabilizer in � . Then for all � 2 � n�1 , the isometric sphere of �
has radius at most the minimal (Euclidean) translation length of all elements in �1 .

Proof By the Margulis lemma, there exists an embedded horoball neighborhood of
the rank 2 cusp of H3=� . Let H1 be a horoball about infinity in H3 that projects to
this embedded horoball. Let � be the minimum (Euclidean) translation length of all
nontrivial elements in the group �1 , say � is the distance translated by the element w� .
Suppose S� has radius R strictly larger than � . Without loss of generality, we may
assume S� is visible, for otherwise there is some visible face S� which covers the
highest point of S� , hence must have even larger radius.

Because the radius R of S� is larger than � , S� must intersect w� .S�/D S�w�1
�

, and
in fact, the center w���1.1/ of S�w�1

�
must lie within the boundary circle S� \C .

Consider the set of points P equidistant from ��1.H1/ and w���1.H1/. Because
these horoballs are the same size, P must be a vertical plane in H3 which lies over the
perpendicular bisector of the line segment running from ��1.1/ to w���1.1/ on C .

Now apply � . This will take the plane P to S0 WD S�w�1
� ��1 . We wish to determine

the (Euclidean) radius of S0 . By Lemma 2.6, applying � is the same as applying an
inversion in S� , followed by a Euclidean isometry. Only the inversion will affect the
radius of S0 . Additionally, the radius is independent of the location of the center of
the isometric sphere S� , so we may assume without loss of generality that the center
of S� is at 0 2C and that the center of S�w�1

�
is at � 2C . Now inversion in a circle

of radius R centered at zero takes the point � to R2=� , and the point at infinity to 0.
Thus the center of S0 , which is the image of � under � , will be of distance R2=� from
a point on the boundary of S0 , ie the image of 1 on P under � . Hence the radius
of S0 is R2=� >R. Denote R2=� by R0 . We have R0 >R> � .

Now we have a new face S0 with radius R0 > R > � . Again we may assume it is
visible. The same argument as above implies there is another sphere S1 with radius
R1>R0>� . Continuing, we obtain an infinite collection of visible faces of increasing
radii. These must all be distinct. But this is impossible: an infinite number of distinct
faces of radius greater than � cannot fit inside a fundamental domain for �1 . Thus �
is indiscrete.
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The following lemma gives us a tool to identify the Ford domain of a geometrically
finite manifold.

Lemma 2.14 Let � be a subgroup of PSL.2;C/ with rank 2 subgroup �1 fixing
the point at infinity. Suppose the isometric spheres corresponding to a finite set of
elements of � , as well as a vertical fundamental domain for �1 , cut out a fundamental
domain P for � . Then � is discrete and geometrically finite, and P must be a Ford
domain of H3=� .

Proof The discreteness of � follows from Poincaré’s polyhedron theorem. The fact
that it is geometrically finite follows directly from the definition.

Suppose P is not a Ford domain. Since the Ford domain is only well-defined up to
choice of fundamental region for �1 , there is a Ford domain F with the same choice
of vertical fundamental domain for �1 as for P . Since P is not a Ford domain, F

and P do not coincide. Because both are cut out by isometric spheres corresponding
to elements of � , there must be additional visible faces that cut out the domain F

than just those that cut out the domain P . Hence F is a strict subset of P , and there
is some point x in H3 which lies in the interior of P , but does not lie in the Ford
domain.

But now consider the covering map �W H3!H3=� . This map � glues both P and F

into the manifold H3=� , since they are both fundamental domains for � . So consider
� applied to x . Because x lies in the interior of P , and P is a fundamental domain,
there is no other point of P mapped to �.x/. On the other hand, x does not lie in the
Ford domain F . Thus there is some preimage y of �.x/ under � which does lie in F .
But F is a subset of P . Hence we have y ¤ x in P such that �.x/D �.y/. This is a
contradiction.

2.5 The Ford spine

When we glue the Ford domain into the manifold M D H3=� , as in the proof of
Lemma 2.14, the faces of the Ford domain will be glued together in pairs to form M .

Definition 2.15 The Ford spine of M is defined to be the image of the visible faces
of F under the covering H3!M .

Remark A spine usually refers to a subset of the manifold onto which there is a
retraction of the manifold. Using that definition, the Ford spine is not strictly a spine.
However, the Ford spine union the genus 2 boundary @CC will be a spine for the
compression body.
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Let � be a geometrically finite uniformization. Recall that the domain of discontinuity
��.�1.C // is the complement of the limit set of �.�1.C // in the boundary at infinity
@1H3 . See, for example, Marden [14, Section 2.4].

Lemma 2.16 Let � be a minimally parabolic geometrically finite uniformization of a
.1; 2/–compression body C . Then the manifold .H3[��.�1.C ///=�.�1.C // retracts
onto the boundary at infinity . xF \C/=�1 , union the Ford spine.

Proof Let H be a horosphere about infinity in H3 that bounds a horoball which
projects to an embedded horoball neighborhood of the cusp of H3=�.�1.C //. Let x

be any point in F \H3 . The nearest point on H to x lies on a vertical line running
from x to infinity. These vertical lines give a foliation of F . All such lines have one
endpoint on infinity, and the other endpoint on xF \C or an isometric sphere of F . We
obtain our retraction by mapping the point x to the endpoint of its associated vertical
line, then quotienting out by the action of �.�1.C //.

To any face F0 of the Ford spine, we obtain an associated collection of visible elements
of � : those whose isometric sphere projects to F0 (or more carefully, a subset of their
isometric sphere projects to the face F0 ). We will often say that an element g of �
corresponds to a face F0 of the Ford spine of M , meaning Sg is visible, and (the
visible subset of) Sg projects to F0 . Note that if g corresponds to F0 , then so does
g�1 and w0g˙1w1 for any words w0; w1 2 �1 .

3 Ford domains of compression bodies

Let C be a .1; 2/–compression body. The fundamental group �1.C / is isomorphic to
.Z�Z/ �Z. The Z�Z factor has generators ˛ and ˇ , and the generator of the Z
factor is  .

Suppose �W �1.C /! PSL.2;C/ is a minimally parabolic geometrically finite uni-
formization of C . Then �.˛/ and �.ˇ/ are parabolic, and we will assume they fix
the point at infinity in H3 . Together, they generate �1 . The third element, �. /, is a
loxodromic element. In �1.C /, ˛ and ˇ are represented by loops in @�C . To form
the .1; 2/–compression body, we add to @�C � I a 1–handle. Then  is represented
by a loop around the core of this 1–handle.

In the simplest possible case imaginable, the Ford spine of H3=� consists of a single
face, corresponding to �. /. Note if this case happened to occur, then in the lift to
H3 , the only visible isometric spheres would correspond to �. /, �.�1/, and their
translates by elements of �1 . Cutting out regions bounded by these hemispheres
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would give the region F . Topologically, the manifold H3=� is obtained as follows.
First take F=�1 . The interior of F=�1 is homeomorphic to T 2 � .0;1/. On the
boundary on C of F=�1 lie two hemispheres, corresponding to �. / and �.�1/.
These are glued via �. / to form H3=� from F=�1 .

This situation is illustrated in Figure 2.

�1



Figure 2: Left: Schematic picture of a simple Ford domain. Right: Three
dimensional view of F in H3 .

In the following lemma, we show that this simple Ford domain does, in fact, occur.

Lemma 3.1 Let C be a .1; 2/–compression body. There exists a minimally parabolic
geometrically finite uniformization of C , �W �1.C /! PSL.2;C/ such that the Ford
spine of H3=�.�1.C // consists of a single face, corresponding to the loxodromic
generator.

Proof We construct such a structure by choosing �.˛/, �.ˇ/, �. / in PSL.2;C/.

Let c 2C be such that jcj> 2, and let �.˛/, �.ˇ/, and �. / be defined by

�.˛/D

�
1 2jcj

0 1

�
; �.ˇ/D

�
1 2i jcj

0 1

�
; �. /D

�
c �1

1 0

�
:

Let � be the subgroup of PSL.2;C/ generated by �.˛/, �.ˇ/, and �. /. By Lemma
2.7, S�./ has center 0, radius 1, and S�.�1/ has center c 2C , radius 1. For jcj> 2,
S�./ will not meet S�.�1/ . Note also that by choice of �.˛/, �.ˇ/, all translates of
S�./ and S�.�1/ under �1 are disjoint. We claim that � satisfies the conclusions
of the lemma.

Select a vertical fundamental domain for �1 which contains the isometric spheres
S�./ and S�.�1/ in its interior. This is possible by choice of �.˛/, �.ˇ/, and �. /.

Consider the region P obtained by intersecting this fundamental region with the com-
plement of B�./ and B�.�1/ . As in the discussion above, we may glue this region P
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into a manifold C0 by gluing S�./ to S�.�1/ via �. /, and by gluing vertical faces
by appropriate parabolic elements. The manifold C0 will be homeomorphic to the
interior of a .1; 2/–compression body.

Then Poincaré’s polyhedron theorem implies that the manifold C0 has fundamental
group generated by �.˛/, �.ˇ/ and �. /. Hence C0 is the manifold H3=� .

By Lemma 2.14, this fundamental region P must actually be the Ford domain for the
manifold, and � is geometrically finite. Since these isometric spheres are nowhere
tangent, � is minimally parabolic, by Lemma 2.12.

The examples of Ford domains that will interest us will be more complicated than that
in Lemma 3.1.

Example 3.2 Fix R > 0, and select " 2 R so that 0 < " < e�R , or equivalently, so
that log.1="/ 2 .R;1/. Set �. / equal to

(1)

0BBB@
i.1C "/
p
"

i
p
"

�
i
p
"
�

i
p
"

1CCCA :
Note that with �. / defined in this manner, we have

�. 2/D

�
�2� " �1

1 0

�
:

Thus the isometric sphere of �. / has radius 1=ji=
p
"j D

p
", while that of �. 2/

has radius 1 by Lemma 2.7. Now select �.˛/ and �.ˇ/ to be linearly independent
parabolic translations fixing the point at infinity, with translation distance large enough
that the isometric spheres of �. 2/, �.�2/, �. / and �.�1/ do not meet any of
their translates under �.˛/ and �.ˇ/. The following will do:

�.˛/D

�
1 20

0 1

�
; �.ˇ/D

�
1 20i

0 1

�
:

Lemma 3.3 The representation �W �1.C /! PSL.2;C/ defined in Example 3.2 is a
minimally parabolic geometrically finite hyperbolic uniformization of C whose Ford
spine consists of exactly two faces, corresponding to �. / and �. 2/.

Proof Consider the isometric spheres corresponding to �. /, �.�1/, �. 2/, and
�.�2/. We will show that these faces, along with the faces of a vertical fundamental
domain for the action of �.˛/ and �.ˇ/, are the only faces of the Ford domain of the
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manifold H3=�.�1.C //. Since the faces corresponding to �. / and to �.�1/ glue
together, and since the faces corresponding to �. 2/ and to �.�2/ glue, the Ford
domain glues to give a Ford spine with exactly two faces. The fact that the manifold is
geometrically finite will then follow by Lemma 2.14.

Choose vertical planes that cut out a vertical fundamental domain for the action of �1
and that avoid the isometric spheres corresponding to �.˙1/ and �.˙2/. Because
the translation distances of �.˛/ and �.ˇ/ are large with respect to the radii of these
isometric spheres, this is possible. For example, the planes xD�10, xD 10, yD�10,
y D 10 in f.x;y; z/jz > 0g DH3 will do.

Now, the isometric spheres of �. / and �.�1/ have center �1 and �1�", respectively,
and radius

p
", by Lemma 2.7. Similarly, the isometric spheres of �. 2/ and �.�2/

have centers 0 and �2� ", respectively, and radius 1. Then one may check: The
isometric sphere of �. 2/ meets that of �. / in the plane xD�1C"=2. The isometric
sphere of �. / meets that of �.�1/ in the plane x D �1� "=2, and the isometric
sphere of �.�1/ meets that of �.�2/ in the plane x D �1� 3"=2, as in Figure 3.
These are the only intersections of these spheres that are visible from infinity. If we
glue the isometric spheres of �.˙1/ via �. / and the isometric spheres of �.˙2/

via �. 2/, then these three edges of intersection are all glued to a single edge.

S�2

�2� � �1

S2

0

S�1

S

Figure 3: The isometric spheres corresponding to �.�2/ , �.�1/ , �. / and �. 2/

Consider the monodromy around this edge. We must show that it is the identity. Note
that a meridian of the edge is divided into three arcs, running from the faces labeled
S�1 to S�2 , from S2 to S , and from S�1 to S . To patch the first pair of arcs
together, we glue S�2 to S2 using the isometry �2 . To patch the second and third
pairs of arcs, we glue S to S�1 by the isometry  . The composition of these three
isometries is �2 , which is the identity, as required.

Hence, by Poincaré’s polyhedron theorem, the space obtained by gluing faces of the
polyhedron P cut out by the above isometric spheres and vertical planes is a manifold,
with fundamental group generated by �. /, �. 2/, �.˛/ and �.ˇ/.

Algebraic & Geometric Topology, Volume 10 (2010)



650 Daryl Cooper, Marc Lackenby and Jessica S Purcell

We need to show that this is a uniformization of C , ie, that H3=�.�1.C // is homeo-
morphic to the interior of C . The Ford spine of H3=�.�1.C // has two faces, one of
which has boundary which is the union of the 1–cell of the spine and an arc on @CC .
Collapse the 1–cell and this face. The result is a new complex with the same regular
neighborhood. It now has a single 2–cell attached to @CC . Thus, H3=�.�1.C // is
obtained by attaching a 2–handle to @CC � I , and then removing the boundary. In
other words, H3=�.�1.C // is homeomorphic to the interior of C .

Thus H3=�.�1.C // is homeomorphic to the interior of C , and has a convex funda-
mental domain P with finitely many faces. By Lemma 2.14, this convex fundamental
domain P is actually the Ford domain. Finally, since none of the isometric spheres of
the Ford domain are visibly tangent at their boundaries, by Lemma 2.12 the represen-
tation is minimally parabolic. Hence it is a minimally parabolic geometrically finite
uniformization of C .

3.1 Dual edges

To each face of the Ford spine, there is an associated dual edge, which is defined as
follows. For any face F of the Ford spine, there is some g 2 �n�1 such that (subsets
of) Sg and Sg�1 are faces of a Ford domain, and Sg and Sg�1 project to F . Above
each of these isometric spheres lies a vertical arc, running from the top of the isometric
sphere (ie the geometric center of the hemisphere) to the point at infinity. Define the
dual edge to be the union of the image of these two arcs in H3=�.�1.C //.

S
S�1

Figure 4: The dual to the simplest Ford spine is an edge that lifts to a collec-
tion of vertical geodesics in F , shown in bold

Lemma 3.4 For any uniformization �W �1.C /! PSL.2;C/, the core tunnel will be
homotopic to the edge dual to the isometric sphere corresponding to the loxodromic
generator of �.�1.C //.

Proof Denote the loxodromic generator by �. /. Consider the core tunnel in the
compression body H3=�.�1.C //. Take a horoball neighborhood H of the cusp, and
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its horospherical torus boundary. The core tunnel runs through this horospherical torus
@H , into the cusp. Denote by zH a lift of H to H3 about the point at infinity in H3 .

There is a homeomorphism from C to H3=�.�1.C // nH . Slide the tunnel in C so
that it starts and ends at the same point, and so that the resulting loop represents  .
The image of this loop under the homeomorphism to H3=�.�1.C // nH is some loop.
This lifts to an arc in H3 starting on zH and ending on �. /. zH /. Extend this to an arc
in H3=�.�1.C // by attaching a geodesic in zH and in �. /. zH /. This is isotopic to
(the interior of) the core tunnel. Now homotope this to a geodesic. It will run through
the isometric sphere corresponding to �.�1/ once.

4 Long unknotting tunnels

We are now ready to give the geometric proof of our main theorem.

Theorem 4.1 There exist finite volume one-cusped hyperbolic tunnel number one
manifolds for which the geodesic representative of the unknotting tunnel is arbitrarily
long, as measured between the maximal horoball neighborhood of the cusp.

Recall that a tunnel number one manifold is a manifold M with torus boundary
components which admits an unknotting tunnel, that is, a properly embedded arc � ,
the exterior of which is a handlebody.

Recall also that the length of the geodesic representative of an unknotting tunnel is
measured outside a maximal horoball neighborhood of the cusp.

Before proving Theorem 4.1, we need to prove a similar statement for minimally
parabolic geometrically finite hyperbolic uniformizations of a .1; 2/–compression
body.

Proposition 4.2 For any R> 0, there exists a minimally parabolic geometrically finite
uniformization of a .1; 2/–compression body such that the geodesic representative of
the homotopy class of the core tunnel has length at least R.

Proof We will prove Proposition 4.2 by finding an explicit minimally parabolic
geometrically finite uniformization of a .1; 2/–compression body C . For fixed R> 0,
our explicit uniformization will be that given in Example 3.2 above. By Lemma 3.3, this
is a minimally parabolic geometrically finite hyperbolic uniformization of the .1; 2/–
compression body C whose Ford spine consists of exactly two faces, corresponding to
�. / and �. 2/. We claim that the geodesic representative of the homotopy class of
the core tunnel has length at least R.
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Lemma 4.3 Let �W �1.C /! PSL.2;C/ be a discrete, faithful representation such
that �.˛/, �.ˇ/ are parabolics fixing the point at infinity in H3 , and �. / is as in
Equation (1). Then the geodesic representative of the homotopy class of the core tunnel
has length greater than R.

Proof By Lemma 3.4, the core tunnel is homotopic to the geodesic dual to the
isometric spheres corresponding to �. / and �.�1/. The length of this geodesic is
twice the distance along the vertical geodesic from the top of one of the isometric
spheres corresponding to �.˙1/ to a maximal horoball neighborhood of the cusp
about infinity. Since the isometric sphere of �. 2/ has radius 1, a maximal horoball
about the cusp will have height at least 1. The isometric sphere of �. / has radius
p
". Integrating 1=z from z D

p
" to 1, we find that the distance along this vertical

arc is at least log 1=
p
". Hence the length of the geodesic representative of the core

tunnel is at least log 1=". By choice of ", this length is greater than R.

Remark Note in the proof above that we may strengthen Lemma 4.3 as follows.
Because of the choice of " in Equation (1), there exists some neighborhood U of
the matrix of (1) such that if �.˛/, �.ˇ/ are as above, but �. / lies in U , then the
geodesic representative of the homotopy class of the core tunnel has length greater
than R.

This completes the proof of Proposition 4.2.

Before we present the proof of Theorem 4.1, we need to recall terminology from
Kleinian group theory.

We define the (restricted) character variety V .C / to be the space of conjugacy classes
of representations �W �1.C /! PSL.2;C/ such that elements of �1.@�C / are sent to
parabolics. Note this definition agrees with Marden’s definition of the representation
variety in [14], but is a restriction of the character variety in Culler and Shalen’s classic
paper [7]. Convergence in V .C / is known as algebraic convergence.

Let GF0.C / denote the subset of V .C / consisting of conjugacy classes of minimally
parabolic geometrically finite uniformizations of C , given the algebraic topology. It
follows from work of Marden [13, Theorem 10.1] that GF0.C / is an open subset of
V .C /. We are interested in a type of structure that lies on the boundary of GF0.C /.
These structures are discrete, faithful representations of C that are geometrically finite,
but not minimally parabolic.

Definition 4.4 A maximal cusp for C is a geometrically finite uniformization of C ,
�W �1.C /! PSL.2;C/ such that every component of the boundary of the convex core
of H3=�.�1.C // is a 3–punctured sphere.
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A maximal cusp is in some sense the opposite of a minimally parabolic representation. In
a minimally parabolic representation, no elements of @CC are pinched. In a maximal
cusp, a full pants decomposition of @CC , or the maximal number of elements, is
pinched to parabolic elements.

Due to a theorem of Canary, Culler, Hersonsky and Shalen [6, Corollary 16.4], conjugacy
classes of maximal cusps for C are dense on the boundary of GF0.C / in V .C /. This
theorem, an extension of work of McMullen [16], is key in the proof of Theorem 4.1.

Proof of Theorem 4.1 Let �0 be the geometrically finite representation of the proof
of Proposition 4.2, with core tunnel homotopic to a geodesic of length strictly greater
than R. The translation lengths of �0.˛/ and �0.ˇ/ are bounded, say by B .

We will consider �0 to be an element of the character variety V .C /. Indeed, define R
to be the set of all representations where �.˛/ and �.ˇ/ are parabolics fixing infinity
with length bounded by B , and with �. / fixed as in Equation (1). If we view the
character variety V .C / as a subset of the variety of representations � of �1.C / where
�.˛/ and �.ˇ/ have been suitably normalized to avoid conjugation, then we may
consider R as a subset of V .C /. Note �0 is in R.

The set R is clearly path connected. By Lemma 4.3, for all uniformizations of C in
R, the length of the geodesic representative of the core tunnel is at least R.

Moreover, notice that R includes indiscrete representations, as follows. Recall that
the isometric sphere corresponding to  2 has radius 1 when �. / is defined as in
Equation (1). Thus by Lemma 2.13, whenever the translation length of ˛ is less than 1,
the representation cannot be discrete.

Then consider a path in R from �0 to an indiscrete representation. At some point
along this path, we come to R\ @GF0.C /.

By work of Canary, Culler, Hersonsky and Shalen [6], generalizing work of Mc-
Mullen [16], the set of maximal cusps is dense in the boundary of geometrically finite
structures @GF0.C /.

It follows that we can find a sequence of geometrically finite representations �n of
�1.C / such that the conformal boundaries of the manifolds Cn WDH3=�n.�1.C // are
maximally cusped genus two surfaces, Cn are homeomorphic to the interior of C , and
such that the algebraic limit of these manifolds Cn is a manifold M DH3=�1.�1.C //

where �1 is in R. By the remark following Lemma 4.3, for large n, the core tunnels
of the Cn will have geodesic representative with length greater than R.

Now, there exists a maximally cusped hyperbolic structure on the genus 2 handlebody H .
In fact, by work of Canary, Culler, Hersonsky, and Shalen [6, Corollary 15.1], such
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structures are dense in the boundary of geometrically finite structures on handlebodies.
Thus, there exists a hyperbolic manifold H3=�1 homeomorphic to the interior of H ,
such that every component of the boundary of the convex core of H3=�1 is a 3–
punctured sphere. We will continue to denote the hyperbolic manifold H3=�1 by H .

Figure 5: Shown is a picture of F for four geometrically finite structures
with long unknotting tunnel. These structures are converging to a structure
on @GF0.�1.C // . Note that in each of the four structures, the pattern of
isometric spheres corresponding to that of Figure 3 is visible, although the
number of visible isometric spheres increases.

Let �n be any homeomorphism from @CC to H taking parabolics of Cn on @CC to
the parabolics of @H . Because �n takes 3–punctured spheres to 3–punctured spheres,
it extends to an isometry. Hence we may glue Cn to H via �n and obtain a tunnel
number one manifold with three drilled out curves, corresponding to the three parabolics
of @CC . These are three torus boundary components of Mn WD Cn[�n

H .

Select Dehn filling slopes s1 , s2 , s3 on these three boundary components that act as
gluing one boundary to the other by a high power of a Dehn twist. When we Dehn
fill along these slopes, the result is a tunnel number one manifold Mn.s

1; s2; s3/. By
work of Thurston [19], as the length of the slopes increases, the Dehn filled manifold
approaches Mn in the geometric topology. Thus the length of the geodesic representa-
tive of the homotopy class of the unknotting tunnel in Mn.s

1; s2; s3/ approaches the
length of the geodesic representative of the homotopy class of the core tunnel in Cn as
the lengths of s1 , s2 and s3 increase in Mn .

Hence for large enough n and long enough slopes s1 , s2 , s3 , the Dehn filled manifold
Mn.s

1; s2; s3/ is a tunnel number one manifold with unknotting tunnel homotopic to
a geodesic of length at least R.

4.1 Remarks

While Theorem 4.1 gives us a manifold whose unknotting tunnel has a long geodesic
representative, the proof does not guarantee that this tunnel is isotopic to a geodesic, even

Algebraic & Geometric Topology, Volume 10 (2010)



The length of unknotting tunnels 655

if we could guarantee that the core tunnel is isotopic to a geodesic in the approximating
geometrically finite structures Cn . This isn’t important for the proof of Theorem 4.1.
However, in [11], we will explain how to modify the above proof so that the unknotting
tunnel is isotopic to a geodesic.

5 Knots in homology 3–spheres

In this section, we refine the construction in Theorem 4.1 in order to control the
homology of the resulting manifolds.

Theorem 5.1 There exist hyperbolic knots in homology 3-spheres which have tunnel
number one, for which the geodesic representative of the unknotting tunnel is arbitrarily
long.

The manifolds in the proof of Theorem 4.1 were constructed by starting with max-
imally cusped geometrically finite uniformizations of the compression body C and
the handlebody H , gluing them via an isometry, and then performing certain Dehn
fillings. We will now vary this construction a little. We will again use maximally
cusped geometrically finite uniformizations of the .1; 2/–compression body C and the
genus 2 handlebody H , but we will not glue them directly. Instead, we will also find a
maximally cusped geometrically finite uniformization of S � I , where S is the closed
orientable surface with genus 2, and we will glue C to S �f1g and glue H to S �f0g.
In both gluings, the parabolic loci will be required to match together, although we will
leave these loci unglued. The result is therefore a tunnel number one manifold, with 6
disjoint embedded simple closed curves removed. We will then perform certain Dehn
fillings along these 6 curves to give the required tunnel number one manifolds. The
choice of hyperbolic structure on H requires some care. In particular we will need the
following terminology and results.

Let ML.@H / (respectively, PML.@H /) be the space of measured laminations (respec-
tively, projective measured laminations) on @H . (See for example Fathi, Laudenbach
and Poenaru [9].) Let i. � ; � / denote the intersection number between measured lami-
nations. A measured lamination � is said to be doubly incompressible if there is an
� > 0 such that i.�; @E/ > � for all essential annuli and discs E properly embedded
in H . Similarly, a projective measured lamination is doubly incompressible if any of its
inverse images in ML.@H / is doubly incompressible. It is a consequence of Thurston’s
geometrization theorem [17] that if P is a collection of simple closed curves on @H
that are pairwise nonparallel in @H , essential in @H and doubly incompressible, then
there is a geometrically finite uniformization of H . Let P be the part of its parabolic
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locus P that lies on @CC . The set of doubly incompressible projective measured
laminations forms a nonempty open subset of PML.@H / (see Lecuire [12]).

Lemma 5.2 There is a homeomorphism  W @H ! @H satisfying the following con-
ditions:

(1)  is pseudo-Anosov.

(2) Its stable and unstable laminations are doubly incompressible.

(3) The induced homomorphism  �W H1.@H /!H1.@H / is the identity.

Proof Since the stable laminations of pseudo-Anosovs are dense in PML.@H /, and
the set of doubly incompressible laminations is open and nonempty, there is a pseudo-
Anosov homeomorphism g with doubly incompressible stable lamination. Let h be a
pseudo-Anosov on @H that acts trivially on H1.@H / (see Thurston [20]). Let �C and
�� be its stable and unstable projective measured laminations, which we may assume
are distinct from the unstable lamination of g . Then the pseudo-Anosov gmhg�m

also acts trivially on H1.@H /. Its stable and unstable laminations are gm.�C/ and
gm.��/, which are arbitrarily close to the stable lamination of g for large m. Hence,
they too are doubly incompressible when m is large. Thus, we may set  to be one
such gmhg�m .

Proof of Theorem 5.1 Let �W @CC ! @H be a homeomorphism such that, when C

is glued to H via � , the result is the standard genus two Heegaard splitting of the solid
torus. Fix a maximally cusped geometrically finite uniformization of C from the proof
of Theorem 4.1, for which the core tunnel has long geodesic representative. Let P be
its parabolic locus. Then �.P / is a collection of simple closed curves on H .

Let � be a composition of Dehn twists, one twist around each component of �.P /.
Let  be the pseudo-Anosov homeomorphism provided by Lemma 5.2. By replacing
 by a power of  if necessary, we may assume that for each core curve ˛ of P ,
i.˛;  .˛// 6D 0. The tunnel number one manifold that we are aiming for is obtained
by gluing C to H via  m��M �1�M� for large integers m and M . Since  acts
trivially on homology, this has the same homology as if we had glued by � , which
gives the solid torus. Thus, this manifold is indeed the exterior of a knot in a homology
3-sphere.

We first choose the integer m. As m tends to infinity,  m�.P / tends to the stable
lamination of  in PML.@H /. Hence, we may choose such an m so that  m�.P / is
doubly incompressible.
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We start with three manifolds:

(1) C �P ;

(2) .S � Œ0; 1�/� ..�.P /� f1g/[ . �.P /� f0g//;

(3) H � m�.P /.

Here, S is the genus two surface, which we identify with @H . The second of the
above manifolds has a geometrically finite uniformization, by Thurston’s geometriza-
tion theorem. This is because any essential annulus in S � Œ0; 1� with boundary in
.�.P /� f1g/[ . �.P /� f0g/ can be homotoped, relative to its boundary, so that it
lies entirely in .�.P /� f1g/[ . �.P /� f0g/. Similarly, because  m�.P / is doubly
incompressible, H � m�.P / admits a geometrically finite hyperbolic structure. Glue
C �P to .S ��.P //�f1g via � , and glue .S � �.P //�f0g to H � m�.P / via
 m�1 . Since these manifolds have conformal boundary that consists of 3-punctured
spheres, this gluing can be performed isometrically.

As in the proof of Theorem 4.1, we now perform certain Dehn fillings on the toral cusps
of this manifold, apart from the cusp corresponding to @�C . If the Dehn filling is done
correctly, this has the effect of modifying the gluing map by powers of Dehn twists. We
may apply any iterate of these Dehn twists, and so we apply the M –th iterate, where
M is some large positive integer, along each of the curves �.P / � f1g in S � f1g

and the .�M /–th power along each of the curves in  �.P /� f0g in S � f0g. Thus,
the gluing map becomes  m��M �1�M� . As M tends to infinity, these manifolds
tend geometrically to the unfilled manifold. In particular, for large M , the geodesic
representative of its unknotting tunnel will be long.

6 The Dehn filling construction

In this section, we give the proof of Theorem 4.1 that uses Dehn filling and homology.

Let X be a compact 3–manifold with four torus boundary components and of Heegaard
genus 2. This means there is a closed genus 2 surface F in the interior of X which
separates X into two compression bodies, each homeomorphic to the manifold V

obtained by adding one 2–handle onto a copy of F� Œ0; 1� along an essential separating
simple closed curve in F �f1g: We label the torus boundary components of X by A0 ,
A1 , B0 , B1 so that A0 and B0 are on the same side of F .

Let ˇ0 , ˇ1 and ˛1 be essential simple closed curves on B0 , B1 and A1 , respectively.
Let M DX.˛1; ˇ0; ˇ1/ be the manifold obtained by Dehn filling using these slopes,
so that M has a single boundary component A0: Gluing a solid torus to each of the
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two boundary components of V yields a genus 2 handlebody. It follows that M has
tunnel number one; indeed a tunnel is obtained using an arc with endpoints on A0 that
goes round the core of the solid torus used to fill along B0 .

Lemma 6.1 There exists X as above such that the interior of X admits a complete
hyperbolic structure of finite volume, such that H1.X / Š �A ˚ �B where �A Š

�B ŠZ2 , and under maps induced by inclusion, H1.Ai/D �A and H1.Bi/D �B for
i D 1; 2:

Proof An example of X is provided by the exterior of the 4 component link L

in S3 shown in Figure 6. The link L D a0 [ a1 [ b0 [ b1 consists of two linked
copies of the Whitehead link and is hyperbolic (by SnapPea [21]). Furthermore
Lk.a0; a1/ D Lk.b0; b1/ D 1 and Lk.ai ; bj / D 0. The diagram also shows disjoint
arcs ˛ connecting a0 to b0 and ˇ connecting a1 to b1 . It is easy to slide these arcs and
links in such a way that the pair of graphs a0[b0[˛ and a1[b1[ˇ are spines of the
handlebodies of the genus 2 Heegaard splitting of S3 . It follows that X D S3� �.L/

has the required properties and Ai D @�.ai/ and Bi D @�.bi/. Here �.L/ denotes an
open tubular neighborhood of L.

ˇ

˛b0

b1

a0

a1

Figure 6: A hyperbolic link satisfying the conditions of Lemma 6.1

Suppose X is a link of Lemma 6.1. Let x be a basepoint for X on the boundary
of a maximal horoball neighborhood of the cusp corresponding to A0 . The idea for
finding the Dehn fillings to give M is that given a base point x in X and R > 0,
there are only finitely many homotopy classes of loops in X based at x with length
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at most 3R. These give finitely many classes in H1.X / and hence, under projection,
finitely many classes 1; � � � p 2 �B . The Dehn fillings used to obtain M are chosen
so that H1.M /Š Z˚Zn with the image of �B being Zn and that of �A being Z.
The fillings are also chosen so that none of the images of i generate Zn , and so that
the hyperbolic metric on M is geometrically close to that of X . In particular, we may
assume that there is a bilipschitz homeomorphism, with bilipschitz constant very close
to 1, between the R neighborhood of the basepoint of x in X and a subset of M .
Let m be the image of x in M . This will lie near the boundary of a maximal horoball
neighborhood of the cusp of M . Then every loop in M based at m of length at most
2R corresponds to a loop in X based at x with length at most 3R, say.

Lemma 6.2 Suppose � is a free abelian group of rank 2 and 1; � � � p 2 � . Then
there is an integer n > 0 and an epimorphism �nW � ! Zn such that for all i the
element �n.i/ does not generate Zn .

Proof Clearly we may assume that for all i , i ¤ 0. Then we may identify � with
Z2 so that i D .ai ; bi/ and for all i , ai ¤ 0. Set m D maxi jbi j C 2 and define
a homomorphism �W Z2! Z by �..a; b// D 2ma� b which is surjective because
�..1; 2m� 1//D 1. Set ci D j�.i/j. Then

ci D j2mai � bi j � 2mjai j � jbi j � 2m�m � 2;

using that jai j � 1 and jbi j � m and m � 2. Now define n D
Q

i ci and define
�n. /D �. / mod n. Then �n.i/D˙ci and ci ¤ 1 divides n and therefore does
not generate Zn:

For the Dehn fillings of B0 and B1 , choose simple closed curves ˇi � Bi which
generate the kernel of

�nW �B! Zn;

where here we are using the identifications H1.B0/ � �B � H1.B1/. There are
arbitrarily large pairs of such basis elements; thus we may choose them so that the
result of hyperbolic Dehn filling B0 and B1 using these gives a two cusped hyperbolic
manifold with metric on the thick part as close to that of X as desired.

Now perform a very large Dehn filling (thus not distorting the geometry of the thick
part appreciably) along A1 . We claim we obtain M with all the required properties.

For suppose that the geodesic representative for the unknotting tunnel of M had
length at most R. Let T be the torus that forms the boundary of a maximal horoball
neighborhood of the cusp of M . The basepoint m of M lies near T , say � is a
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geodesic arc from m to the nearest point in T . We may pick R large enough so that
�1.T [ �;m/ is generated by two curves of length at most R. Similarly, the geodesic
representative for the unknotting tunnel can be closed up on T , then connected to m

along � to form a loop based at m with length at most 2R. These three loops generate
�1.M;m/. By construction, H1.M /Š Z˚Zn . The image of H1.T / in H1.M / is
the first summand, and the image of the third loop is a proper subgroup of the second
summand. Thus, these three loops cannot generate H1.M /, which is a contradiction.
Hence, the geodesic representative for the unknotting tunnel of M has length more
than R. Since R was arbitrarily large, this establishes Theorem 4.1.
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