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Commensurability classes
containing three knot complements

NEIL HOFFMAN

This paper exhibits an infinite family of hyperbolic knot complements that have three
knot complements in their respective commensurability classes.

57M10, 57M25

1 Introduction

The study of the commensurability classes of hyperbolic knot complements that contain
other knot complements has attracted some recent interest (see Boileau, Boyer and
Walsh [4], Calegari and Dunfield [6], Goodman, Heard and Hodgson [13] Hoste and
Shanahan [14], Macasieb and Mattman [15], Neumann and Reid [19], Reid [20] and
Reid and Walsh [21]). A particularly interesting set of examples results from cyclic
surgeries on hyperbolic knot complements, since the cyclic surgeries give rise to cyclic
covers by other knot complements (see González-Acuña and Whitten [11]). Moreover,
the Cyclic Surgery Theorem of Culler, Gordon, Luecke and Shalen [8] shows that there
are at most two nontrivial cyclic surgeries on a hyperbolic knot complement and so a
hyperbolic knot complement has at most two nontrivial, finite sheeted covers which
are other knot complements. Similarly, if a hyperbolic knot complement, S3� k1 is
covered by another knot complement, S3� k2 , then S3� k1 admits a cyclic surgery.
There are known examples of hyperbolic knot complements with exactly three knot
complements in their commensurability classes. For example, the .�2; 3; 7/ pretzel
knot famously admits two nontrivial cyclic surgeries by Fintushel and Stern [10] and is
therefore covered by two other hyperbolic knot complements. Indeed, one can show that
these three knot complements are the only knot complements in their commensurability
class (see Section 4.1, case n D 1, m D 0, Section 2.1 and Reid and Walsh [21,
Corollary 5.4]).

An infinite family of pairs of commensurable hyperbolic knot complements was con-
structed by Walter Neumann. For a discussion of this construction, see Goodman,
Heard and Hodgson [13].
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Finally, two hyperbolic knot complements can be commensurable if they both have
hidden symmetries. This property is equivalent to both knot complements nonnormally
covering the same orbifold (see Section 2.1). The dodecahedral knots of Aitchison and
Rubinstein [2] admit the only known examples of nonarithmetic knot complements with
hidden symmetries (see Neumann and Reid [19]) and the figure 8 knot complement is
the only arithmetic knot complement (see Reid [20]).

This discussion motivates the following conjecture of Reid and Walsh [21, Conjecture
5.2].

Conjecture Let S3 �K be a hyperbolic knot complement. There are at most two
other knot complements in its commensurability class.

It has been announced by Boileau, Boyer and Walsh [4, Theorem 1.3] that the conjecture
holds for knot complements without hidden symmetries. In their paper, they show
that if a hyperbolic knot complement does not admit hidden symmetries, then any
commensurable hyperbolic knot complement will cyclically cover a common orbifold.
Furthermore, this orbifold admits a finite cyclic surgery for each knot complement that
covers it. This paper presents a family of such orbifolds that are covered by exactly
three hyperbolic knot complements. Specifically, the main theorem of this paper is the
following (see Section 2 for definitions):

Theorem 1.1 Let n � 1 and .n; 7/ D 1. For all but at most finitely many pairs
of integers .n;m/, the result of .n;m/ Dehn surgery on the unknotted cusp of the
Berge manifold is a hyperbolic orbifold with exactly three knot complements in its
commensurability classes.

The infinite family of orbifolds described by Theorem 1.1 which we refer to as ˇn;m (see
Section 2) also has the property that for n¤ 1, each knot complement covering ˇn;m

admits an n–fold symmetry which does not fix any point on the cusp. In particular,
even when n D 2, this symmetry is not a strong involution. By [25], such a knot
complement cannot admit a lens space surgery and so, by the above discussion, is not
covered by any other knot complement.

The paper is organized as follows. In addition to some background material and
definitions, in Section 2 we prove a lemma about possible orbifold quotients of the
Berge manifold. In Section 3, we show that the orbifolds ˇn;m admit three cyclic
surgeries, and the proof of the main theorem is contained in Section 4. In Section 5,
we provide a partial classification of commensurability classes containing exactly three
knot complements.
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2 Preliminaries

Two subgroups �1 and �2 of PSL.2;C/ are said to be commensurable if they share a
common finite index subgroup. Two hyperbolic 3–orbifolds, H3=�1 and H3=�2 , are
said to be commensurable if they share a common finite sheeted cover. In terms of their
groups, this means that 9g 2 PSL.2;C/ such that �1 and g�2g�1 are commensurable.

Let CommC.�/Dfg 2 PSL.2;C/ j� and g�g�1 are commensurable g. Let NC.�/

be the normalizer of � in PSL.2;C/. We say that a group � has hidden symmetries
if ŒCommC.�/ W NC.�/� > 1. A hyperbolic orbifold, Q, has hidden symmetries if
�orb

1 .Q/ has hidden symmetries. For this discussion, we consider only orientable
manifolds and orbifolds.

2.1 Cusp properties

When a hyperbolic knot group has hidden symmetries, the associated knot complement
nonnormally covers some orbifold with a rigid cusp ie the cusp is C � Œ0;1/ where
C is S2.2; 3; 6/, S2.3; 3; 3/ or S2.2; 4; 4/ (see Reid [20, Lemma 4]).

By [19, Proposition 2.7], the cusp field of a hyperbolic orbifold is a subfield of the
invariant trace field. Thus, if a hyperbolic orbifold has a S2.3; 3; 3/ or S2.2; 3; 6/

cusp, Q.
p
�3/ must be a subfield of the orbifold’s invariant trace field and if the cusp

is S2.2; 4; 4/, Q.i/ must be a subfield of the orbifold’s invariant trace field (see [19,
Proof of Theorem 5.1(iv)]).

Like the torus, the orbifolds S2.3; 3; 3/, S2.2; 4; 4/, and S2.2; 3; 6/, can admit self-
covers. Since the groups of deck transformations for the above orbifolds are of the
form .Z�Z/Ìf Z=nZ (where n is 3, 4, or 6 respectively), there exists a degree m

self-cover of one of these orbifolds for each index m subgroup of Z�Z preserved
by f , an outer automorphism of Z�Z. The following proposition shows that there
are certain degrees such that S2.3; 3; 3/ does not admit a self-cover.

Proposition 2.1 Let pW O 0!O be a covering map. If O Š S2.3; 3; 3/, then degree
of p is not 2 or 5.

Proof Denote by �D�orb
1 .O/ and note that the abelianization of � is Z=3Z�Z=3Z.

In particular, � has no index 2 subgroups.

Assume that � 0�� has index 5. The abelianization of � excludes the case that � 0G� .

Note � has a torsion-free subgroup T ŠZ�Z of index 3. Also, Œ� W� 0 �T �Œ� 0 �T WT �D
3 and since � 0 has torsion elements, Œ� W � 0 �T �D 1. Thus, we get the following lattice
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of subgroups:
�

3 5

T

5

� 0

3

T \� 0

Note that T G� . Hence, we have that T \� 0G� 0 by the Second Isomorphism Theorem.
Also, T \ � 0 G T since T is abelian. Using � D � 0 � T , we obtain that T \ � 0 G � .
Thus, �=T \� 0 is isomorphic to a cyclic group of order 15, which is a contradiction
to abelianization of � being Z=3Z�Z=3Z. This completes the proof.

2.2 Surgeries on the Berge manifold

For n� 1 and .n; 7/D 1, let ˇn;m be the orbifold obtained by .n;m/ Dehn surgery
on the unknotted cusp of the Berge manifold (see Figure 1) using a standard framing
on the cusps of this link complement as in [22].

Figure 1: The Berge manifold is the complement of this link.

The Berge manifold admits several surgery slopes of interest. First, if we perform Dehn
surgery along the .1; 0/ slope of the unknotted cusp of the Berge manifold, we will
obtain the .�2; 3; 7/ pretzel knot (see Fintushel and Stern [10]). Also, if we drill out
a solid torus along the unknotted cusp of the manifold we would obtain the one knot
in the solid torus (defined up to homeomorphism of the solid torus) that admits three
D2 �S1 fillings (see [3, Corollary 2.9]). Furthermore, if we perform Dehn surgery
along the .1; r/ slope and then drill along the core of the surgered torus, we would also
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obtain a knot complement in D2�S1 that admits three D2�S1 surgeries. In fact, by
the above mentioned corollary, these are the only knots in solid tori with this property.

The above construction shows that Dehn surgery along a .1; r/ slope of the unknotted
cusp of the Berge manifold produces knot complements that produce three lens space
surgeries. In fact, it is well known that the .1; 0/, .18; 1/ and .19; 1/ surgery slopes
on the .�2; 3; 7/ pretzel knot admit lens space surgeries [10]. By drilling out the
unknotted cusp of the Berge manifold, these are also the surgery slopes that produce
a solid torus filling. Since the linking number of the knotted cusp and the unknotted
cusp is 7, the longitude gets sent to the curve .49r; 1/ after .1; r/ Dehn surgery on
the unknotted cusp while the meridian .1; 0/ remains fixed [22, Section 9.H]. So the
.1; 0/, .18; 1/, and .19; 1/ surgery parameters get sent to .1; 0/, .49r C 18; 1/, and
.49r C 19; 1/ respectively after .1; r/ Dehn surgery on the unknotted cusp. Therefore,
these fillings produce solid tori in the new coordinates. Furthermore, we can use the
surgery parameters to compute the homology of the manifolds resulting from lens space
surgeries on the knot complements. In fact, we see that for these knots we obtain S3

and two lens spaces – one with fundamental group of order j49r C 18j and another of
order j49r C 19j.

More generally, if we allow Dehn surgery along any .p; q/ slope of the unknotted
cusp of the Berge manifold where (p,q)=1, and either .1; 0/, .18; 1/, or .19; 1/ Dehn
surgery on the knotted cusp, we will also get lens spaces. Again, by [22, Sect 9.H],
we see that the .1; 0/ surgery slope corresponds to a lens space of order jpj, .18; 1/

surgery slope corresponds to a lens space of order j49qC 18pj, and .19; 1/ surgery
slope corresponds to a lens space of order j49qC 19pj.

2.3 Commensurability class of the Berge manifold

Denote v0 � 1:01494146 as the volume of the regular ideal tetrahedron. The Berge
manifold is comprised of four such tetrahedra and therefore its volume is 4v0 . Denote
by �L the fundamental group of the Berge manifold. Since the complement of the Berge
manifold is comprised of four regular ideal tetrahedra, �L� IsomC.T /ŠPGL.2;O3/,
where T is a tessellation of H3 by regular ideal tetrahedra and O3 is the ring of integers
in Q.

p
�3/. Since ŒPGL.2;O3/ W �L�D 48 and ŒPGL.2;O3/ W PSL.2;O3/�D 2, �L

is commensurable with PSL.2;O3/. Therefore, �L is arithmetic and so the Berge
manifold is arithmetic as well (see Maclachlan and Reid [16, Definition 8.2.1]).

The proof of the following lemma takes advantage of the fact that the Berge manifold has
relatively low volume in order to show that it cannot cover an orbifold with a torus cusp
and a rigid cusp. It is worth mentioning that PGL.2;O3/ is the orbifold fundamental
group of hyperbolic orbifold with a single S2.2; 3; 6/ cusp. Additionally, the following
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proof will consider PSL.2;O3/, which is an index 2 subgroup of PGL.2;O3/, and
so H3=PSL.2;O3/ is a two-fold cover of the orbifold H3=PSL.2;O3/ [19]. Hence
for this paper, we consider PGL.2;O3/ under the image of its representation into
PSL.2;C/. Also, we will consider all other groups as subgroups of PSL.2;C/ where
necessary.

Lemma 2.2 The Berge manifold does not cover an orbifold with a torus cusp and a
rigid cusp.

Proof of Lemma 2.2 Assume QT is an orbifold with a torus cusp and a rigid cusp
covered by the Berge manifold. Since the invariant trace field of the Berge manifold
is Q.

p
�3/, the rigid cusp of QT must be either S2.3; 3; 3/ or S2.2; 3; 6/. In either

case, consideration of the unknotted torus cusp of the Berge manifold covering the
rigid cusp shows the degree of such a cover is 3k for some integer k � 1. Also, since
the Berge manifold is arithmetic and the class number of Q.

p
�3/ is 1, it follows from

[7, Theorem 1.1] that any maximal group commensurable with the Berge manifold has
exactly one cusp. Thus, there exists a one-cusped orbifold QM covered by QT .

Denote the Berge manifold by B . By consideration of a torus cusp of B covering
the rigid cusp of QT , we see that p1W B ! QT is a covering map of degree 3k

(k � 1). Also, by consideration of the torus cusp of QT covering the rigid cusp of
QM , p2W QT !QM is a covering map of degree at least 3. If QM has a S2.3; 3; 3/

cusp, we use the fact that vol.QM /� 4v0=9 to show that it must be one of the orbifolds
described by Adams in [1, Theorem 4.2]. However, as pointed out in the comment
before this theorem, each of the orbifolds is a double cover of an orbifold with a
S2.2; 3; 6/ cusp. Since we may assume QM is corresponds to a maximal subgroup
of PSL.2;C/, and is therefore not a cover of any smaller volume orbifold, we only
have to consider to the case that QM has a S2.2; 3; 6/ cusp. In this case, QM has a
S2.2; 3; 6/ cusp and the degree of p2 is at least 7. Since the torus cusp of QT is at least
a six fold-cover of the rigid cusp of QM and the rigid cusp of QT is at least a one-fold
cover of the rigid cusp of QM . Hence, vol.QM /� 2v0=9 and QM is described by
Adams in [1, Theorem 3.3] (with arithmetic information of the corresponding orbifold
groups described in [19]). Furthermore, since vol.B/D 4v0 , vol.QM / is either v0=6

or v0=12. Thus, the covering of QM by the Berge manifold is of order 24 or 48,
respectively. We will consider these two cases separately by further analyzing the
covering maps p1 and p2 .

Case 1 QM has volume v0=6 and the degree of the cover pW B!QM is 24.

By noting that �orb
1 .QM / has an index 2 subgroup

� D hx;y; z j x2;y2; z3; .yz�1/2; .zx�1/6; .xy�1/3i
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Figure 2: The fundamental domain for � together with the involution w

and �orb
1 .QM /D h�;wi where w is the order 2 rotation on the fundamental domain

of � , we obtain a presentation for �orb
1 .QM / (see Neumann and Reid [19], Maclachlan

and Reid [16, page 144, formula 4.7 and Figure 4.4] and Figure 2).

Thus, we obtain the following presentation:

�orb
1 .QM /

D hw;x;y; z j x2;y2; z3; w2; .yz�1/2; .zx�1/6; .xy�1/3; .wx/2; wywyz�1
i:

By the constraints mentioned above, the degree p1W B!QT must be 3 and the degree
of p2W QT !QM must be 8. However, using GAP, the above group �orb

1 .QM / does
not have any index 8 subgroups. Thus, there can be no orbifold QT .

Case 2 QM has volume v0=12 and the degree of the cover pW B!QM is 48.

In this case, QM ŠH3=PGL.2;O3/ and so we will consider the group picture. Here,
ŒPGL.2;O3/ W�

orb
1 .QT /�D 8 or 16, since degree of p2� 7 and the degree of p1D 3k

(k � 1).

First, assume ŒPGL.2;O3/ W�
orb
1 .QT /�D8. If �orb

1 .QT /�PSL.2;O3/, ŒPSL.2;O3/ W

�orb
1 .QT /� D 4. Using GAP, there is a unique index 4 subgroup G of PSL.2;O3/.

However, G has finite abelianization, and therefore cannot be the orbifold group of
QT .

Thus, we may assume that �orb
1 .QT / 6� PSL.2;O3/ and deduce that there is a unique

subgroup ƒ of index 2 in �orb
1 .QT / such that ƒ � PSL.2;O3/. By covolume

considerations ƒ has index 8 in PSL.2;O3/. Also, H3=ƒ has a torus cusp and
a S2.3; 3; 3/ cusp. Since H3=PSL.2;O3/ has a S2.3; 3; 3/ cusp, the degree of the
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covering pW H3=ƒ! H3=PSL.2;O3/ has to be 3l Cm. However, m ¤ 2; 5 (see
Proposition 2.1), a contradiction.

PGL.2;O3/

2

8PSL.2;O3/

8
�orb

1 .QT /

2

ƒ

Now, assume that ŒPGL.2;O3/ W �
orb
1 .QT /�D 16. We know that p1W B!QT is of

degree 3 and therefore, QT has a S2.3; 3; 3/ cusp and a torus cusp. Thus, �orb
1 .QT /�

PSL.2;O3/ and ŒPSL.2;O3/ W �
orb
1 .QT /�D 8, giving us the same contradiction as in

above paragraph.

This completes the proof.

3 Cyclic surgeries on ˇn;m

In this section, we show that for fixed n and m, ˇn;m admits three finite cyclic surgeries.
We also show directly it is covered by three knot complements if n¤ 7.

Lemma 3.1 The orbifolds ˇn;m are covered by three knot complements. Furthermore,
the degrees of the corresponding covering maps are distinct.

Proof For a fixed ˇn;m , let r D .n;m/ and consider ˇn;m as the union of the com-
plement of a knot in a solid torus, T1 and a solid torus with core a singular locus of
order r, T2 (see Figure 3).

By [3, Corollary 2.9], T1 admits three Dehn surgeries that result in a solid torus. Thus,
ˇn;m admits three Dehn surgeries that are homeomorphic to T2 and a solid torus glued
together along their boundaries. Each orbifold Oj .j 2 f1; 2; 3g/ resulting from one
of these Dehn surgeries has underlying space a lens space with �orb

1 .Oj / finite cyclic.

In fact, j�orb
1 .Oj /j is distinct for each choice of j . To see this, we observe, as

noted above, that Oj is an orbifold with underlying space a lens space. Moreover, this
underlying space is a lens space with fundamental group of order either n

r
, j49m

r
C18n

r
j,
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T1

T2

r

Figure 3: The decomposition of a surgered ˇn;m along a torus

or j49m
r
C 19n

r
j depending on the choice of surgery on T1 (see Section 2). Splitting

Oj into a solid torus coming from the Dehn surgery on T1 and T2 the solid torus core
a singular curve, we can compute �orb

1 .Oj / using van Kampen’s theorem. Thus, the
orders of the each fundamental group increase by a factor of r and j�orb

1 .Oj /j is either
n, r � j49m

r
C 18n

r
j, or r � j49m

r
C 19n

r
j which take on three distinct values for fixed n,

m and r .

In addition, by the Orbifold Theorem (see [5, Theorem 2]) and the above argument that
�orb

1 .Oj / is finite cyclic, each Oj has S3 as its universal cover. Denote this covering
map by �j W S

3!Oj . We may view Oj as the union of the solid torus coming from
the cusp Dehn filling of ˇn;m and the complement of this solid torus, which we denote
by B . Hence, ��1

j .B/ is a knot or link exterior in S3 . Since .n; 7/ D 1 and the
singular set of T2 has linking number 7 with the knotted cusp of ˇn;m , the boundary
of ��1

j .B/ is connected. Hence, if .n; 7/ D 1, ˇn;m will be covered by three knot
complements in S3 . Also, since the orders of j�orb

1 .Oj /j are distinct, the covering
degree of �j will take on a distinct value for each j .

Remark When nD 1, the classification of exceptional Dehn surgeries in [17, Table
A.1, Remark A.3] shows that ˇn;m is hyperbolic. Hence, ˇ1;m is a hyperbolic knot
complement that admits three cyclic surgeries.

4 Proof of the main theorem

In this section, we prove Theorem 1.1. Also for this section, we consider �n;m , �n;m ,
and �L as subgroups of PSL.2;C/.

Proof of Theorem 1.1 Using Lemma 3.1, each ˇn;m is covered by three knot comple-
ments such that the covers are of distinct degrees. Also, Thurston’s Hyperbolic Dehn
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Surgery Theorem [24, Theorem 5.8.2] shows that all but at most finitely many of the
ˇn;m are hyperbolic. For the rest of the proof we only consider those ˇn;m that are
hyperbolic. Given this condition, each ˇn;m we consider is covered by three distinct
knot complements. By [4, Theorem 1.3], to prove Theorem 1.1 it suffices to show that
the knot complements covering ˇn;m do not have hidden symmetries.

Suppose an infinite number of the hyperbolic knot complements that cover ˇn;m admit
hidden symmetries. By the discussion in Section 2.1, every such knot complement will
nonnormally cover an orbifold Qn;m with a rigid cusp. Furthermore, on passage to
a subset of the ˇn;m , we can assume that the orbifolds Qn;m have the same type of
rigid cusp, C . Let �n;m D �

orb
1 .ˇn;m/, �n;m D �

orb
1 .Qn;m/ and let P � PSL.2;C/

be the peripheral subgroup of �n;m . We may assume that each �n;m is conjugated so
that P has a fixed representation in PSL.2;C/. Since ˇn;m has one cusp, notice that
�n;m D P ��n;m .

By Thurston’s Hyperbolic Dehn Surgery Theorem [24, Theorem 5.8.2], the volumes of
the ˇn;m are bounded from above by the volume of the Berge manifold. In addition,
the minimum volume of a noncompact oriented hyperbolic 3–orbifold is v0=12 [18].
Hence, vol.Qn;m/ � v0=12. Thus, we can further subsequence to arrange that ˇn;m

covers Qn;m , that the Qn;m ’s have the same type of rigid cusp, and that the covering
degree is fixed, say d.

Since ˇn;m is obtained by Dehn surgery on the Berge manifold, the �n;m will converge
algebraically and geometrically to �L , the fundamental group of the Berge manifold
(see [24, Theorem 5.8.2]). As P is a fixed group in our construction, �n;r also converges
algebraically and geometrically to P ��L:

We have the following diagram:

�n;m
.n;m/!1

// P ��L

�n;m

?�

d

OO

.n;m/!1
// �L

?�

d

OO

Note, ŒP ��L W �L�D d <1. Let QT DH3=P ��L . QT has two cusps: a torus
cusp, corresponding to the cusp created by geometric convergence from Dehn surgery,
and a rigid cusp, corresponding to the cusp with peripheral group P .

However by Lemma 2.2, such a limiting QL cannot exist. Hence, at most finitely
many of the ˇn;m have hidden symmetries.
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4.1 Computations and examples

To find explicit examples of hyperbolic knot complements with three knot complements
in the commensurability class, we can use the computer program Snap [12] to show
directly that there are no hidden symmetries. Specifically, for mD 0 and nD 1, 2,
3, 4, 5, 6, 7, the manifold ˇn;m is hyperbolic and Snap shows us that ˇn;m has
an invariant trace field with real embeddings. These fields cannot contain Q.i/ or
Q.
p
�3/ as subfields. Thus, the knot complements covering such ˇn;m do not have

hidden symmetries (recall Section 2.1) and there are exactly three knot complements
in each of these commensurability classes.

5 Remarks

The following theorem provides a partial classification of hyperbolic orbifolds covered
by three knot complements. It can be seen as a direct corollary to a result of [4],
however we provide a proof for completeness.

Theorem 5.1 Let O be a closed 3–orbifold and let K be a knot in O that is disjoint
from the singular locus of O . If O �K is

(1) hyperbolic,

(2) covered by 3 knot complements,

(3) does not admit hidden symmetries, and

(4) O has nonempty singular locus,

then O �K Š ˇn;m for some pair .n;m/.

Proof Let 
 be the singular locus of O . Denote jOj the underlying space of O . By
[4, Theorem 1.2] and the assumptions above, we know that jOj is a lens space, 
 is a
nonempty subset of the cores of a genus 1 Heegaard splitting of jOj, and if S3�K

covers O �K , then it does so cyclically and corresponds to a finite cyclic filling of
O �K . Finally, denote M DO � 
 �K .

First assume 
 has one component. Each of the three knot complements covering
O �K corresponds to M admitting a S1 �D2 filling along its knotted cusp. Again,
we appeal to the fact that there is a unique family of knots in solid tori that admits 3
nontrivial S1�D2 fillings (see [3, Corollary 9.1]). Hence, M is obtained by performing
.1;m/ surgery on the unknotted cusp of the Berge manifold then drilling out the core
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of the surgered torus. Gluing back in the neighborhood of the fixed point set of h
 i
gives us ˇn;m for some n;m.

Now, assume that 
 has two components 
1 and 
2 . M D T 2 � I �K0 , where
K0 is a knot. Each cyclic filling on O �K corresponds to M admitting a T 2 � I

filling. Hence, Dehn filling along the cusp corresponding to 
1 will produce a knot
complement in D2 �S1 with three D2 �S1 fillings.

Denote l1 to be the linking number of 
1 and K0 and l2 to be the linking number of

2 and K0 . If l1 is zero, K0 would be a knot in a solid torus that is not a 1–braid after
.1; 0/ on 
2 but has two nontrivial S1�D2 fillings. This contradicts [3, Corollary 9.1].
Hence, we may assume l1 ¤ 0 and l2 ¤ 0.

Also, .1; n/ surgery on 
2 will produce a knot K00 in a solid torus that has linking
number l2C n � l1 with 
2 . In particular for large enough n, l2C n � l1 ¤ 7. Hence, it
cannot be in the family of knots that admit two nontrivial S1 �D2 fillings.

One might hope to relax condition .4/ above. However, Brandy Guntel pointed out
to the author that the k.2; 2; 0; 2/ knot complement (see Figure 4) is hyperbolic and
admits two nontrivial cyclic surgeries. In fact, John Berge first showed that this knot
complement produced two lens space surgeries in unpublished work. Additionally,
Mario Eudave-Muñoz [9] gave a construction of the two nontrivial lens space surgeries
of this knot complement. Let M.r/ denote Dehn filling the torus cusp with respect to
the slope r on the cusp torus. Furthermore, we will observe the convention that 1=0 is
the meridian and 0=1 the homologically determined longitude. From the discussion
following [9, Proposition 5.4], we obtain that k(2,2,0,2)(32=1) and k(2,2,0,2)(31=1)
are lens space surgeries where the fundamental groups of these lens spaces are of orders
32 and 31 respectively (see [9, Proposition 5.3]). By our original discussion in Section
2.2, knot complements obtained by Dehn surgery on the unknotted cusp of the Berge
manifold have lens spaces of order j49r � 18j and j49r � 19j, none of which can
be 32. Hence, the k.2; 2; 0; 2/ complement is not one of the ˇn;m . However, since
the invariant trace field of the k.2; 2; 0; 2/ is an odd degree extension of Q, we see
that this knot complement does not admit hidden symmetries and the k.2; 2; 0; 2/ has
exactly three knot complements in its commensurability class (see [21, Corollary 5.4]).

As mentioned above .1;m/ surgery on the unknotted cusp of the Berge manifold
produces Berge knots. It seems natural to ask if any hyperbolic Berge knots can have
hidden symmetries. More generally, we might ask if any hyperbolic knot complements
can have hidden symmetries and admit nontrivial lens space surgeries. As discussed in
Section 1, there are three hyperbolic knot complements known to have hidden symme-
tries: the complements of the two dodecahedral knots of Aitchison and Rubinstein [2],
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Figure 4: The k(2,2,0,2) knot

and the figure eight knot complement [19]. Using SnapPea [26], one can see that both
dodecahedral knots are amphichiral. Thus, by [8, Corollary 4] they cannot admit a lens
space surgery. Additionally, it is well known that the figure eight knot complement
does not admit a lens space surgery (see Takahashi [23] for example).
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