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Ozsváth–Szabó and Rasmussen invariants of cable knots

CORNELIA A VAN COTT

We study the behavior of the Ozsváth–Szabó and Rasmussen knot concordance
invariants � and s on Km;n , the .m; n/–cable of a knot K where m and n are
relatively prime. We show that for every knot K and for any fixed positive integer m ,
both of the invariants evaluated on Km;n differ from their value on the torus knot
Tm;n by fixed constants for all but finitely many n> 0 . Combining this result together
with Hedden’s extensive work on the behavior of � on .m;mr C 1/–cables yields
bounds on the value of � on any .m; n/–cable of K . In addition, several of Hedden’s
obstructions for cables bounding complex curves are extended.

57M25

1 Introduction

The .m; n/–cable of a knot K , denoted Km;n , is the satellite knot with companion K

and pattern Tm;n , the .m; n/–torus knot. The behavior of many classical concordance
invariants has been shown to be rather predictable on cable knots. For example, it is a
classical result (see Lickorish [6]) that the Alexander polynomial of a cable knot is

�Km;n
.t/D�K .t

m/�Tm;n
.t/:

Shinohara [17] found a formula for the signature of a cable knot, and Litherland [7]
extended the result, finding the value of Tristam–Levine signatures on a cable knot:

�!.Km;n/D �!m.K/C �!.Tm;n/:

Milnor signatures and Casson–Gordon invariants of cables (see Litherland [8] and
Kearton [5], respectively, for details) also yield nice formulas.

The purpose of this note is to investigate two relatively new concordance invariants
– the Ozsváth–Szabó invariant � and the Rasmussen invariant s – and their behavior
on cable knots. The discussion here will use only the formal properties that the two
invariants have in common.

Both � and s were introduced in connection with developments in the theory of knot
homologies: � is defined in terms of knot Floer homology (see Ozsváth and Szabó [10]
and Rasmussen [15]) and the Rasmussen invariant s is defined in terms of Khovanov
homology (see Rasmussen [14]). These two invariants have enabled important progress
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in the field of knot theory, providing new proofs for Milnor’s conjecture [10; 14]
and examples of Alexander polynomial one knots which are not smoothly slice (see
Livingston [9]).

No work has been done to compute the Rasmussen invariant for cables, but the behavior
of the Ozsváth–Szabó concordance invariant � under .m;mr C 1/–cabling has been
investigated by Hedden [2; 3]. Through careful investigation of the relationship between
the filtered chain homotopy types of F.Km;mrC1; i/ and F.K; i/, he obtained the
following main result:

Theorem 1 [3] Let K � S3 be a nontrivial knot. Then the following inequality
holds for all r :

m�.K/C
.mr/.m� 1/

2
� �.Km;mrC1/�m�.K/C

.mr/.m� 1/

2
Cm� 1:

In the special case when K satisfies �.K/D g.K/, we have the equality

�.Km;mrC1/Dm�.K/C
.mr/.m� 1/

2
;

whereas when �.K/D�g.K/, we have

�.Km;mrC1/Dm�.K/C
.mr/.m� 1/

2
Cm� 1:

When appropriately normalized, � and s share several formal properties and agree on
many families of knots, though in general they have been shown to be distinct invariants
(see Hedden and Ording [4]). Stated in reference to � , the essential formal properties
are as follows (see Ozsváth and Szabó [10]):

(1) � is a homomorphism from the smooth knot concordance group C to Z.

(2) j�.K/j � g4.K/, where g4.K/ denotes the 4–genus of K .

(3) �.Tm;n/D .m� 1/.n� 1/=2; where Tm;n denotes the .m; n/–torus knot with
m; n� 1.

It can be shown that s=2 also satisfies these three properties [14]. In addition, both �
and s are insensitive to a change in orientation [11; 14]. Our main results will only
depend on these formal properties, and hence apply to both invariants. To proceed
concisely, let � denote any concordance invariant satisfying the above properties.

Fixing m> 0, we would like to study the value of � on Km;n as a function of n, where
n ranges over the integers relatively prime to m. (Notice that Km;n D�K�m;�n , and
so the restriction m> 0 does not limit our results.) From our observations about other
concordance invariants, we expect that the behavior of �.Km;n/ as a function of n is
somehow related to the behavior of �.Tm;n/. This, in fact, is true. As a function of n,
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�.Tm;n/ is linear of slope .m�1/=2 for n> 0. We will see that the function �.Km;n/

is close to being linear with the same slope. Specifically, we subtract from � a linear
function to construct the following function:

h.n/D �.Km;n/�
.m� 1/

2
n;

where n is an integer relatively prime to m. We have the following theorem:

Theorem 2 The function h.n/ is a nonincreasing 1
2
�Z–valued function which is

bounded below. In particular, we have

�.m� 1/� h.n/� h.r/� 0

for all n> r , where both n and r are relatively prime to m.

From this result it follows that for all n large enough, h is constant. Hence for n

large enough, �.Km;n/ differs from �.Tm;n/ by a fixed constant. That is, for every
knot K there exist integers N and c such that �.Km;n/D �.Tm;n/C c for all n>N ,
where n is relatively prime to m. Additionally, a similar statement with corresponding
constant c0 holds for all n<N 0 for some N 0 .

Theorem 2 is sharp in the sense that there are knots K with associated functions h

which achieve the bounds given in the theorem. For example, when K is slice,
h.n/ D .m � 1/=2 for all n < 0 and h.n/ D �.m � 1/=2 for all n > 0. Here the
drop in functional value from nD�1 to nD 1 is maximal: h.1/�h.�1/D�.m�1/.
On the other hand, we will see that when � D � and �.K/D g3.K/, the function h is
constant.

Using Theorem 2, we can take several results which apply only to .m;mrC1/–cables
and extend their scope to include all cables. For example, the bounds on the value of �
on .m;mr C 1/–cables described in Theorem 1 extend to all cables as follows.

Corollary 3 Let K � S3 be a nontrivial knot. Then the following inequality holds
for all n relatively prime to m:

m�.K/C
.m� 1/.n� 1/

2
� �.Km;n/�m�.K/C

.m� 1/.nC 1/

2
:

When K satisfies �.K/D g.K/, we have

�.Km;n/Dm�.K/C
.m� 1/.n� 1/

2
;

whereas when �.K/D�g.K/, we have

�.Km;n/Dm�.K/C
.m� 1/.nC 1/

2
:
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Observe that the results in Corollary 3 could probably also have been obtained by using
the definition of � and studying the filtered chain homotopy type of F.Km;n/ for n

relatively prime to m. However, the proof here avoids this and uses only the analysis
of F.Km;mrC1/ in [3] together with Theorem 2 to obtain the result for all cables.

The second half of Corollary 3 motivates studying knots K for which �.K/D g.K/.
Hedden summarized many results about such knots and their .m;mrC1/–cables in [3].
Now combining that discussion with Corollary 3 from above, we can extend several of
his results to a more general setting. Let P denote the class of all knots satisfying the
equality �.K/D g.K/. An immediate consequence of Corollary 3 is the following.

Corollary 4 Let K be a nontrivial knot in S3 , and let n be relatively prime to m.

(1) If K 2 P , then Km;n 2 P if and only if n> 0.

(2) If K … P , then Km;n … P .

As discussed in [3], P contains several classes of knots. We mention two such classes
here:

� Any knot K which bounds a properly embedded complex curve, Vf �B4 , with
g.Vf /D g.K/. This set of knots includes, for example, positive knots (that is,
knots which admit diagrams with only positive crossings). (See Hedden [1] and
Livingston [9].)

� Any knot which admits a positive lens space (or L–space) surgery. (See Ozsváth
and Szabó [12].)

From this, we have the following immediate applications extending the work of [3].

Corollary 5 If Km;n bounds a properly embedded complex curve Vf �B4 satisfying
g.Vf /D g.Km;n/, then n> 0 and �.K/D g.K/.

Corollary 6 Suppose that Km;n admits a positive lens space (or L–space) surgery.
Then n> 0 and �.K/D g.K/.

Corollary 7 Suppose K … P . Then Km;n is not a positive knot for any relatively
prime pair of integers m, n.

A final corollary concerns a more general class of knots – the class of C–knots. A
knot K is a C–knot if K bounds a properly embedded complex curve Vf � B4 .
From [1; 13; 16], we know that for such knots, �.K/ D g4.K/ � 0. Coupling this
result with Corollary 3, we have the following corollary.
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Corollary 8 Suppose that Km;n is a C–knot. Then n� �2m�.K/=.m� 1/� 1.

The primary significance of each of these corollaries is that they can be used as
obstructions to cables having the discussed properties. Moreover, it is interesting that
� provides obstructions to such a wide array of geometric notions. For an excellent
extended discussion of this, we refer the reader to [3].

This paper is organized as follows. Section 2 contains the proof of Theorem 2. Section 3
contains the proof of Corollary 3. Finally, in Section 4 we observe that the strategy for
the proof of Theorem 2 extends to a broader setting in which, instead of cabling, we
consider a braiding construction.

Acknowledgments I thank both Charles Livingston and Matthew Hedden for several
helpful conversations.

2 Proof of Theorem 2

Let r; n be integers relatively prime to m with n> r . The general strategy here is to
first find a cobordism between Km;n #�Km;r and a torus knot.

We begin with the knot Km;n # �Km;r . Working through signs and orientations
carefully, we find that

Km;n #�Km;r DKm;n # .�K/m;�r :

We will now do a series of band moves to the knot Km;n #.�K/m;�r . A band move on
any knot K�S3 is accomplished as follows. Start with an embedding bW I�I �!S3

such that b.I � I/\K D b.I � f0; 1g/ and such that b respects the orientation of K .
Define Kb DK� b.I � f0; 1g/[ b.f0; 1g � I/. The knot (or link) Kb is the result of
doing a band move along b . Doing a band move to a knot simultaneously constructs
a cobordism from the knot K to Kb . The genus of this cobordism can be computed
explicitly. For example, in the special case that the result of performing a sequence of
band moves is again a knot, one can show that the genus of the cobordism is half of
the number of bands added.

Now there is a sequence of m� 1 band moves on Km;n # .�K/m;�r which results in
the knot (or link) .K #�K/m;n�r . See Figure 1 for an example. Since K #�K is
cobordant to the unknot, .K #�K/m;n�r is cobordant to the torus link Tm;n�r . Let
kC denote the smallest positive integer such that n� r C kC is relatively prime to m.
(If n� r is already relatively prime to m, then set kC D 0.) By doing kC� .m� 1/

additional band moves to the torus link Tm;n�r , we obtain the torus knot Tm;n�rCkC
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K Km K Km

K Km
K Km

K Km

Figure 1: Beginning with the knot K3;2 # .�K/3;�1 , we perform two band
moves and obtain the knot .K #�K/3;1 . Km denotes the mirror image of K .

(Figure 2). Altogether, the total number of band moves performed was .kCC1/.m�1/.
Therefore, the knot Km;n #�Km;r is genus .kCC1/.m�1/=2 cobordant to the torus
knot Tm;n�rCkC . Hence we conclude that

g4.Km;n #�Km;r #�Tm;n�rCkC/�
.kCC 1/.m� 1/

2
:

Now since j�.K/j � g4.K/, it follows that

j�.Km;n #�Km;r #�Tm;n�rCkC/j �
.kCC 1/.m� 1/

2
:
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Figure 2: Beginning with the torus knot T3;2 , we perform two band moves
and obtain T3;3 .

Simplifying the expression using the properties of � , we obtainˇ̌̌
�.Km;n/� �.Km;r /�

.m� 1/.n� r C kC� 1/

2

ˇ̌̌
�
.kCC 1/.m� 1/

2
:

At this point, recall the function h.n/ which we defined earlier. Using the definition
of h, we can further simplify the inequality:ˇ̌̌

h.n/� h.r/�
.m� 1/.kC� 1/

2

ˇ̌̌
�
.kCC 1/.m� 1/

2
:

Hence,

(1) �.m� 1/� h.n/� h.r/� kC.m� 1/:

Notice that if kC D 0, then we are done. If not, then we continue as follows.

Similar to before, let k� denote the largest negative integer such that n� r C k� is
relatively prime to m. By doing jk�j � .m� 1/ band moves to Tm;n�r , we can obtain
the torus knot Tm;n�rCk� . Proceeding through the same steps as before, we obtain

(2) .k�� 1/.m� 1/� h.n/� h.r/� 0:
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Combining (1) and (2), we have

�.m� 1/� h.n/� h.r/� 0

for all integers n> r where both n and r are relatively prime to m.

3 Proof of Corollary 3

Combining Theorem 1 and Theorem 2 together, we obtain an easy proof that the bounds
on the value of � on .m;mr C 1/–cables described in Theorem 1 extend to all cables.
We now restate and prove Corollary 3.

Corollary 3 Let K � S3 be a nontrivial knot. Then the following inequality holds
for all n relatively prime to m:

m�.K/C
.m� 1/.n� 1/

2
� �.Km;n/�m�.K/C

.m� 1/.nC 1/

2
:

When K satisfies �.K/D g.K/, we have

�.Km;n/Dm�.K/C
.m� 1/.n� 1/

2
;

whereas when �.K/D�g.K/, we have

�.Km;n/Dm�.K/C
.m� 1/.nC 1/

2
:

Proof The proof of this corollary is obtained by carefully combining the equalities
and inequalities found in Theorem 1 and Theorem 2. We will demonstrate a portion of
the proof, leaving the rest to the reader.

Let m and n be two relatively prime integers with m > 0. Let r be an integer such
that n>mr C 1. Then by Theorem 2,

h.n/� h.mr C 1/� 0:

Using the definition of h and letting � D � , we obtain

�.Km;n/� �.Km;mrC1/�
m� 1

2
.mr � nC 1/:

Using the upper bound on �.Km;mrC1/ given by Theorem 1, we have

�.Km;n/�m�.K/C
.m� 1/.nC 1/

2
;

which is one side of the desired inequality.
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To obtain the other side of the inequality, let r 0 be an integer such that mr 0C 1> n.
Then by Theorem 2,

h.mr 0C 1/� h.n/� 0:

We leave to the reader the task of reducing this inequality (using methods exactly
similar to above) to obtain the desired second half of the inequality in the corollary.

Now let K be a knot such that �.K/Dg.K/. Suppose for contradiction that �.Km;n/¤

m�.K/ C .m � 1/.n � 1/=2: By the inequality discussed above, this implies that
�.Km;n/>m�.K/C.m�1/.n�1/=2: Again, let r be an integer such that n>mrC1.
Then we have

h.n/� h.mr C 1/D �.Km;n/�
.m� 1/

2
n� �.Km;mrC1/C

m� 1

2
.mr C 1/

D �.Km;n/�
.m� 1/

2
n�m�.K/C

.m� 1/

2

> m�.K/C
.m� 1/.n� 1/

2
�
.m� 1/

2
n�m�.K/C

.m� 1/

2
D 0:

This contradicts Theorem 2. Therefore, �.Km;n/ D m�.K/C .m� 1/.n� 1/=2 for
all n relatively prime to m. A similar argument settles the case when K is a knot such
that �.K/D�g.K/.

4 Further analysis

The process of cabling a knot can be reinterpreted as a special case of the following
more general procedure. Let ˇ be an element of the braid group Bm such that the
closure of the braid y̌ is a knot. There is a natural solid torus V which contains the
closed braid y̌. Remove a neighborhood of a knot K in S3 and glue in the solid torus
V by a homeomorphism which maps longitude to longitude and meridian to meridian.
We denote the resulting knot by Kˇ . Notice that if we take the braid ˇ 2 Bm to be
.�m�1�m�2 � � � �1/

n (where �i denotes the i –th standard generator of the braid group),
then the resulting knot Kˇ is the .m; n/–cable Km;n .

For any braid ˇ 2 Bm , let ˇr denote the braid consisting of ˇ with r full twists
adjoined to the end of the braid. Specifically, ˇr D ˇ.�m�1�m�2 � � � �1/

mr . The value
of � on Kˇr

as a function of r turns out to have controlled behavior similar to that of
cabling. Define the function

g.r/D �.Kˇr
/�

.m� 1/

2
mr;
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where ˇ 2Bm is a braid whose closure is a knot and r is an integer. Then we have the
following theorem about the behavior of the function g .

Theorem 9 The function g.r/ is a nonincreasing integer valued function which is
bounded below. In particular,

�.m� 1/� g.r/�g.s/� 0

for all r > s .

From this theorem, it follows that the function g is eventually constant. This allows us
to describe quite clearly a relationship among the values of � (and s ) on an entirely new
set of knots. Fixing a knot K and a braid ˇ 2 Bm such that y̌ is a knot, Theorem 9
implies that for all large r ,

�.KˇrC1
/D �.Kˇr

/C
m.m� 1/

2
:

where � can be taken to be either � or s . Note that if we take K in the above
construction to be the unknot, then the theorem relates the values of � on knots with
braid representatives which differ by full twists.

We turn now to the proof of Theorem 9.

Proof As with the proof of Theorem 2, the first goal here is to find a cobordism
between Kˇr

#�Kˇs
and a torus knot. Notice that �Kˇs

D .�K/.ˇ�1/�s
. Therefore,

Kˇr
#�Kˇs

DKˇr
# .�K/.ˇ�1/�s

:

By doing m� 1 band moves to the latter knot, we obtain the knot .K #�K/.ˇˇ�1/r�s
.

Since K #�K is cobordant to the unknot and ˇˇ�1 is the trivial m–strand braid, this
new knot is cobordant to the torus link Tm;m.r�s/ . Again, by doing .m� 1/ band
moves to the torus link Tm;m.r�s/ , we obtain the torus knot Tm;m.r�s/C1 . A total of
2.m� 1/ band moves have been performed. Therefore, the knot Kˇr

#�Kˇs
is genus

.m� 1/ cobordant to the torus knot Tm;m.r�s/C1 . Hence

g4.Kˇr
#�Kˇs

#�Tm;m.r�s/C1/�m� 1:

Now since j�.K/j � g4.K/, it follows that

j�.Kˇr
#�Kˇs

#�Tm;m.r�s/C1/j �m� 1;

which simplifies toˇ̌̌
�.Kˇr

/� �.Kˇs
/�

.m� 1/m.r � s/

2

ˇ̌̌
�m� 1:
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We now recall the function g.r/ which we defined earlier. Using the definition of g ,
we can further simplify the inequality and obtain

(3) �.m� 1/� g.r/�g.s/�m� 1:

This gives us only half of the desired inequality. To obtain the remaining half, go
back to the torus link Tm;m.r�s/ which we obtained from Kˇr

#�Kˇs
by a cobordism

which added m�1 bands. Instead of adding m�1 additional bands to obtain the torus
knot Tm;m.r�s/C1 , add m�1 bands to obtain the torus knot Tm;m.r�s/�1 . Proceeding
through the same steps as before, we obtain

(4) �2.m� 1/� g.r/�g.s/� 0:

Combining (3) and (4), we have

�.m� 1/� g.r/�g.s/� 0

for all integers r > s , as desired.
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