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The Lusternik–Schnirelmann category
and the fundamental group

ALEXANDER DRANISHNIKOV

We prove that

catLSX � cd.�1.X //C

�
dim X � 1

2

�
for every CW–complex X where cd.�1.X // denotes the cohomological dimension
of the fundamental group of X .

55M30

1 Introduction

The Lusternik–Schnirelmann category catLS X of a topological space X is the minimal
number n such that there is an open cover fU0; : : : ;Ung of X by nC1 contractible in X

sets (we note that sets Ui are not necessarily contractible). The Lusternik–Schnirelmann
category has proven useful in different areas of mathematics. In particular, the classical
theorem of Lusternik and Schnirelmann (see Cornea et al [3]) proven in the 30s states
that catLS M gives a lower bound for the number of critical points on M of any smooth
not necessarily Morse function. For nice spaces, such as CW–complexes, it is an easy
observation that catLS X � dim X . In the 40s Grossman [8] (and independently in
the 50s G W Whitehead [16; 3]) proved that for simply connected CW–complexes
catLS X � dim X=2. In the presence of a fundamental group as small as Z2 the
Lusternik–Schnirelmann category can be equal to the dimension. An example is RPn .

Nevertheless, Yu Rudyak conjectured that in the case of free fundamental group
there should be a Grossman–Whitehead-type inequality at least for closed manifolds.
There were partial results towards Rudyak’s conjecture (see Dranishnikov, Katz and
Rudyak [6] and Strom [13]) until it was settled by the author [5]. Also it was shown
in [5] that a Grossman–Whitehead-type estimate holds for complexes with fundamental
group of cohomological dimension � 2. We recall that free groups (and only them by
Stallings [12] and Swan [15]) have cohomological dimension one. In this paper we
prove an inequality for complexes with fundamental groups having finite cohomological
dimension. Complexes of type CPn �B� show that our inequality is sharp when �
is free.
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We conclude the introductory part with definitions and statements from [5] which are
used in this paper. Let U D fU˛g˛2A be a family of sets in a topological space X .
Formally, it is a function U W A! 2X n f¿g from the index set to the set of nonempty
subsets of X . The sets U˛ in the family U will be called elements of U . The multiplicity
of U (or the order) at a point x 2X , denoted Ordx U , is the number of elements of
U that contain x . The multiplicity of U is defined as OrdU D supx2X Ordx U . A
family U is a cover of X if Ordx U ¤ 0 for all x . A cover U is a refinement of another
cover C (U refines C ) if for every U 2U there exists C 2C such that U �C . We recall
that the covering dimension of a topological space X does not exceed n, dim X � n,
if for every open cover C of X there is an open refinement U with OrdU � nC 1.

Definition 1.1 A family U of subsets of X is called a k –cover, k 2 N , if every
subfamily of k elements forms a cover of X .

The following is obvious (see Dranishnikov [5]).

Proposition 1.2 A family U that consists of m subsets of X is an .nC 1/–cover
of X if and only if Ordx U �m� n for all x 2X .

The following theorem can be found in Ostrand [10].

Theorem 1.3 (Kolmogorov–Ostrand) A metric space X is of dimension � n if and
only if for each open cover C of X and each integer m � n, there exist m disjoint
families of open sets V0; : : : ;Vm such that their unions

S
Vi is an .nC 1/–cover of

X and it refines C .

Let f W X ! Y be a map and let X 0�X . A set U �X is fiberwise contractible to X 0

if there is a homotopy H W U � Œ0; 1�!X such that H.x; 0/D x , H.U � f1g/�X 0 ,
and f .H.x; t//D f .x/ for all x 2 U .

We refer to [5] for the proof of the following:

Theorem 1.4 Let U D fU0; : : : ;Ukg be an open cover of a normal topological
space X . Then for any m D 0; 1; 2; : : : ;1 there is an open .k C 1/–cover Um D

fU0; : : : ;UkCmg of X extending U such that for n > k , Un D
Sk

iD0 Vi is a disjoint
union with Vi � Ui .

Corollary 1.5 Let f W X ! Y be a continuous map of a normal topological space and
let U D fU0; : : : ;Ukg be an open cover of X by sets fiberwise contractible to X 0 �X .
Then for any mD0; 1; 2; : : : ;1 there is an open .kC1/–cover UmDfU0; : : : ;UkCmg

of X by sets fiberwise contractible to X 0 .
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2 Generalization of Ganea’s fibrations

Let A�Z be a closed subset of a path-connected space and let F denote the homotopy
fiber of the inclusion. By AZ we denote the space of paths in Z issued from A, ie
the space of continuous maps �W Œ0; 1� ! Z with �.0/ 2 A and we define a map
pAW AZ !Z by the formula p.�/D �.1/. Note that AZ deforms to A and pA is a
Hurewicz fibration. Then by the definition F is the fiber of pA .

Proposition 2.1 There is a Hurewicz fibration � W F ! A with fiber �Z , the loop
space on Z .

Proof The map q0W AZ !A�Z that sends a path to the end points is a Hurewicz
fibration as a pullback of the Hurewicz fibration qW ZŒ0;1�!Z�Z [11]. The fiber of q

is the loop space �Z . Since pAD pr2 ıq
0 , the fiber F Dp�1

A
.x/D .q0/�1 pr�1

2
.x/D

q�1.A/ is the total space of a Hurewicz fibration q over A with the fiber �Z .

We define the k –th generalized Ganea’s fibration pk W Ek.Z;A/! Z over a path
connected space Z with a fixed closed subset A as the fiberwise join product of
k C 1 copies of the fibrations pAW AZ ! Z . Since pA is a Hurewicz fibration and
the fiberwise join of Hurewicz fibrations is a Hurewicz fibration, so are all pk by
Švarc [14]. Note that the fiber of pk is the join product �kC1F of kC 1 copies of F

(see Cornea et al [3] for more details). Also we note that for AD fz0g the fibration pk

is the standard Ganea fibration. The following is a generalization of the Ganea–Švarc
theorem.

Theorem 2.2 Let A�X be a subcomplex contractible in X . Then catLS.X /� k if
and only if the generalized Ganea fibration

pk W Ek.Z;A/!Z

admits a section.

Proof When A is a point this statements turns into the classical Ganea–Švarc theorem
[3; 14]. Since for z0 2 A, the above fibration pk W Ek.Z; z0/! Z is contained in
pk W Ek.Z;A/!Z , the classical Ganea–Švarc theorem implies the only if direction.

The barycentric coordinates of a section to pk define an open cover U0; : : :Uk of
Ui with each Ui contractible to A. Since A is contractible in Z , all sets Ui are
contractible in Z .
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We call a map f W X ! Y a stratified locally trivial bundle (with two strata) with fiber
.Z;A/ if there X 0 �X , such that .f �1.y/;g�1.y//Š .Z;A/ for all y 2 Y , where
g D f jX 0 , and there is an open cover U D fU g of Y such that .f �1.U /;g�1.U // is
homeomorphic as a pair to .Z �U;A�U / by means of a fiber preserving homeomor-
phism. Such a bundle is called a trivial stratified bundle if one cant take U consisting
of one element U D Y .

Now let f W X ! Y be a stratified locally trivial bundle with a subbundle gW X 0! Y

and a fiber .Z;A/. We define a space

E0 D f� 2 C.I;X / j f �.I/D f �.0/; �.0/ 2 g�1.f �.0//g

to be the space of all paths � in f �1.y/ for all y 2 Y with the initial point in g�1.y/.
The topology in E0 is inherited from C.I;X /. We define a map �0W E0!X by the
formula �0.�/D �.1/. Then �k W Ek ! X is defined as the fiberwise join of k C 1

copies of �0 . Formally, we define inductively Ek as a subspace of the join E0�Ek�1 :

Ek D

[
f� � 2E0 �Ek�1 j �0.�/D �k�1. /g;

which is the union of all intervals Œ�;  � D � �  with the endpoints � 2 E0 and
 2Ek�1 such that �0.�/D �k�1. /. There is a natural projection �k W Ek!X that
takes all points of each interval Œ�;  � to �.0/.

Note that when f W X D Z � Y ! Y is a trivial stratified bundle with the subbun-
dle gW A � Y ! Y , A � Z , then Ek D Ek.Z;A/ � Y and �k D pk � 1Y where
pk W .Ek ;A/!Z is the generalized Ganea fibration.

Lemma 2.3 Let f W X ! Y be a stratified locally trivial bundle between paracompact
spaces with a fiber .Z;A/ in which A is contractible in Z . Then:

(i) For each k the map �k W Ek !X is a Hurewicz fibration.

(ii) The fiber of �k is the join of kC 1 copies of the fiber F of pAW AZ !Z .

(iii) If the projection �k has a section, then X has an open cover U D fU0; : : : ;Ukg

by sets each of which admits a fiberwise deformation into X 0 where gW X 0! Y

is the subbundle.

Proof (i) First, we note that this statement holds true for trivial stratified bundles. By
the assumption there is a cover U of Y such that f jf �1U W f

�1.U /! U is a trivial
stratified bundle and hence �k is a Hurewicz fibration over f �1.U / for all U 2 U .
Then by Hurewicz [9] (see also Dold [4]) we conclude that �k is a Hurewicz fibration
over X .
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(ii) We note that �k over f �1.y/ coincides with the generalized Ganea fibration pk

for .Z;A/. Therefore, the fiber of �k coincides with the fiber of pk . Then we apply
Proposition 2.1

(iii) Suppose �k has a section � W X ! Ek . For each x 2 X the element �.x/ of
�kC1�F can be presented as the .kC 1/–tuple

�.x/D ..�0; t0/; : : : ; .�k ; tk// where
X

ti D 1 and ti � 0:

Here we use the notation ti D ti.x/ and �i D�
x
i . Clearly, ti.x/ and �x

i are continuous
functions of x .

A section � W X !Ek defines a cover U D fU0; : : : ;Ukg of X as follows:

Ui D fx 2X j ti.x/ > 0g:

By the construction of Ui for i � n for every x 2Ui there is a canonical path connect-
ing x with g�1f .x/. These paths define a fiberwise deformation H W Ui � Œ0; 1�!X 0

of Ui into g�1f .Ui/�X 0 by the formula H.x; t/D �x
i .1� t/.

3 The main result

We recall that the homotopical dimension of a space X , hd.X /, is the minimal dimen-
sion of a CW–complex homotopy equivalent to X [3].

Proposition 3.1 Let pW E ! X be a fibration with .n� 1/–connected fiber where
nD hd.X /. Then p admits a section.

Proof Let hW Y!X be a homotopy equivalence with the homotopy inverse gW X!Y

where Y is a CW–complex of dimension n. Since the fiber of p is .n�1/–connected,
the map h admits a lift h0W Y !E . Let H be a homotopy connecting hıg with 1X . By
the homotopy lifting property there is a lift H 0W X�I!E of H with H jX�f0gDh0ıg .
Then the restriction H jX�f1g is a section.

We recall that dxe denotes the smallest integer n such that x � n.

Lemma 3.2 Suppose that a stratified locally trivial bundle f W X ! Y with a fiber
.Z;A/ is such that Z is r –connected, A is .r �1/–connected, A is contractible in Z ,
and Y is locally contractible. Then

catLS X � dim Y C

�
hd.X /� r

r C 1

�
:
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Proof Let dim Y Dm and hd.X /D n.

By Lemma 2.3 the fiber K of the fibration �k W Ek!X is the join product �kC1F of
kC 1 copies of the fiber F of the map pAW AZ !Z . By Proposition 2.1, F admits
a fibration �W F !A with fibers homotopy equivalent to the loop space �Z . Since
the base A and the fibers are .r � 1/–connected, F is .r � 1/–connected. Thus, K is
.kC .kC 1/r � 1/–connected. By Proposition 3.1 there is a section � W X !Ek to
the fibration �k W Ek !X , whenever k.r C 1/C r � n. Let k be the smallest integer
satisfying this condition. Thus, k D d.n� r/=.r C 1/e.

By Lemma 2.3 a section � W X !Ek defines a cover U D fU0; : : : ;Ukg by sets fiber-
wise contractible to X 0 where X 0 �X is the first stratum. Let UmD fU0; : : : ;UkCmg

be an extension of U to a .kC 1/–cover of X from Corollary 1.5.

Let O be an open cover of Y such that f is trivial stratified bundle over each O 2O .
Let C be an open cover of Y such that for every C 2 C there is O 2 O such that
C �O and C is contractible in O . Such a cover exists since Y is locally contractible.
By Theorem 1.3 there are mC kC 1 families of open sets V0; : : : ;VmCk such that
their union forms an .mC 1/–cover of Y refining C . We define Vi D

S
˛ V ˛

i to
be the unions of all sets from Vi D fV

˛
i g. Then V D fV0; : : : ;VmCkg is an open

.mC 1/–cover of Y such that for every i , Vi D
S
˛ V ˛

i is a disjoint union of open
sets V ˛

i contractible to a point in O˛
i 2O .

We show that for all i 2 f0; 1; : : : ;mCkg, the sets Wi Df
�1.Vi/\Ui are contractible

in X . Since
Wi D

[
˛

f �1.V ˛
i /\Ui

is a disjoint union, it suffices to show that the sets f �1.V ˛
i /\Ui are contractible in X

for all ˛ . By Corollary 1.5 the set Ui is fiberwise contractible into X 0 for i �mC k .
Hence we can contract f �1.V ˛

i /\Ui to f �1.V ˛
i /\X 0 Š V ˛

i �A in X . Then we
apply a contraction to a point of V ˛

i in O˛
i and A in F to obtain a contraction to a

point of f �1.V ˛
i /\X 0 Š V ˛

i �A in f �1.O˛
i /ŠO˛

i �F .

Next we show that fWig
mCk
iD0

is a cover of X . Since V is an .mC 1/–cover, by
Proposition 1.2 every y 2 Y is covered by at least kC 1 elements Vi0

; : : : ;Vik
of V .

Since Um is a .k C 1/–cover, Ui0
; : : : ;Uik

is a cover of X . Hence Wi0
; : : : ;Wik

covers f �1.y/.

Theorem 3.3 For every CW–complex X with the following inequality holds true:

catLS X � cd.�1.X //C

�
hd.X /� 1

2

�
:
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Proof Let � D �1.X / and let zX denote the universal cover of X . We consider
Borel’s construction:

zX  ���� zX �E� ����! E�??y ??y ??y
X

g
 ���� zX �� E�

f
����! B�:

We refer for the properties of Borel’s construction also known as the twisted product
to [1]. Note that the 1–skeleton X .1/ of X defines a � –equivariant stratification
zX .1/ � zX of the universal cover. This stratification allows us to treat f as a stratified

locally trivial bundle with the fiber . zX ; zX .1//. We note that all conditions of Lemma
3.2 are satisfied for r D 1. Therefore,

catLS. zX �� E�/� dim B� C

�
hd. zX �� E�/� 1

2

�
:

Since g is a fibration with homotopy trivial fiber, the space zX �� E� is homotopy
equivalent to X . Thus, catLS. zX �� E�/D catLS X and hd. zX �� E�/D hd.X /. In
view of the results of Eilenberg and Ganea [7] (see also Brown [2]) we may assume
that dim B� D cd.�/ if cd.�/ > 2. The case when cd.�/� 2 is treated in [5].
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