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Infinite generation of the kernels of
the Magnus and Burau representations

THOMAS CHURCH

BENSON FARB

Consider the kernel Magg of the Magnus representation of the Torelli group and the
kernel Burn of the Burau representation of the braid group. We prove that for g � 2

and for n � 6 the groups Magg and Burn have infinite rank first homology. As a
consequence we conclude that neither group has any finite generating set. The method
of proof in each case consists of producing a kind of “Johnson-type” homomorphism
to an infinite rank abelian group, and proving the image has infinite rank. For the
case of Burn , we do this with the assistance of a computer calculation.

20F34, 20F36, 57M07

1 Introduction

1.1 The Magnus kernel

Let S WD Sg;1 be a compact, connected, oriented surface of genus g � 2 with one
boundary component. Let Modg;1 denote the mapping class group of S , which is the
group of homotopy classes of orientation-preserving homeomorphisms of S which fix
@S pointwise. Let Ig;1 denote the Torelli group, which is the subgroup of Modg;1

consisting of elements that act trivially on H WDH1.S;Z/.

The group Modg;1 acts on the fundamental group �1.S/, inducing an action on the
solvable quotient �=�3 , where � WD �1.S/, �2 D Œ�; �� and �3 D Œ�2; �2� are the
first three terms of the derived series of � . In this paper we consider the group

Magg WD ker.Mod.S/! Aut.�=�3//:

It follows from work of Fox [4, Theorem 4.9] that Magg coincides with the kernel of
the so-called Magnus representation (see Birman [2, Chapter 3])

r W Ig;1! GL2g.ZH /:

The group Magg is called the Magnus kernel. It was an open question for some time
whether or not Magg is nontrivial. This was settled in the affirmative by Suzuki in [12].
The first main result of this paper is that Magg is in fact quite large.
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Theorem 1.1 For g � 2 the group H1.Magg;Z/ has infinite rank.

As the abelianization of a finitely-generated group has finite rank, we deduce the
following.

Corollary 1.2 For g � 2 the group Magg has no finite generating set.

The idea of our proof of Theorem 1.1 is to define a kind of “Johnson-type” homomor-
phism (see Johnson [5]):

‰W Magg! Hom
�
Gab;

V2Gab�
where GD Œ�; �� and Gab denotes the abelianization of G . We then construct infinitely
many linearly independent elements contained in the image.

It will follow from the definition of ‰ that ‰ extends to Mag.Fn/, the “Magnus kernel”
for Aut.Fn/. Thus as an immediate corollary we obtain that Mag.Fn/ is not finitely
generated. Since the first posting of this paper, a different proof of this last result has
been given by Satoh [11]. Satoh’s approach shows that the image of Mag.Fn/ under
‰ has abelian quotients of arbitrarily large finite rank.

1.2 The Burau kernel

Let Bn denote the braid group on n strands. Bn can be realized (see Section 4 below)
as a subgroup of the automorphism group Aut.Fn/ of the free group of rank n. The
Burau representation is a homomorphism

�nW Bn! GLn.ZŒt; t
�1�/:

We define the Burau kernel, denoted Burn , to be the kernel of �n . Let K be the kernel
of the homomorphism Fn ! Z taking each fixed generator of Fn to 1. It follows
easily from Fox [4] that

Burn D ker.Bn! Aut.Fn=ŒK;K�//:

While �3 is faithful, it was a longstanding problem as to whether or not �n is faithful
(that is, whether Burn is nontrivial) for n> 3. This was solved by Moody [9], Long–
Paton [7], and Bigelow [1] in various cases, with the result that Burn is nontrivial for
n� 5; the case of nD 4 is still open. Our next main result is that Burn is in fact quite
large for n� 6.

Theorem 1.3 For n� 6 the group H1.Burn;Z/ has infinite rank; in particular, Burn

has no finite generating set.
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Infinite generation of the Magnus and Burau kernels 839

To prove Theorem 1.3 we construct, similarly to the proof of Theorem 1.1 above, a
homomorphism

ˆW Burn! Hom
�
Kab;

V2Kab�:
The elements which have been constructed in the kernel of the Burau representation are
geometrically elegant, but algebraically very complicated; for example, the element of
Bur7 found by Long–Paton can be described by a single diagram, but as a free group
automorphism sends generators of F7 to words of length up to 475137. Thus we need
the assistance of a computer in order to calculate ˆ explicitly (see Section 4 below
for a full discussion). For the computations in this paper we use a simpler element
�B 2 Burn for n� 6 found by Bigelow, which takes generators to words of length no
more than 9841. Once we compute the form of ˆ.�B/, we then use an equivariance
property of ˆ to prove that the image of ˆ has infinite rank, from which Theorem 1.3
follows.

We remark that in [10, Problem 6.24] Morita posed the problem of determining the
kernel of the Magnus and Burau (among other) representations. Theorem 1.1 and
Theorem 1.3 can be viewed as a partial answer to this problem.

Acknowledgements We are grateful to William Goldman, whose Mathematica note-
book FreeGroupAutos.nb was very helpful in our computations of the expression in
Appendix A. We would like to thank Dan Margalit and Tam Nguyen Phan for careful
comments on an earlier version of this paper. We also thank Mark Kidwell for a
historical correction. The second author gratefully acknowledges support from the
National Science Foundation.

2 Defining the homomorphisms

The following construction works for any group G whenever one considers auto-
morphisms of the universal 2–step nilpotent quotient G=G3 acting trivially on the
abelianization Gab . Johnson [5] considered the case G D � D �1.S/.

With � equal to �1.S/ or Fn as in the introduction, we take G WD Œ�; �� or G WDK

respectively. In either case, let Gi be the lower central series of G , defined inductively
by G1 DG and GiC1 D ŒG;Gi �. Consider the exact sequence

(1) 1!G2!G!Gab
! 1:

Centralizing (1) gives

(2) 1!G2=G3!G=G3!Gab
! 1:

Algebraic & Geometric Topology, Volume 10 (2010)



840 Thomas Church and Benson Farb

Since G is free, taking (1) as a presentation for Gab , Hopf’s formula gives that

G2=G3 �
V2Gab:

Aut.�/ acts on � , and thus on G , and the isomorphism �W G2=G3�
V

2Gab respects
the action of Aut.�/ on both sides. In particular, conjugation by � descends to an action
on Gab by H D�=Œ�; �� or by ZD�=K respectively. In the case GD Œ�; ��, the fact
that Magg acts trivially on �=�3 implies that Magg acts trivially on Gab D �2=�3

and on
V

2Gab . Similarly, in the case G DK , we have that Burn acts trivially on Gab

and on
V

2Gab .

Let f 2Magg (respectively, f 2 Burn ) be given. For x 2 Gab , pick any lift zx 2 G .
Since f acts trivially on both the quotient and kernel of (2), we see that f .zx/zx�1 lies
in the kernel G2=G3 , which we identify with

V
2Gab via the isomorphism above. One

checks, exactly as in Johnson [5], that

ıf W G
ab
!
V2Gab

defined by ıf .x/ WD f .zx/zx�1 is a well-defined homomorphism; in fact, the resulting
map ıf is ZH –linear (respectively, ZŒt; t�1�–linear) with respect to the conjugation
action on Gab . This is equivalent to the claim that

ıf .x�1/�  ıf .x/
�1 mod G3;

which can be checked as follows. The difference between the left and right side is�
f .x�1/x�1�1

��
f .x/x�1�1

��1
D f . /f .x/f . /�1f .x/�1�1;

which is conjugate to Œ�1f . /; f .x/�. The condition on f implies that f . / �
 mod G2 , so �1f . / 2G2 and Œ�1f . /; f .x/� 2G3 as desired.

One also checks, exactly as in [5], that in the case G D Œ�; ��, defining the map ‰ by
‰.f / WD ıf gives a well-defined homomorphism;

(3) ‰W Magg! Hom
�
Gab;

V2Gab�:
and, in the case G DK , defining ˆ.f / WD ıf gives a well-defined homomorphism:

(4) ˆW Burn! Hom
�
Gab;

V2Gab�:
The homomorphisms ‰ and ˆ are equivariant with respect to the natural actions of
Aut.�/ on the source and target.
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3 Computing the image of ‰

Let S0;4 denote the 2–sphere with 4 open disks removed. A lantern in S is an
embedding S0;4 ,! S . Consider the two simple closed curves ˛ and ˇ and the three
arcs A1;A2 and A3 on S0;4 given in Figure 1.

˛

ˇ

Figure 1: The simple closed curves ˛ and ˇ , and the arcs A1;A2;A3

One directly computes the action of f WD T˛T �1
ˇ

on A1 , A2 and A3 , as follows (see
Figure 2). Let x , y , and z be the loops which begin with A1 , A2 and A3 , respectively,
go clockwise around the appropriate boundary component of S0;4 , then come back
along the same arc Ai . Let X;Y;Z be the inverses of x;y; z in �1.S0;4/. Then:

f .A1/D xyXzxYXZA1 D ŒxyX; z�A1

f .A2/DZXzxA2 D ŒZ;X �A2

f .A3/DZXzxYXZxzxyXA3 D ŒZXz;xYX �A3

Let L be an embedding of a lantern in S with the property that each of the four boundary
curves of L are separating in S .1 In this case we can observe that T˛T �1

ˇ
2Magg ,

as follows. Note that the elements corresponding to x;y; z all lie in �2 . Furthermore,
� D �1.S/ has a basis where each element c is either disjoint from L, or else of
the form c DAA�1 , where A is an arc intersecting L in some Ai and  is a loop
disjoint from L. In the former case the element f D T˛T �1

ˇ
fixes c . In the latter case,

assume for example that A intersects L in A2 ; then we have

f .c/D f .AA�1/D f .A/f .A/�1
D ŒZ;X �AA�1ŒX;Z�D ŒZ;X �cŒX;Z�

1To formally identify x;y; z with elements of � D �1.S/ , we choose a basepoint on @S , and arcs
from this basepoint to L meeting L in one point. Since f is the identity off of L , any ambiguity in the
choice of these paths to L does not affect the computation.
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Since x;y; z 2 �2 , we have ŒZ;X � 2 �3 ; thus f .c/� c mod �3 . The same is true
for A1 and A3 , so we conclude that f .c/� c mod �3 for all elements of a basis for
� , implying T˛T �1

ˇ
2Magg . Suzuki gave a more illuminating proof that elements of

this form lie in Magg in [13].

Figure 2: The arcs f .A1/ , f .A2/ and f .A3/

We are now ready to compute ‰ . For a; b 2 � , we denote by fa; bg the image in Gab

of Œa; b� 2G under the abelianization map.

Proposition 3.1 Let L be a lantern embedded in S so that each of the four boundary
curves of L are separating in S . Let a and b be loops intersecting L in A1 and A2 .
Then

(5) ‰.T˛T �1
ˇ /.fa; bg/D .a� 1/.b� 1/

�
x ^ zCy ^ z

�
:

Note that the right hand side of (5) is an element of
V

2Gab , considered as a ZH –
module, and the action of a and b on this module factors through H .

Proof As in the computation above, we have

f .Œa; b�/D Œf .a/; f .b/�D Œwa; vb�

where
w D ŒŒxyX; z�; a� and v D ŒŒZ;X �; b�:

From the assumption on the embedding of L we have x;y; z 2G , and thus w; v 2G2 .
We will use the following commutator identities, which hold in any group; we write
xy for xyx�1 .

Œwa; b�D w Œa; b� Œw; b� Œa; vb�D Œa; v� v Œa; b�

We then find that
Œwa; vb�D w Œa; v� wv Œa; b� Œw; v� v Œw; b�:
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Note that the second term lies in G , the first and fourth in G2 , and the third in G3 .

We want to compute f .Œa; b�/Œa; b��1 as an element of the quotient G2=G3 . Note that
Œw; v�� 0 mod G3 , and that conjugating an element of G by an element of G2 is a
trivial operation modulo G3 . Finally, since ŒŒa; b�; Œw; b�� 2G3 , we can move Œa; b� to
the right to cancel Œa; b��1 . We thus obtain

f .Œa; b�/Œa; b��1
D
w Œa; v� wv Œa; b� Œw; v� v Œw; b� Œa; b��1

� Œa; v�Œa; b�Œw; b�Œa; b��1 mod G3

� Œa; v�Œw; b� mod G3:

Recall that the action of � on � by conjugation descends to a ZH action on Gab .
Recall from above the isomorphism �W G2=G3!

V
2Gab . Since the homology class

of x is trivial in H , we have

�.ŒxyX; z�/D y ^ z and �.ŒZ;X �/D z ^x:

It follows that
�.w/D �.ŒŒxyX; z�; a�/D .1� a/y ^ z

and
�.v/D �.ŒŒZ;X �; b�/D .1� b/z ^x:

We therefore have that

�.Œa; v�Œw; b�/D .a� 1/v� .b� 1/w D .a� 1/.1� b/z ^x� .b� 1/.1� a/y ^ z:

We conclude that

‰.T˛T �1
ˇ /.fa; bg/D .a� 1/.b� 1/

�
x ^ zCy ^ z

�
as desired.

Theorem 3.2 The image of ‰ has infinite rank for g � 3.

Proof Let  and ık be the curves depicted in Figure 3. The figure depicts the case
k D 3; in general ık has k twists around the upper right handle. (Specifically, the
curve ık is equal to T k

a3
.ı0/, where a3 is as in Figure 5.) The regular neighborhood of

 [ ık is a lantern Lk , and we fix an identification of Lk with our reference lantern
L by specifying that  and ık should correspond to xy and yz respectively. Let
fk 2 Magg be the element corresponding under this identification to the mapping
class T˛T �1

ˇ
on L; it is easy to check using the lantern relation that fk is in fact

ŒT �1
 ;T �1

ık
�. We will show that the images ‰.fk/ are linearly independent (over Z).
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ık

Figure 3: The curves  and ık for k D 3

x

y

z

Figure 4: The boundary curves of Lk ; the subsurfaces cut off by these curves
are shaded

The boundary curves of Lk are depicted in Figure 4.

With the basis a1; b1; : : : ; ag; bg for �1.Sg;1/ as illustrated in Figure 5, we see that as
curves x , y and z can be represented by Œa1; b1�, Œa2;b3ak

3
b2� and Œb2a�1

2
b�1

2
a3;b3ak

3
�

respectively. As based loops, we actually have the conjugate zD c Œb2a�1
2

b�1
2

a3; b3ak
3
�,

where c D Œb3; a3�Œb2; a2�a2 . Note that with this representative for z , we have
xyz D Œa1; b1�Œa2; b2�Œa3; b3�, the fourth boundary curve in Figure 4.
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a1

b1

a2

b2

a3 b3

Figure 5: A basis for �1.Sg;1/

Note that a1 and a2 intersect each Lk in arcs corresponding to A1 and A2 . Thus by
Proposition 3.1, we have

‰.fk/.fa1; a2g/D

.a1� 1/.a2� 1/
��
fa1; b1gC fa2; b3ak

3b2g
�
^ a2fb2a�1

2 b�1
2 a3; b3ak

3g
�
:

Denote this element of
V

2Gab by ˛k . We now check that the elements f˛kg are
linearly independent as follows. There is a standard embedding Gab ,! .ZH /2g

given by sending the class Œx� to .@x=@z1; : : : ; @x=@z2g/, where fzig is our basis for
�1.S/ D F2g and where @=@zi are the Fox derivatives (see, for example, Church–
Pixton [3] for a detailed explanation of this embedding). The only property of this
embedding that we will need is that the elements below, which together make up ˛k ,
are mapped as follows by the embedding. Here the Ai and Bi make up a ZH –basis
for .ZH /2g .

fa1; b1g 7! .1� b1/A1� .1� a1/B1

fa2; b3ak
3b2g 7! .1� b3ak

3b2/A2

� .1� a2/
�
B3C b3.1C � � �C ak�1

3 /A3C b3ak
3B2

�
fb2a�1

2 b�1
2 a3; b3ak

3g 7! .1� b3ak
3/
�
.1� a�1

2 /B2� a�1
2 b2A2C a�1

2 A3

�
� .1� a�1

2 a3/
�
B3C b3.1C � � �C ak�1

3 /A3

�
By expanding out ˛k , we see that ˛N is the only such element which contains the term
A1^b3aN

3
B2 with nonzero coefficient; it follows that the ˛k are linearly independent,

as desired.
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As the image of ‰ is abelian, Theorem 3.2 immediately implies Theorem 1.1 for g� 3.
Note that the proof of Theorem 3.2 used in an essential way that g � 3. So in order to
complete the proof of Theorem 1.1, we need another argument when g D 2.

Theorem 3.3 H1.Mag2/ has infinite rank; in fact, Mag2 surjects to a free group of
infinite rank.

Proof Suzuki showed that the element f D ŒT ;Tı � is in Mag2 for  and ı as in
Figure 6; in particular Mag2 is nontrivial. Let S2 be a closed surface of genus 2; we
denote by I2;� the Torelli group of S2 with respect to a marked point �, and by I2

the Torelli group of the closed surface S2 . By Johnson [6], we have the exact sequence

1 �! Z �! I2;1

p
�! I2;� �! 1;

where the kernel is generated by a twist T! around the boundary ! D @S2 . It is easy
to check that the action of T! on �1.S2;1/ is conjugation by ! ; since ! 62 �3 , we
see that T! 62Mag2 .



ı

Figure 6: The commutator ŒT ;Tı � lies in Mag2

It follows that p restricts to an isomorphism between Mag2 and a subgroup p.Mag2/<

I2;� .

Again by Johnson [6], we have the exact sequence

1 �!ƒ �! I2;�
�
�! I2 �! 1;

where ƒ � �1.S2;�/; note that I2;� acts on �1.S2;�/, and the restriction to ƒ is
just the action by conjugation. Mess [8] proved that I2 is free of infinite rank. It is
easy to see from Figure 6 that f lies in ker� Dƒ. We use the following well-known
lemma.

Lemma 3.4 Any nontrivial infinite index normal subgroup of a surface group or free
group is an infinite rank free group.
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If the image � ıp.Mag2/ < I2 � F1 is nontrivial, it is an infinite rank free group; it
either has finite index in F1 and thus infinite rank, or infinite index, in which case
Lemma 3.4 applies. Thus Mag2 surjects to the infinite rank free group � ıp.Mag2/,
and we are done.

Otherwise p.Mag2/� ker� Dƒ. Any ' 2Mag2 acts trivially on �=�3 ; thus p.'/

acts trivially on �1.S2/=�1.S2/
3 . Since the action of ƒ is by conjugation, this implies

that p.'/ lies in ƒ3 . Thus p.Mag2/ has infinite index in ƒ, and so by Lemma 3.4,
p.Mag2/�Mag2 is an infinite rank free group.

Theorem 1.1, and hence Corollary 1.2, follows immediately from Theorems 3.2 and
3.3.

Remark One can check by explicit computation that for Suzuki’s element f 2Mag2

above, ‰.f / D 0. It would be interesting to know whether ‰ in fact vanishes on
Mag2 .

4 Computing the image of ˆ

The kernel K of the map from FnDhx1; : : : ;xni to ZDhti which sends each xi 7! t

is normally generated by the elements xix
�1
j . If we set xi;k WD xk

1
xix
�k�1
1

for i ¤ 1

and k 2 Z, then fxi;kg gives a basis for K as a free group. As above, the action
of Fn on K by conjugation descends to a ZŒt; t�1� action on Kab . With respect to
this action we have xi;k D tkxi;0 , and thus Kab is a free ZŒt; t�1�–module with basis
fyi D xi;0gi¤1 .

The braid group Bn has generators �1; : : : ; �n�1 ; the action of �i on Fn sends
xi 7! xixiC1x�1

i , xiC1 7! xi , and fixes the other generators. The action of Bn on
Kab commutes with the ZŒt; t�1� action.

Theorem 4.1 The image of ˆ has infinite rank for n� 6.

Proof The element of Bur6 found by Bigelow in [1] is the commutator of the half-
twists along the arcs displayed in Figure 7. In terms of the Artin generators, this
is

�B D Œ 1�
�1
3  �1

1 ;  2�
�1
3  2�;

where
 1 D �4�

�1
5 ��1

2 �1 and  2 D �
�1
4 �2

5�2�
�1
1 :

In Appendix A, we give the computation of ˛ WDˆ.�B/.Œx2x�1
1
�/Dˆ.�B/.y2/; it has

262 terms. The only fact about ˛ that we will need is that its highest term of the form

Algebraic & Geometric Topology, Volume 10 (2010)
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Figure 7: The two arcs defining Bigelow’s element �B

y2^ tj y4 is �2y2^ t3y4 , and its highest term of the form y2^ tj y5 is C2y2^ t2y5

(these terms are set in boxes in the appendix).

It is easy to check that

�2
4 .x4/D x4x5x4x�1

5 x�1
4

�2
4 .x5/D x5x4x�1

5

�2
4 .xi/D xi for i ¤ 4; 5:

By induction, for k � 1 we have

�2k
4 .x4/D .x4x5/

kx4.x4x5/
�k

�2k
4 .x5/D .x4x5/

k�1x4x5x�1
4 .x4x5/

k�1

�2k
4 .xi/D xi for i ¤ 4; 5:

The action of �2k
4

on Kab in terms of our basis is thus given by:

y4 7! .1� t C t2
� � � � � tk�1

C tk/y4C .t � t2
C � � �C tk�1

� tk/y5

y5 7! .1� t C t2
� � � � � tk�1/y4C .t � t2

C � � �C tk�1/y5

yi 7! yi for i ¤ 4; 5

Now for k � 0 set
˛k WDˆ.�

2k
4 �B�

�2k
4 /.y2/:

By the equivariance of ˆ, and since �4 fixes y2 , we have ˛k D �
2k
4
� ˛ . From the

action of �2k
4

on Kab , we can see that the highest term in ˛N of the form y2 ^ tj y4

will be �2y2 ^ t3CN y4 . Thus ˛N is not contained in the span of f˛1; : : : ; ˛N�1g;
it follows that the ˛k are linearly independent over Z, and thus the image of ˆ has
infinite rank.
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Theorem 1.3 follows immediately.

Appendix A Appendix

The following computation was made, with the method explained in Section 4, with
the help of Mathematica. A Mathematica notebook implementing these computations
can be found at http://math.uchicago.edu/�tchurch/infinitegeneration.html or from the
abstract page for this article.

The output of this notebook is ˆ.�B/.y2/, which is:

�t�3y2^t�2y2 Ct�3y2^t�1y2 �t�3y2^y2 �t�2y2^y2 Ct�1y2^y2

Ct�2y2^ty2 Ct�1y2^ty2 �2y2^t2y2 Cty2^t3y2 Ct2y2^t3y2

�t3y2^t4y2 Ct�3y2^t�4y3 �t�2y2^t�4y3 �t�3y2^t�3y3 Ct�1y2^t�3y3

Ct�2y2^t�2y3 �t�1y2^t�2y3 Ct�3y2^t�1y3 �y2^t�1y3 Cty2^t�1y3

�t2y2^t�1y3 �2t�2y2^y3 Ct3y2^y3 Ct�1y3^y3 C2t�1y2^ty3

�t�1y3^ty3 �2y2^t2y3 �t4y2^t2y3 Ct�1y3^t2y3 Cty2^t3y3

Ct4y2^t3y3 �y3^t3y3 Cty3^t3y3 �t2y3^t3y3 Ct�3y2^t�3y4

�t�2y2^t�3y4 �t�3y2^t�2y4 Ct�1y2^t�2y4 Ct�2y2^t�1y4 �t�1y2^t�1y4

Ct�3y2^y4 �y2^y4 Cty2^y4 �t2y2^y4 �y3^y4

Cty3^y4 �t2y3^y4 �2t�2y2^ty4 Ct3y2^ty4 Ct�1y3^ty4

Ct3y3^ty4 Cy4^ty4 C2t�1y2^t2y4 �t�1y3^t2y4 �t3y3^t2y4

�y4^t2y4 �2y2^t3y4 �t4y2^t3y4 Ct�1y3^t3y4 Ct3y3^t3y4

Cy4^t3y4 Cty2^t4y4 Ct4y2^t4y4 �y3^t4y4 Cty3^t4y4

�t2y3^t4y4 �ty4^t4y4 Ct2y4^t4y4 �t3y4^t4y4 Ct�3y2^t�3y5

�t�2y2^t�3y5 Ct�3y2^t�2y5 �t�2y2^t�2y5 Cy2^t�2y5 �t�4y3^t�2y5

Ct�3y3^t�2y5 �t�1y3^t�2y5 �t�3y4^t�2y5 Ct�2y4^t�2y5 �y4^t�2y5

�t�3y5^t�2y5 �2t�3y2^t�1y5 Ct�1y2^t�1y5 Cy2^t�1y5 �ty2^t�1y5

Ct�4y3^t�1y5 �t�2y3^t�1y5 C2y3^t�1y5 Ct�3y4^t�1y5 �t�1y4^t�1y5

C2ty4^t�1y5 Ct�3y5^t�1y5 Ct�3y2^y5 C2t�2y2^y5 �2t�1y2^y5

�y2^y5 �t2y2^y5 �t�3y3^y5 Ct�2y3^y5 �y3^y5

�ty3^y5 �t2y3^y5 �t�2y4^y5 Ct�1y4^y5 �ty4^y5

�t2y4^y5 �t3y4^y5 Ct�1y5^y5 �t�3y2^ty5 �t�1y2^ty5

Cy2^ty5 Cty2^ty5 Ct3y2^ty5 Ct�1y3^ty5 �y3^ty5

C2ty3^ty5 Ct3y3^ty5 Cy4^ty5 �ty4^ty5 C2t2y4^ty5

Ct4y4^ty5 �t�2y5^ty5 �y5^ty5 Ct�2y2^t2y5 �t�1y2^t2y5

C2y2^t2y5 �t2y2^t2y5 Ct3y2^t2y5 �t�1y3^t2y5 �t2y3^t2y5

�y4^t2y5 �t3y4^t2y5 Ct�1y5^t2y5 �2y5^t2y5 Cty5^t2y5

�ty2^t3y5 �t2y2^t3y5 �t4y2^t3y5 Cy3^t3y5 Cty4^t3y5

Cty5^t3y5 Ct2y5^t3y5 Ct2y2^t4y5 Ct3y2^t4y5 �ty3^t4y5

Ct3y3^t4y5 �t2y4^t4y5 Ct4y4^t4y5 �t2y5^t4y5 �t3y5^t4y5
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�t3y2^t5y5 Ct2y3^t5y5 �t3y3^t5y5 Ct3y4^t5y5 �t4y4^t5y5

Ct3y5^t5y5 �t�3y2^t�3y6 Ct�2y2^t�3y6 �t�2y5^t�3y6 Ct�1y5^t�3y6

Ct�3y2^t�2y6 �t�1y2^t�2y6 Ct�2y5^t�2y6 �y5^t�2y6 Ct�3y2^t�1y6

�t�2y2^t�1y6 Cy2^t�1y6 �t�4y3^t�1y6 Ct�3y3^t�1y6 �t�1y3^t�1y6

�t�3y4^t�1y6 Ct�2y4^t�1y6 �y4^t�1y6 �t�3y5^t�1y6 Cty5^t�1y6

Ct�3y6^t�1y6 �t�2y6^t�1y6 �t�3y2^y6 �t�2y2^y6 Ct�1y2^y6

C2y2^y6 �2ty2^y6 Ct2y2^y6 Ct�3y3^y6 �t�2y3^y6

�t�1y3^y6 C3y3^y6 �ty3^y6 Ct2y3^y6 Ct�2y4^y6

�t�1y4^y6 �y4^y6 C3ty4^y6 �t2y4^y6 Ct3y4^y6

�y5^y6 Cty5^y6 �2t2y5^y6 �t�2y6^y6 Ct�3y2^ty6

Ct�2y2^ty6 �y2^ty6 �ty2^ty6 �t3y2^ty6 �t�1y3^ty6

Cy3^ty6 �2ty3^ty6 �t3y3^ty6 �y4^ty6 Cty4^ty6

�2t2y4^ty6 �t4y4^ty6 Ct�2y5^ty6 Ct�1y5^ty6 Ct2y5^ty6

Ct3y5^ty6 Ct�1y6^ty6 C2y6^ty6 �t�2y2^t2y6 �t�1y2^t2y6

Ct2y2^t2y6 Ct�1y3^t2y6 Ct2y3^t2y6 Ct3y3^t2y6 Cy4^t2y6

Ct3y4^t2y6 Ct4y4^t2y6 �t�1y5^t2y6 Cty5^t2y6 �t2y5^t2y6

�t4y5^t2y6 �2y6^t2y6 �ty6^t2y6 C2y2^t3y6 Ct4y2^t3y6

�t�1y3^t3y6 �t3y3^t3y6 �y4^t3y6 �t4y4^t3y6 �y5^t3y6

�t2y5^t3y6 Ct5y5^t3y6 Cy6^t3y6 Ct2y6^t3y6 �ty2^t4y6

�t2y2^t4y6 �t4y2^t4y6 Cy3^t4y6 Cty4^t4y6 Cty5^t4y6

Ct2y5^t4y6 Ct4y5^t4y6 �t5y5^t4y6 �ty6^t4y6 Ct3y2^t5y6

�t2y3^t5y6 Ct3y3^t5y6 �t3y4^t5y6 Ct4y4^t5y6 �t3y5^t5y6

Ct3y6^t5y6 �t4y6^t5y6
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