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Triple point numbers of surface-links and symmetric
quandle cocycle invariants

KANAKO OSHIRO

For any positive integer n , we give a 2–component surface-link F D F1[F2 such
that F1 is orientable, F2 is non-orientable and the triple point number of F is equal
to 2n . To give lower bounds of the triple point numbers, we use symmetric quandle
cocycle invariants.

57Q45; 18G99, 55N99, 57Q35

1 Introduction

A surface-link is a closed surface smoothly embedded in R4 . Two surface-links F and
F 0 are assumed to be the same if and only if there exists an ambient isotopy fhtg of R4

such that h1.F /DF 0 . When F and F 0 are oriented, it is assumed that h1jF W F!F 0

is an orientation-preserving homeomorphism. In particular, when a surface-link is
connected, we call it a surface-knot.

The triple point number of a surface-link F is defined by the smallest number of the
triple points among all the diagrams of F , and we denote it by t.F /. There are several
studies on triple point numbers. For example, quandle cocycle invariants (see Carter,
Jelsovsky, Kamada, Langford and Saito [1]) are used to give lower bounds of triple point
numbers of orientable surface-links; for example, Satoh and Shima [14] determined
the triple point number of the 2–twist-spun trefoil to be four, and Hatakenaka [4] gave
a lower bound for the triple point number of the 2–twist-spun figure-eight knot. By
a geometric argument about normal Euler numbers, Satoh [12] gave the following
theorem:

Theorem 1.1 (Satoh [12]) For any positive integer n, there exists a 2–component
surface-link F D F1[F2 such that (i) each Fi is a non-orientable surface-knot with
the Euler characteristic �.Fi/D 2� n, and (ii) t.F /D 2n.

In Section 4, we show a method which gives lower bounds for the triple point numbers
of surface-links by using the symmetric quandle cocycle invariants (see Kamada [7]
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and Kamada–Oshiro [8]). We remark that by the symmetric quandle cocycle invariants,
we can give alternative proof of Theorem 1.1. Using new examples of surface-links,
we can also prove the following theorem which is analogous to Theorem 1.1:

Theorem 1.2 For any positive integer n, there exists a 2–component surface-link
F D F1[F2 such that

(i) F1 is an orientable surface-knot with �.F1/D 0,

(ii) F2 is a non-orientable surface-knot with �.F2/D 2� 2n, and

(iii) t.F /D 2n.

By a connected sum of the surface-link which Satoh used for Theorem 1.1 and an
orientable surface-knot, the following was given in [8]: For any positive integers m

and n with m� n .mod 2/ and m� n, there is a surface-link F DF1[F2 such that
F1 is a non-orientable surface with �.F1/D 2�m, F2 is a non-orientable surface
with �.F2/D 2�n and t.F /D 2n. For surface-links composed of two non-orientable
surfaces, we give the following theorem:

Theorem 1.3 For any positive integer n and for any integer m with m� 3, there is a
surface-link F D F1[F2 such that

(i) F1 is a non-orientable surface with �.F1/D 2�m,

(ii) F2 is a non-orientable surface with �.F2/D 2� 2n, and

(iii) t.F /D 2n.

The paper is organized as follows. In Sections 2 and 3, we recall symmetric quandles,
symmetric quandle 3–cocycles, and surface-link invariants with symmetric quandles
introduced in [7; 8]. In Section 4, we show a method to estimate the triple point
numbers of surface-links by using the symmetric quandle invariants. Theorems 1.2 and
1.3 are proved by giving new examples of surface-links in Section 5. In Section 6, we
show several results which can be obtained by using our method for estimating triple
point numbers.

2 Symmetric quandles and their cocycles

A quandle (see Fenn and Rourke [3], Joyce [5] or Matveev [10]) is a set X with a
binary operation .x;y/ 7! xy such that

(i) for any x 2X , it holds that xx D x ,
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(ii) for any x;y 2X , there exists a unique z 2X such that zy D x , and
(iii) for any x;y; z 2X , it holds that .xy/z D .xz/.y

z / .

We denote by xy�1

the element z given in the condition (ii). For a quandle X , a good
involution � of X [7; 8] means an involution of X such that

(i) for any x;y 2X; �.xy/D �.x/y ; and

(ii) for any x;y 2X; x�.y/ D xy�1

:

A pair of a quandle and a good involution is called a symmetric quandle.

Let .X; �/ be a symmetric quandle, and A an abelian group. A homomorphism
� W Z.X 3/!A is a symmetric quandle 3–cocycle of .X; �/ if the following conditions
are satisfied:

(i) For any .a; b; c; d/ 2X 4 ,

�.a; c; d/� �.ab; c; d/� �.a; b; d/C �.ac ; bc ; d/C �.a; b; c/� �.ad ; bd ; cd /D 0;

(ii) for any .a; b/ 2X 2 , �.a; a; b/D 0 and �.a; b; b/D 0, and
(iii) for any .a; b; c/ 2X 3 ,

�.a; b; c/C �.�.a/; b; c/D 0; �.a; b; c/C �.ab; �.b/; c/D 0

and �.a; b; c/C �.ac ; bc ; �.c//D 0:

Here, Z.X 3/ is the free Z–module generated by all the elements of X 3DX �X �X .
Notice that a symmetric quandle 3–cocycle of .X; �/ is a 3–cocycle of the cochain
complex defined for the symmetric quandle .X; �/ in [7; 8].

For any element k in Z, we use the same symbol k to indicate the element Œk� in Z2 ,
and any element of Z2˚Z is denoted by a form ˛˚ˇ , where ˛ is the entry of Z2 ,
and ˇ is the entry of Z.

Example 2.1 The set f0; 1; � � � ; n� 1g with the operation xy � 2y �x .mod n/ for
any x;y 2 f0; 1; � � � ; n� 1g is a quandle, which is called a dihedral quandle of order
n. All of the good involutions of a dihedral quandle are determined in [8]. Let X

be the dihedral quandle f0; 1; 2; 3g of order 4. The involution �W X !X defined by
�.0/D 2 and �.1/D 3, is a good involution of X . Define a map � W X 3! Z2˚Z
such that

�.a; b; c/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0˚ 1 .a; b; c/D .0; 1; 0/; .0; 3; 0/; .2; 1; 2/; .2; 3; 2/;

.1; 0; 3/; .1; 2; 3/; .3; 0; 1/; .3; 2; 1/;

0˚ .�1/ .a; b; c/D .0; 1; 2/; .0; 3; 2/; .2; 1; 0/; .2; 3; 0/;

.1; 0; 1/; .1; 2; 1/; .3; 0; 3/; .3; 2; 3/;

0˚ 0 otherwise.
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Then the the linear extension � W Z.X 3/! Z2˚Z is a symmetric quandle 3–cocycle
of .X; �/.

Example 2.2 Let X D f0; 1; 2g be the quandle such that

00 D 0; 01 D 0; 02 D 0;

10 D 2; 11 D 1; 12 D 1;

20 D 1; 21 D 2; 22 D 2:

The involution �W X !X defined by �.0/D 0 and �.1/D 2, is a good involution of
X . Define a map � W X 3! Z2˚Z such that

�.a; b; c/D

8̂̂̂̂
<̂
ˆ̂̂:

1˚ 0 .a; b; c/D .0; 1; 0/; .0; 2; 0/

0˚ 1 .a; b; c/D .1; 0; 2/; .2; 0; 1/

0˚ .�1/ .a; b; c/D .1; 0; 1/; .2; 0; 2/

0˚ 0 otherwise.

Then the linear extension � W Z.X 3/! Z2˚Z is a symmetric quandle 3–cocycle of
.X; �/.

3 Symmetric quandle cocycle invariants

Let D be a diagram in R3 of a surface-link F in R4 , where the lower sheets are divided
along double point curves to indicate crossing information. We divide over-sheets along
the double point curves and we call the sheets of the result semi-sheets of D . Note
that every semi-sheet is orientable even if F is non-orientable, see Kamada [6].

For a symmetric quandle .X; �/, we say that an assignment of a normal orientation
and an element of X to each semi-sheet of D satisfies the coloring conditions if it
satisfies the following:

(i) Suppose that two adjacent semi-sheets coming from an over-sheet of D about
a double point curve are labeled by x1 and x2 . If the normal orientations are
coherent then x1 D x2 , otherwise x1 D �.x2/. See the top row of Figure 1.

(ii) Suppose that two adjacent semi-sheets S1 and S2 coming from under-sheets
about a double point curve are labeled by x1 and x2 , and that one of the two
semi-sheets coming from an over-sheet of D , say S3 , is labeled by x3 . We
assume that the normal orientation of S3 points from S1 to S2 . If the normal
orientations of S1 and S2 are coherent, then x

x3

1
D x2 , otherwise x

x3

1
D �.x2/.

See the bottom row of Figure 1.
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An .X; �/–coloring of D is the equivalence class of an assignment of normal orienta-
tions and elements of X to the semi-sheets of D satisfying the coloring conditions.
Here, the equivalence relation is generated by basic inversions, that is, a basic inversion
reverses the normal orientation of a semi-sheet and changes the element x assigned
the sheet by �.x/. See Figure 2.

?x

D

6
�.x/

Figure 2

We call a diagram with an .X; �/–coloring CD an .X; �/–colored diagram and denote
it by .D;CD/.

Algebraic & Geometric Topology, Volume 10 (2010)



858 Kanako Oshiro

Let .D;CD/ and .D0;CD0/ be .X; �/–colored diagrams of a surface-link F . We say
that .D;CD/ and .D0;CD0/ (or the .X; �/–colorings CD of D and CD0 of D0 ) are
equivalent if they are related by a finite sequence of Roseman moves (see Roseman [11],
and also Carter and Saito [2]) over which the colorings extend. We call the equivalence
class of .D;CD/ an .X; �/–coloring of F . An .X; �/–colored surface-link .F;C / is
a surface-link F equipped with an .X; �/–coloring C .

Let .D;CD/ be an .X; �/–colored diagram of an .X; �/–colored surface-link .F;C /.
Let � W Z.X 3/!A be a symmetric quandle 3–cocycle of .X; �/. For a triple point of
D , define the � –weight as follows: Choose one of eight 3–dimensional complementary
regions around the triple point and call the region a specified region. There exist 12
semi-sheets around the triple points. Let ST , SM and SB be the three of them that
face the specified region, where ST , SM and SB are in the top sheet, the middle
sheet and the bottom sheet at the triple point, respectively. Let nT , nM and nB be the
normal orientations of ST , SM and SB which point away from the specified region.
Let x , y and z be the elements of X assigned to the semi-sheets ST , SM and SB

with the normal orientations nT , nM and nB , respectively. The � –weight of the triple
point is defined by "�.z;y;x/, where " is C1 (or �1) if the triple of the normal
orientations .nT ; nM ; nB/ does (or does not) match with the orientation of R3 . The
sign of the triple point as shown in Figure 3 is positive.

y
�

�

?x

z

C�.z;y;x/

ST

SM

SB

nT

nM

nB

Figure 3

Define �.D;CD/ by

�.D;CD/D
X
�

(� –weight of � ) 2A;

where � runs over all the triple points of D .
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Theorem 3.1 (Kamada and Oshiro [8]) The value �.D;CD/ is an invariant of an
.X; �/–colored surface-link .F;C /.

We denote �.D;CD/ by �.F;C /.

4 Estimates of triple point numbers

For non-negative integers s and t , let As;t denote the direct sum of s copies of Z2

and t copies of Z, that is, As;t D .Z2/
s ˚ .Z/t . Every element of As;t has a form

.˛1˚ � � � ˚ ˛s/˚ .ˇ1˚ � � � ˚ˇt /, where ˛i is the entry of i th Z2 .1 � i � s/, and
ǰ is the entry of j th Z .1� j � t/. We denote by pi and qj the elements of As;t

whose entries are all zeros except ˛i D 1 and ǰ D 1, respectively.

Let .X; �/ be a symmetric quandle, and � W Z.X 3/!As;t a 3–cocycle of .X; �/. We
consider the following condition for � :

(�) For any generator .a; b; c/ 2X 3 of Z.X 3/, it holds that

�.a; b; c/ 2 f0;pi ;˙qj j 1� i � s; 1� j � tg:

We remark that the symmetric quandle 3–cocycles given in Examples 2.1 and 2.2
satisfy the condition (�).

Theorem 4.1 Let � be a 3–cocycle of a symmetric quandle .X; �/ with the condition
.�/. If the invariant �.F;C / of a surface-link F with an .X; �/–coloring C is equal to
.˛1˚� � �˚˛s/˚ .ˇ1˚� � �˚ˇt /, then we have t.F /�

Ps
iD1 ˛iC

Pt
jD1 j ǰ j, where

the sum is taken in Z by regarding ˛k D 0 or 1 as an element of Z.

Proof We take any .X; �/–colored diagram .D;CD/ of .F;C /. Let t.D/ denote
the number of triple points of D , and mi .1 � i � s/, nj and n0

j .1 � j � t/ the
number(s) of triple points whose � –weights are pi , qj and �qj , respectively.

Since the � –weight of any triple point of D is one of 0, pi , qj , and �qj , it holds that

�.D;CD/ D
Ps

iD1 mipi C
Pt

jD1 nj qj C
Pt

jD1 n0
j .�qj /

D .m1˚ � � �˚ms/˚
�
.n1� n0

1
/˚ � � �˚ .nt � n0

t /
�
:

Hence, we have ˛i �mi .mod 2/ and ǰ D nj � n0
j by assumption. Since ˛i �mi

and j ǰ j � nj C n0
j , it holds that

sX
iD1

˛i C

tX
jD1

j ǰ j �

sX
iD1

mi C

tX
jD1

.nj C n0
j /� t.D/:
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5 Proofs of Theorems 1.2 and 1.3

In this section, we give surface-links which satisfy Theorems 1.2 and 1.3.

Let F be a surface-link in R4 D f.x;y; z; t/ 2R4g whose motion picture is given in
Figure 4. It is composed of an unknotted torus F1 and an unknotted, non-orientable
surface F2 with �.F2/D 2� 2n. Notice that in Figure 4, the deformations from (i) to
(ii) and from (iii) to (iv) are the isotopic deformations corresponding to n Reidemeister
moves of type III, respectively. The other isotopies are obtained by Reidemeister moves
I and II only.

Let D be the diagram obtained by the projection � W R4!R3 with �.x;y; z; t/ 7!
.x;y; 0; t/. Instead of illustrating the whole of D , we use the one-parameter family
fD\R2Œt �gt2R , where R2Œt �D f.x;y; 0; t/ j x 2R;y 2Rg.

Proof of Theorem 1.2 We will prove that the surface-link F constructed as above
satisfies t.F /D 2n. It is not difficult to see that �.F2/D 2� 2n.

Let .X; �/ and � be the symmetric quandle and the symmetric quandle 3–cocycle given
in Example 2.2. We define an .X; �/–coloring C for D such that (i) any semi-sheet
of F1 is assigned by 0 2 X with any normal orientation, and (ii) the semi-sheet of
F2 marked by � in R2Œ�2� is assigned by 1 2X with the orientation as in the figure,
which can be extended to any other semi-sheets of F2 uniquely.

Between the stills (i) and (ii) in Figure 4, the Reidemeister moves of type III arise
n times and each move is depicted in Figure 5. Each Reidemeister move of type III
corresponds to a triple point whose � –weight is ��.2; 0; 2/ D 0˚ 1. Between the
stills (iii) and (iv) in Figure 4, the Reidemeister moves of type III arise n times and
each move is depicted in Figure 6. Each Reidemeister move of type III corresponds to
a triple point whose � –weight is �.1; 0; 2/D 0˚ 1. Therefore, �.E.n/;C / is equal to
0˚ 2n. By Theorem 4.1, t.E.n//� 2n.

Proof of Theorem 1.3 Let F D F1 [ F2 be the surface-link as above, and K an
unknotted non-orientable surface-knot with �.K/D 4�m .m � 3/. We denote by
F]K D .F1]K/[F2 the connected sum of F1 � F and K . It follows by definition
that �.F1]K/D 2�m and t.F]K/� 2n.

On the other hand, the .X; �/–coloring C for F in the proof of Theorem 1.2 is
extended to that for F]K with the same � –weight. Hence, we have t.F]K/D 2n by
a similar argument to the previous proof.
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} }

x

y

z

�
II

�

n

t D�3 t D�2 t D�1

�
III

�
I,II �

(i) (ii)
t D 0

n�1 n �
III

�
I

t D 1 t D 2 t D 3(iii) (iv)

Figure 4

Remark 5.1 For the surface-link F as above, we can also use Satoh’s method [12]
to prove that t.F /D 2n. However, for the surface-link F]K which is constructed in
the proof of Theorem 1.3, we can not prove t.F]K/ D 2n by his method since the
surface-link is P2 –reducible.
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6 Other results by Theorem 4.1

In this section, we show some results which can be obtained as an application of
Theorem 4.1.

For the positive integer n, let GDG1[G2 be a surface-link in R4Df.x;y; z; t/2R4g

whose motion picture is given in Figure 7. Each component of Gi is a non-orientable
surface with �.Gi/ D 2� n. This is the surface-link which Satoh used for proving
Theorem 1.1.

The following theorem is a generalization of Theorem 1.1. We can give alternative
proofs by a symmetric quandle 3–cocycle similarly to the proof of Theorem 1.2, or by
a geometric argument used in [12]. We say that a surface-link is pseudo-ribbon if it
has a diagram without triple points (see Kawauchi [9]).

}}

x
y

z

�
II

1

1

G1 G2

n n

1

1

1

1

�
I,III 1

1

�
II

(i) (ii)
t D�1 t D 0 t D 1

Figure 7
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Theorem 6.1 (Kamada and Oshiro [8]) Let G be the surface-link as above. For any
orientable surface-knot K , the connected sum G]K D .G1]K/[G2 satisfies

t.G]K/� 2n:

In particular, if K is pseudo-ribbon, then the equality holds.

For a non-orientable surface-knot K , the connected sum G]K is not necessarily P2 –
irreducible. Hence we can not apply the Satoh’s argument to the surface-link. In this
case, we have the following.

Theorem 6.2 Let G be the surface-link as above. For any non-orientable surface-knot
K , it holds that

t.G]K/�

�
nC 1 if n is an odd number,

n if n is an even number:

Proof Let .X; �/ and � be the symmetric quandle and the symmetric quandle 3–
cocycle given in Example 2.2, respectively. By the definition,

�.a; b; c/ 2 f0˚ 0; 1˚ 0; 0˚ 1; 0˚ .�1/g

for any .a; b; c/ 2X 3 .

Let D be the diagram of G corresponding to the motion picture and C the .X; �/–
coloring for G as shown in Figure 7. Between the stills (i) and (ii), the Reidemeister
moves III arise 2n times. More precisely, a pair of moves III is depicted in Figure 8.
The sum of the � –weights is equal to

��.1; 0; 1/C �.0; 2; 0/D 0˚ 1C 1˚ 0D 1˚ 1;

and hence, we have �.G;C /D n˚ n.

For any non-orientable surface-knot K , we extend the .X; �/–coloring C for G to
that for G]K such that K is colored trivially. Then it follows by definition that
�.G]K;C /D �.G;C /D n˚ n, and we have the conclusion by Theorem 4.1.

}} } }} }i

0
1

1

i 0

1
1

i
0

0

1

1

i�1

0
0

1

1

i�1

0

1

1

i�1

Figure 8
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The equality given in Theorem 6.2 holds for nD 1.

Question 6.3 Does the equality in Theorem 6.2 hold for any n� 2?

We remark that the triple point number is generally not additive with respect to the
connected sum (see Satoh [13]).
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