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Infinite generation of the kernels of
the Magnus and Burau representations

THOMAS CHURCH
BENSON FARB

Consider the kernel Mag, of the Magnus representation of the Torelli group and the
kernel Bur, of the Burau representation of the braid group. We prove that for g > 2
and for n = 6 the groups Mag, and Bur, have infinite rank first homology. As a
consequence we conclude that neither group has any finite generating set. The method
of proof in each case consists of producing a kind of “Johnson-type” homomorphism
to an infinite rank abelian group, and proving the image has infinite rank. For the
case of Bur,, we do this with the assistance of a computer calculation.

20F34, 20F36, 57M07

1 Introduction

1.1 The Magnus kernel

Let S := Sg ;1 be a compact, connected, oriented surface of genus g > 2 with one
boundary component. Let Mod ; denote the mapping class group of S, which is the
group of homotopy classes of orientation-preserving homeomorphisms of .S which fix
0S pointwise. Let Z, ; denote the Torelli group, which is the subgroup of Mod,
consisting of elements that act trivially on H := H;(S,Z).

The group Modg,; acts on the fundamental group 7 (S), inducing an action on the
solvable quotient I'/ I'*, where I' := ;(S), I'> = [I",T'] and I'* = [I"?, I'?] are the
first three terms of the derived series of I". In this paper we consider the group

Mag, := ker(Mod(S) — Aut(I'/ 3)).

It follows from work of Fox [4, Theorem 4.9] that Magg coincides with the kernel of
the so-called Magnus representation (see Birman [2, Chapter 3])

r: Zg1 — Glyg(ZH).

The group Mag, is called the Magnus kernel. It was an open question for some time
whether or not Mag, is nontrivial. This was settled in the affirmative by Suzuki in [12].
The first main result of this paper is that Mag, is in fact quite large.

Published: 7 April 2010 DOI: 10.2140/agt.2010.10.837



838 Thomas Church and Benson Farb

Theorem 1.1 For g > 2 the group Hi(Mag,,Z) has infinite rank.

As the abelianization of a finitely-generated group has finite rank, we deduce the
following.

Corollary 1.2 For g > 2 the group Mag, has no finite generating set.

The idea of our proof of Theorem 1.1 is to define a kind of “Johnson-type” homomor-
phism (see Johnson [5]):

V: Mag, — Hom (Gab, /\zGab)

where G =[I", '] and G denotes the abelianization of G. We then construct infinitely
many linearly independent elements contained in the image.

It will follow from the definition of W that W extends to Mag(F},), the “Magnus kernel”
for Aut(F}y). Thus as an immediate corollary we obtain that Mag(F;) is not finitely
generated. Since the first posting of this paper, a different proof of this last result has
been given by Satoh [11]. Satoh’s approach shows that the image of Mag(F},) under
W has abelian quotients of arbitrarily large finite rank.

1.2 The Burau kernel

Let B, denote the braid group on 7 strands. B, can be realized (see Section 4 below)
as a subgroup of the automorphism group Aut(F}) of the free group of rank n. The
Burau representation is a homomorphism

pn: Bn — GL, (Z]t, t_l])-

We define the Burau kernel, denoted Bury,, to be the kernel of p,. Let K be the kernel
of the homomorphism F,, — Z taking each fixed generator of Fj, to 1. It follows
easily from Fox [4] that

Bur, = ker(B,, — Aut(F,/[K, K])).

While p3 is faithful, it was a longstanding problem as to whether or not p,, is faithful
(that is, whether Bur, is nontrivial) for n > 3. This was solved by Moody [9], Long—
Paton [7], and Bigelow [1] in various cases, with the result that Bur,, is nontrivial for
n > 5; the case of n = 4 is still open. Our next main result is that Bury, is in fact quite
large for n > 6.

Theorem 1.3 For n > 6 the group H,(Bur,, Z) has infinite rank; in particular, Bury,
has no finite generating set.
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Infinite generation of the Magnus and Burau kernels 839

To prove Theorem 1.3 we construct, similarly to the proof of Theorem 1.1 above, a
homomorphism
®: Bur, — Hom (K™, AZK™).

The elements which have been constructed in the kernel of the Burau representation are
geometrically elegant, but algebraically very complicated; for example, the element of
Bur; found by Long—Paton can be described by a single diagram, but as a free group
automorphism sends generators of F; to words of length up to 475137. Thus we need
the assistance of a computer in order to calculate ® explicitly (see Section 4 below
for a full discussion). For the computations in this paper we use a simpler element
¢p € Bur, for n > 6 found by Bigelow, which takes generators to words of length no
more than 9841. Once we compute the form of ®(¢p), we then use an equivariance
property of ® to prove that the image of ® has infinite rank, from which Theorem 1.3
follows.

We remark that in [10, Problem 6.24] Morita posed the problem of determining the
kernel of the Magnus and Burau (among other) representations. Theorem 1.1 and
Theorem 1.3 can be viewed as a partial answer to this problem.

Acknowledgements We are grateful to William Goldman, whose Mathematica note-
book FreeGroupAutos.nb was very helpful in our computations of the expression in
Appendix A. We would like to thank Dan Margalit and Tam Nguyen Phan for careful
comments on an earlier version of this paper. We also thank Mark Kidwell for a
historical correction. The second author gratefully acknowledges support from the
National Science Foundation.

2 Defining the homomorphisms

The following construction works for any group G whenever one considers auto-
morphisms of the universal 2—step nilpotent quotient G/ G5 acting trivially on the
abelianization G®. Johnson [5] considered the case G = I' = 7, (S ).

With I' equal to 71 (S) or Fj, as in the introduction, we take G := [, '] or G := K
respectively. In either case, let G; be the lower central series of G, defined inductively
by G; = G and G;4; =[G, G;]. Consider the exact sequence

(D) 1>G,>G—>G® 1.
Centralizing (1) gives

) 1 - Gy/G3 - G/G3 - G® — 1.
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Since G is free, taking (1) as a presentation for G*, Hopf’s formula gives that
G»/G3 ~ \2G™.

Aut(T) acts on I, and thus on G, and the isomorphism v: G,/G3 ~ \?>G™ respects
the action of Aut(I") on both sides. In particular, conjugation by " descends to an action
on G® by H=T/[I',T] orby Z =T'/K respectively. In the case G = [I", I'], the fact
that Mag, acts trivially on I'/ '3 implies that Mag, acts trivially on G®*=T12%/13
and on A2G?. Similarly, in the case G = K, we have that Bur, acts trivially on G
and on A\%G®.

Let [ € Mag, (respectively, /€ Bury) be given. For x € G™, pick any lift ¥ € G.
Since f acts trivially on both the quotient and kernel of (2), we see that f(X¥)X~! lies
in the kernel G,/ G5, which we identify with /\2G® via the isomorphism above. One
checks, exactly as in Johnson [5], that

81 G — N\2G™

defined by 67 (x) = f (X)X~ is a well-defined homomorphism; in fact, the resulting
map 8y is Z H-linear (respectively, Z]t, t~1]-linear) with respect to the conjugation
action on G. This is equivalent to the claim that

5f()/xy_1) = y8f(x))/_1 mod G3,
which can be checked as follows. The difference between the left and right side is
- 1. - 1. —1\—1 - 1. -
(Sxy D>y D/ oxly ™) T = f S ST v 0Ty T

which is conjugate to [y~! (), f(x)]. The condition on f implies that f(y) =
y mod G,,s0 ¥y~ f(y) € Gy and [y~ f(¥), f(x)] € G5 as desired.

One also checks, exactly as in [5], that in the case G = [, I'], defining the map ¥ by
W(f):=&r gives a well-defined homomorphism;

3) W: Mag, — Hom (G*, \*G™).
and, in the case G = K, defining ®( /) := § gives a well-defined homomorphism:
4) ®: Bur, — Hom (Gab, /\zGab).

The homomorphisms W and @ are equivariant with respect to the natural actions of
Aut(I") on the source and target.

Algebraic € Geometric Topology, Volume 10 (2010)



Infinite generation of the Magnus and Burau kernels 841

3 Computing the image of ¥

Let So,4 denote the 2—sphere with 4 open disks removed. A lantern in S is an
embedding Sy 4 — S. Consider the two simple closed curves « and B and the three
arcs Ay, A and A3 on Sy 4 given in Figure 1.

Figure 1: The simple closed curves @ and §, and the arcs Ay, A;, A3

One directly computes the action of f = Ty Tﬁ_ Uon A;, A, and A3, as follows (see
Figure 2). Let x, y, and z be the loops which begin with 41, A, and A3, respectively,
go clockwise around the appropriate boundary component of Sy 4, then come back
along the same arc 4;. Let X, Y, Z be the inverses of x, y,z in 71(So,4). Then:

(A1) =xyXzxYXZA, =[xyX, z]A;
f(A2) =ZXzxAy =[Z, X]4,
f(A3) =ZXzxYXZxzxyXA3 =[ZXz,xYX]A3
Let L be an embedding of a lantern in .S with the property that each of the four boundary

curves of L are separating in S.! In this case we can observe that T}, Tﬂ_ le Mag, ,

as follows. Note that the elements corresponding to x, y, z all lie in I'2. Furthermore,
I' = 71(S) has a basis where each element c¢ is either disjoint from L, or else of
the form ¢ = AyA~!, where A is an arc intersecting L in some A4; and y is a loop
disjoint from L. In the former case the element f = T Tﬁ_ ! fixes c. In the latter case,
assume for example that A intersects L in A, ; then we have

flo)= f(AyA™") = f(Ayf(A)~ ' =[Z,X]AyA"'[X, Z] = [Z. X]c[X, Z]

ITo formally identify x, y, z with elements of I' = 71 (S), we choose a basepoint on 5, and arcs
from this basepoint to L meeting L in one point. Since f is the identity off of L, any ambiguity in the
choice of these paths to L does not affect the computation.

Algebraic €& Geometric Topology, Volume 10 (2010)



842 Thomas Church and Benson Farb

Since x, y,z € I'2, we have [Z, X] € T'3; thus f(c) = ¢ mod I'3. The same is true
for A; and A3, so we conclude that f(c) = ¢ mod I'3 for all elements of a basis for
T", implying Ty T,s_ le Mag, . Suzuki gave a more illuminating proof that elements of
this form lie in Magg in [13].

Figure 2: The arcs f (A1), f(A42) and f(A3)

We are now ready to compute W. For a, b € T, we denote by {a, b} the image in G
of [a, b] € G under the abelianization map.

Proposition 3.1 Let L be a lantern embedded in S so that each of the four boundary
curves of L are separating in S. Let a and b be loops intersecting L in Ay and A, .
Then

(5) \IJ(TaTﬁ_l)({a,b})=(a—1)(b—1)[x/\z+y/\z].

Note that the right hand side of (5) is an element of /\ZGab, considered as a Z H—
module, and the action of @ and b on this module factors through H .

Proof As in the computation above, we have

S(a.b]) =[/(a), f(b)] = [wa,vb]
where
w =[[xyX,z],a] and v=][[Z, X],b].

From the assumption on the embedding of L we have x, y,z € G, and thus w, v € G5.

We will use the following commutator identities, which hold in any group; we write

*y for xyx~1.

[wa, b] = Y[a, b] [w, b] [a, vb] = [a, v] *[a, b]

We then find that
[wa, vb] = Y[a, v] “’la, b] [w, v] *[w, b].
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Infinite generation of the Magnus and Burau kernels 843

Note that the second term lies in G, the first and fourth in G5, and the third in G3.

We want to compute f([a, b])[a,b]™! as an element of the quotient G,/G3. Note that
[w, v] = 0 mod G3, and that conjugating an element of G by an element of G, is a
trivial operation modulo G5 . Finally, since [[a, b], [w, b]] € G35, we can move [a, b] to
the right to cancel [a, b]~!. We thus obtain
S((a,bDla, 6] ="*[a,v] "’[a, b] [w, v] *[w, b] [a, b] "

= [a, v][a, b][w, b][a, b]"! mod G

= [a, v][w, b] mod G3.
Recall that the action of " on I" by conjugation descends to a Z H action on G®.

Recall from above the isomorphism v: G,/G3 — A?G?. Since the homology class
of x is trivial in H, we have

v(xyX,z]) =y Az and v(Z,X]) =z Ax.

It follows that

v(w) =v([xyX.z].a) =(1—-a)yrnz
and

viv) =v([Z, X],b]) = (1 =b)z A x.
We therefore have that

v(a,vw,p) =(@—1Dv—-b—-Dw=(@@—D({1=b)zAx—(b-1)(1—-a)y Az.
We conclude that
W(Tu Ty H({a,b}) = (a—1)(b-D[x Az +yAz]

as desired. O

Theorem 3.2 The image of ¥ has infinite rank for g > 3.

Proof Let y and §; be the curves depicted in Figure 3. The figure depicts the case
k = 3; in general §; has k twists around the upper right handle. (Specifically, the
curve Jy is equal to Tf3 (80), where as is as in Figure 5.) The regular neighborhood of
y U dy is a lantern Ly, and we fix an identification of Lj; with our reference lantern
L by specifying that y and §; should correspond to xy and yz respectively. Let
Jik € Mag, be the element corresponding under this identification to the mapping
class Ty Tﬂ_ I on L; it is easy to check using the lantern relation that fj is in fact

(7, L TB;I]. We will show that the images W( fi) are linearly independent (over 7).
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Figure 4: The boundary curves of Ly ; the subsurfaces cut off by these curves
are shaded

The boundary curves of Ly are depicted in Figure 4.

With the basis a1,by,...,ag,bg for m(Sg,1) as illustrated in Figure 5, we see that as
curves x, y and z can be represented by [a1, b1], [az,bg,a’;bz] and [b2a51b51a3,b3a§]
respectively. As based loops, we actually have the conjugate z = ¢ [b2a2_1 by Yas, by aé‘ |
where ¢ = [b3,a3][b2,az]a,. Note that with this representative for z, we have
xyz =lay, bi]laz, bz]las, b3], the fourth boundary curve in Figure 4.
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Figure 5: A basis for 1 (Sg,1)

Note that @y and a, intersect each Lj in arcs corresponding to A; and A,. Thus by
Proposition 3.1, we have

V(fi)(ar, az}) =
(a1 — 1)@z — D[({a1, b1} + {az, b3akby}) Aaz{bras by as, bya}).

Denote this element of A2G® by a;. We now check that the elements {oy } are
linearly independent as follows. There is a standard embedding G* «— (Z H)?*¢
given by sending the class [x] to (0x/0zy,...,0x/0z55), Where {z;} is our basis for
m1(S) = F,4 and where d/0z; are the Fox derivatives (see, for example, Church—
Pixton [3] for a detailed explanation of this embedding). The only property of this
embedding that we will need is that the elements below, which together make up oy,
are mapped as follows by the embedding. Here the 4; and B; make up a Z H —basis
for (Z H)?8 .

{a1,b1} = (1=5b1)A1 — (1 —ay)B
{ar, byakby} > (1—bsakby) 4,
— (1 —az)(B:J, +b3(1 + - +Cl§_1)A3 + b3a13‘B2)
{bray by as, byak} > (1 —b3a%)((1—a3 ") By — a5 ' by Ay + a3 43)
—(1—ay'az)(Bs +b3(1 +---+ak71) 43)

By expanding out oy, we see that oy is the only such element which contains the term

A A b3a§V B, with nonzero coefficient; it follows that the oy are linearly independent,
as desired. O
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As the image of W is abelian, Theorem 3.2 immediately implies Theorem 1.1 for g > 3.
Note that the proof of Theorem 3.2 used in an essential way that g > 3. So in order to
complete the proof of Theorem 1.1, we need another argument when g = 2.

Theorem 3.3 H;(Mag,) has infinite rank; in fact, Mag, surjects to a free group of
infinite rank.

Proof Suzuki showed that the element f = [T}, T3] is in Mag, for y and § as in
Figure 6; in particular Mag, is nontrivial. Let S, be a closed surface of genus 2; we
denote by 7, , the Torelli group of S, with respect to a marked point *, and by 7,
the Torelli group of the closed surface S,. By Johnson [6], we have the exact sequence

1—>Z—>Iz’1 i>12,*—>1,

where the kernel is generated by a twist T, around the boundary w = 9S,. It is easy
to check that the action of Ty, on 71(S,,1) is conjugation by w; since w & '3, we
see that Ty, ¢ Mag,.

Figure 6: The commutator [7;,, T5] lies in Mag,

It follows that p restricts to an isomorphism between Mag, and a subgroup p(Mag,) <
IZ Jk e

Again by Johnson [6], we have the exact sequence
l—A—1p« i)Iz — 1,

where A ~ m1(S2, *); note that 7, , acts on m1(S3, *), and the restriction to A is
just the action by conjugation. Mess [8] proved that 7, is free of infinite rank. It is
easy to see from Figure 6 that f lies in ker 7w = A. We use the following well-known
lemma.

Lemma 3.4 Any nontrivial infinite index normal subgroup of a surface group or free
group is an infinite rank free group.
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If the image 7 o p(Mag,) < I, ~ F is nontrivial, it is an infinite rank free group; it
either has finite index in F and thus infinite rank, or infinite index, in which case
Lemma 3.4 applies. Thus Mag, surjects to the infinite rank free group 7 o p(Mag,),
and we are done.

Otherwise p(Mag,) C kerm = A. Any ¢ € Mag, acts trivially on I'/ I'?; thus p(¢)
acts trivially on 71 (S,)/m1(S2)?. Since the action of A is by conjugation, this implies
that p(¢) liesin A*. Thus p(Mag,) has infinite index in A, and so by Lemma 3.4,
p(Mag,) ~ Mag, is an infinite rank free group. |

Theorem 1.1, and hence Corollary 1.2, follows immediately from Theorems 3.2 and
3.3.

Remark One can check by explicit computation that for Suzuki’s element f € Mag,
above, W(f) = 0. It would be interesting to know whether W in fact vanishes on
Mag, .

4 Computing the image of ®

The kernel K of the map from Fj = (x1,...,x,) to Z = (¢t) which sends each x; ¢
is normally generated by the elements x,-xj_l If we set x; == x’lc x,—xl_k_1 for i # 1
and k € Z, then {x;y} gives a basis for K as a free group. As above, the action
of F, on K by conjugation descends to a Z[t,#~!] action on K. With respect to

this action we have x; ; = kai,o, and thus K2 is a free Z[t,?!]-module with basis
{vi =xio}iz1-
The braid group B, has generators oy,...,0,—1; the action of o; on F, sends

Xj x,~xi+1xi_1, Xi+1 > X, and fixes the other generators. The action of B, on
K® commutes with the Z[¢, ¢~ !] action.

Theorem 4.1 The image of ® has infinite rank for n > 6.

Proof The element of Burg found by Bigelow in [1] is the commutator of the half-
twists along the arcs displayed in Figure 7. In terms of the Artin generators, this
is
B =[Y103 Y1 v203 Yl
where
Y = 0405_102_101 and Y, = 04_10520201_1.

In Appendix A, we give the computation of « := ®(¢B)([x2xl_1]) = ®(¢pp)(y,); it has
262 terms. The only fact about « that we will need is that its highest term of the form

Algebraic €& Geometric Topology, Volume 10 (2010)



848 Thomas Church and Benson Farb

Figure 7: The two arcs defining Bigelow’s element ¢p

Yo Atd yu is —2y2 At y4, and its highest term of the form y, At/ ps is +2y2 At2ys
(these terms are set in boxes in the appendix).
It is easy to check that
Uf()u) = X4X5x4x5_1x4_1
Gf()@) = X5X4X5_1
af(x,-) =x; fori #4,5.
By induction, for k£ > 1 we have
02K (x4) = (x4x5)F x4 (xgx5) 7"
0% (xs) = (xaxs) Morgrsay ! (gxs) !
afk(xi) =x; fori #4,5.

The action of Gfk on K in terms of our basis is thus given by:

Y (LI .

yars (1=t +1>—-—t
ysio (M=t 12— o= tF Ny 4 (=12 4+ K s
Vi > Vi fori #4,5
Now for k > 0 set
ay = D0 $poy ) (12).

By the equivariance of @, and since o4 fixes y,, we have ay = o

fk -o. From the

action of afk on K® we can see that the highest term in oy of the form y, A ¢/ y,

will be =2y, A l3+Ny4. Thus «n is not contained in the span of {&q,...,en—1};
it follows that the o are linearly independent over Z, and thus the image of ® has
infinite rank. O
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Theorem 1.3 follows immediately.

Appendix A Appendix

The following computation was made, with the method explained in Section 4, with
the help of Mathematica. A Mathematica notebook implementing these computations
can be found at http://math.uchicago.edu/~ tchurch/infinitegeneration.html or from the
abstract page for this article.

The output of this notebook is ®(¢g)(y2), which is:

—l_3y2/\l_2y2 +l_3y2/\l_1y2 —l_3y2/\y2 —Z_zyz/\yz +l_1y2/\y2
+I_2y2/\ly2 +l_1y2/\ly2 —2)/2/\[2)/2 +ly2/\l3y2 +12y2/\l3y2
—ByaAttyy HT ATy =12 AT ys =t Ay T A s

+ 2 pant T ys T AT Yy H T AT s —yaAt Ty iy AT s
—1*yaAt ™ ys =212 yaAy3 +13y2ny;3 +t7 ysAys +207 yyAtys
—t~ y3ntys —2yaAtPys  —ttpanttys 1T ysar?ys +1y2AL3 p3
+14ya At ys —y3AL3 ys +iysALPys =12 psartys H13p Ay,

— 1PNy =t ATy T N TPy TR AT s =T ane T g
+3 A )4 —Y2AY4 +tyaAYa —12y3A Y4 —Y3AY4

+1y3A Y4 —12y3Ays =202 ya ALy, +yantys 17 YAty
+13 y3Atys +yantys +207 oAy —1T AP yy P yantty,
—Vant? Yy — Py, T APy 4P APy,
+yant®y, +iyaAttys  Fttyantty, —y3Attyy +1y3Attyy
—1*y3ntty, —tyant®ys  FPyanttys = yanttyy +173ya A ys

—17 2N Pys T3 AT ys 1Ry A s +yant2ys —tT ys At s

F 3 psAr 2 ys =t s AP ys =13 yant T ys TRy A s —yant2ys

—t 73 ysAt 2 ys 2 pantT s T T ys FaatTlys —tyaArTys

Htyanr T ys P ypsan T ys F2ps A s Pyt s 17 pane T ys
F2pantT s+ ysArT ys T paAys 4202 aAys =207 aAys

—y2As —2yanys =t y3sAys AT yaAps ~Y3Aps
~1Y3AYs —2y3nys  —t2yanys AT yanys —1Y4NYs
—t2yanys —Byanys  +tTlysAys =t yantys =17y Atys
+y2Atys +iyantys 3 yantys 1 yaacys —Y3ALYs
+2ty3ALYs +13 y3Atys +yantys —1yaAtys 207 y4ntys
+ttyantys 12 ysatys —ysAtys  +12Attys =17 yaAitys
—12 oAt ys +3panttys =t ysai?ys —12y3nt?ys
—yant®ys —yant?ys  +17 ysat?ys —2ysnt?ys +1ysAt*ys
—1y2AL3 ys —12yyntPys —1*yantdys +y3ALys +1yant ys
+1ysnt’ys +12ysn’ys 1P panttys Py Attys —ty3Attys
+13y3nttys —*yanttys  Httyanttys  —r*ysattys =3 ysartys
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—Cynys  +2pACys —Cysays +0pnCys U pant’ys
+3ysnt’ys =t yant 3 ye HT i Aty —1T2ysAt  ye T ysat 3y
+1 3 YAt ys —t T yant T2y i ps AL ps —ysAt 2y 2 pant T pe
—t172pnt Ty A yantTlye =t psntT ye +t T3 ysAr T yg — T yantT e
=13 pant™ ye +12yantTlys —pantTlye —t3ysatTlys HiysatT ye
+i 3 yentT e —t72yent ™ ys —173 YA Y6 —172 YA Y6 +t 7 yanys
+2y2Ays —2ty2Aye +12y2Ap6 +173 y3Ap6 —172y3A Y6
—17 ' y3nys +3y3AY6 —1y3AY6 +t2p38ps  +HT2yaAYs
—t7 ' yanye —V4NYe +3ty4Aye —t2y4nys +13yanys
—Vs5A Ve +tysAye  —2U%ysAys  —1PyeAye  +1TCyaAlys
+172yy A ys —Va2Alys YA —13y2Atys —tysntys
+Y3ALys —21y3Aiys —13y3Atys — V4Nl ys +1y4ntys
—212 pantye —t*yantys  HtT2psatyse HtTlysAtys 2 psatys
+3ysatys  +17 ygAtys +2y6Atys  —t2yant?ys  —t T yanttys
+12 3ty T paAlys 2 y3sAttyse 1P yaattyg +yant®ys
+3yant®ys  Hityant?ye  —t7'ysatlys  HtysAtlye  —t2ysattyg
—t*ysnt?ys  —2yeAttys —tyentlys  +20ant3ps  +ttyantiys
—t7 ' yantys =1 y3Atye —yant3ys =t yant®ys —ysAL ye
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