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The simplicial volume of hyperbolic manifolds
with geodesic boundary

ROBERTO FRIGERIO

CRISTINA PAGLIANTINI

Let n � 3 , let M be an orientable complete finite-volume hyperbolic n–manifold
with compact (possibly empty) geodesic boundary, and let Vol.M / and kM k be
the Riemannian volume and the simplicial volume of M . A celebrated result by
Gromov and Thurston states that if @M D∅ then Vol.M /=kM k D vn , where vn is
the volume of the regular ideal geodesic n–simplex in hyperbolic n–space. On the
contrary, Jungreis and Kuessner proved that if @M ¤∅ then Vol.M /=kM k< vn .

We prove here that for every � > 0 there exists k > 0 (only depending on � and n)
such that if Vol.@M /=Vol.M / � k , then Vol.M /=kM k � vn � � . As a conse-
quence we show that for every � > 0 there exists a compact orientable hyperbolic
n–manifold M with nonempty geodesic boundary such that Vol.M /=kM k� vn�� .

Our argument also works in the case of empty boundary, thus providing a somewhat
new proof of the proportionality principle for noncompact finite-volume hyperbolic
n–manifolds without geodesic boundary.

53C23; 57N16, 57N65

1 Preliminaries and statements

Let X be a topological space, let Y �X be a (possibly empty) subspace of X , and let
R be a ring (in the present paper only the cases RDR and RDZ will be considered).
For i 2 N we denote by Ci.X IR/ the module of singular i –chains over R, ie the
R–module freely generated by the set Si.X / of singular i –simplices with values in X .
The natural inclusion of Y in X induces an inclusion of Ci.Y IR/ into Ci.X IR/,
so it makes sense to define Ci.X;Y IR/ as the quotient space Ci.X IR/=Ci.Y IR/

(of course, if Y D∅ we get Ci.X;Y IR/D Ci.X IR/). The usual differential of the
complex C�.X IR/ defines a differential d�W C�.X;Y IR/! C��1.X;Y IR/. The
homology of the resulting complex is the usual relative singular homology of the
topological pair .X;Y / and will be denoted by H�.X;Y IR/.

Published: 23 April 2010 DOI: 10.2140/agt.2010.10.979



980 Roberto Frigerio and Cristina Pagliantini

In what follows, we will denote simply by Ci.X /, Ci.X;Y / respectively the modules
Ci.X IR/, Ci.X;Y IR/. The R–vector space Ci.X;Y / can be endowed with the
following natural L1 –norm: if ˛ 2 Ci.X;Y /, then

k˛k D k˛k1 D inf

( X
�2Si .X /

ja� j ; where ˛ D

" X
�2Si .X /

a��

#
in Ci.X /=Ci.Y /

)
:

Such a norm descends to a seminorm on H�.X;Y /, which is defined as follows: if
Œ˛� 2Hi.X;Y /, then

kŒ˛�k D inffkˇk; ˇ 2 Ci.X;Y /; dˇ D 0; Œˇ�D Œ˛�g

(note that such a seminorm can be null on nonzero elements of H�.X;Y /).

1.1 Simplicial volume

Throughout the whole paper, every manifold is assumed to be connected and orientable.
If M is a compact n–manifold with (possibly empty) boundary @M , then we denote
by ŒM �Z a generator of Hn.M; @M IZ/ Š Z. Such a generator is usually known
as the fundamental class of the pair .M; @M /. The inclusion Z ,! R induces a
map l W Hn.M; @M IZ/ ,!Hn.M; @M IR/DHn.M; @M /ŠR, and we set ŒM �R D

l.ŒM �Z/. The following definition is due to Gromov [7] (see also Thurston [23]):

Definition 1.1 The simplicial volume of M is kM k D kŒM �Rk.

Since continuous maps induce norm nonincreasing maps on singular chains and a
homotopy equivalence of pairs f W .M; @M /! .N; @N / between n–manifolds maps
the fundamental class of M into the fundamental class of N , it is readily seen that
the simplicial volume of a compact manifold M is a homotopy invariant of the pair
.M; @M /.

As Gromov pointed out in his seminal work [7], even if it depends only on the homotopy
type of a manifold, the simplicial volume is deeply related to the geometric structures
that a manifold can carry. For example, closed manifolds which support negatively
curved Riemannian metrics have nonvanishing simplicial volume, while the simplicial
volume of flat or spherical manifolds is null (see eg Gromov [7]). Even if several
vanishing and nonvanishing results for the simplicial volume have been established
(see eg Gromov [7], Lafont and Schmidt [17] and Bucher-Karlsson [3]), it is maybe
worth mentioning that, as far as the authors know, the exact value of nonnull simplicial
volumes is known at the moment only in the following cases: a celebrated result by
Gromov and Thurston (see Theorem 1.2 below) computes the simplicial volume of
closed (and cusped) hyperbolic manifolds, and the simplicial volume of the product of
compact orientable surfaces has been recently determined by Bucher-Karlsson [4].
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1.2 The simplicial volume of hyperbolic manifolds

Let n � 3. Throughout the whole paper, by hyperbolic n–manifold we will mean
a complete finite-volume hyperbolic n–manifold M with compact (possibly empty)
geodesic boundary. We recall that if M is cusped, ie if it is noncompact, then M

naturally compactifies to a manifold with boundary SM obtained by adding to M a
finite number of boundary .n� 1/–manifolds supporting a flat structure (see Section
2.1 below).

Let vn be the supremum of volumes of geodesic n–simplices in hyperbolic n–space Hn .
It is well-known (see Haagerup and Munkholm [9] and Peyerimhoff [21]) that vn is
equal to the volume of the geodesic regular ideal n–simplex. The following result
is due to Thurston [23] and Gromov [7] (detailed proofs can be found in Benedetti
and Petronio [2] for the closed case, and in Francaviglia [5] and Kuessner [16] for the
cusped case):

Theorem 1.2 (Gromov, Thurston) Suppose M is a hyperbolic n–manifold without
boundary. Then k SM k ¤ 0 and

Vol.M /

k SM k
D vn:

A different result holds for hyperbolic manifolds with nonempty geodesic boundary:

Theorem 1.3 [12; 15] Let M be a hyperbolic n–manifold with nonempty geodesic
boundary. Then k SM k ¤ 0 and

Vol.M /

k SM k
< vn:

In this paper we show how to control the gap between Vol.M /=k SM k and vn in terms
of the ratio between the .n� 1/–dimensional volume of @M and the n–dimensional
volume of M . More precisely, in Section 4 we prove the following:

Theorem 1.4 Let �> 0. Then there exists k > 0 depending only on � and n such that
the following result holds: if M is a hyperbolic n–manifold with nonempty geodesic
boundary such that

Vol.@M /

Vol.M /
� k;

then

Vol.M /

k SM k
� vn� �:
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It is not difficult to show that for every n � 3 there exist compact hyperbolic n–
manifolds with nonempty disconnected geodesic boundary (see for example Gromov
and Pietetski-Shapiro [8, Example 2.8.C]). Let M be one such manifold, choose one
connected component B0 of @M and let M 0 be the manifold obtained by mirroring M

along @M nB0 , so @M 0 is isometric to two copies of B0 . For i � 1, we inductively
construct Mi by setting M1 D M 0 and defining MiC1 as the manifold obtained
by isometrically gluing one component of @Mi to one component of @M1 . It is
readily seen that Mi is a compact hyperbolic n–manifold with nonempty geodesic
boundary such that Vol.Mi/ D 2iVol.M / and Vol.@Mi/ D 2Vol.B0/. We have
therefore limi!1Vol.@Mi/=Vol.Mi/ D 0. Together with our main theorem, this
easily implies the following:

Corollary 1.5 For every � > 0, a compact hyperbolic n–manifold M with nonempty
geodesic boundary exists such that

vn >
Vol.M /

kM k
� vn� �:

Finally, it is maybe worth mentioning that our proof of Theorem 1.4 can be applied
word by word (with obvious simplifications) to hyperbolic manifolds without boundary,
thus providing a somewhat new proof of Theorem 1.2 in the case of noncompact
manifolds.

1.3 Strategy of the proof

Let M be a hyperbolic n–manifold with possibly empty geodesic boundary. Once a
straightening procedure is defined which allows us to compute the simplicial volume
of M only considering linear combinations of geodesic simplices, the inequality
Vol.M /=k SM k � vn is easily established. In the case without boundary, in order to
prove the converse inequality (which fails in the case with boundary), one has to show
that for every " > 0 a cycle ˛" 2 Cn. SM ; @ SM / exists which represents the fundamental
class of SM and is such that k˛"k � Vol.M /=vnC ". Such a cycle is said to be "–
efficient, and it is not difficult to show that a cycle is "–efficient if its simplices all have
hyperbolic volume close to vn (see eg Benedetti and Petronio [2]).

In the same spirit we prove here that if M has nonempty geodesic boundary then the
gap between Vol.M /=k SM k and vn is bounded from above by the amount of simplices
in any fundamental cycle of SM whose volume is forced to be far from vn . In order to
obtain Theorem 1.4 we then show how to control such amount of simplices in terms
of the ratio between the .n� 1/–dimensional volume of @M and the n–dimensional
volume of M .
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More precisely, in Section 2 we briefly describe some results about the geometry
of hyperbolic manifolds with geodesic boundary. Section 3, which uses tools from
Löh and Sauer [20, Section 4], is devoted to the description of a discrete version of
Thurston’s smearing construction which is very useful for exhibiting efficient cycles.
Finally in Section 4 we provide the needed estimates on the norm of such cycles, thus
concluding the proof of Theorem 1.4.

2 Hyperbolic manifolds with geodesic boundary

Let n� 3 and let M be a hyperbolic n–manifold with nonempty geodesic boundary.
This section is devoted to a brief description of the geometry of M .

2.1 Natural compactification

Since @M is compact, M decomposes as the union of a compact smooth manifold
with boundary N � M with @M � N and a finite number of cusps of the form
Ti� Œ0;1/, i D 1; : : : ; r , where Ti is a closed Euclidean .n�1/–manifold for every i

(see eg Kojima [13; 14] and Frigerio [6], where also the noncompact boundary case is
considered). Moreover, N can be chosen in such a way that each cusp Ti � Œ0;1/ is
isometric to the quotient of a closed horoball in Hn by a parabolic group of isometries.

Up to choosing “deeper” cusps, given "> 0 we may suppose that the volume of M nN

is at most ", and if this is the case we denote N by the symbol M" . We also denote by
@M" the boundary of M" as a topological manifold and we set int.M"/DM" n @M" .
Observe that @M" is given by the union of @M and the boundaries of the deleted cusps.

The description of M just given implies that there exists a well-defined piecewise
smooth nearest point retraction M !M" which maps M n int.M"/ onto @M" . More-
over, M admits a natural compactification SM which is obtained by adding a closed
Euclidean .n� 1/–manifold for each cusp and is homeomorphic to M" .

2.2 Universal covering

Let � W �M ! M be the universal covering of M . By developing �M in Hn we
can identify �M with a convex polyhedron of Hn bounded by a countable number
of disjoint geodesic hyperplanes. The group of the automorphisms of the covering
� W �M !M can be identified in a natural way with a discrete torsion-free subgroup �
of IsomC. �M / < IsomC.Hn/ such that M Š �M =� . Also recall that there exists an
isomorphism �1.M /Š � , which is canonical up to conjugacy. With a slight abuse,
from now on we refer to � as to the fundamental group of M .
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The covering � W �M ! M extends to a covering Hn ! Hn=� D �M , which will
still be denoted by � . Being the quotient of Hn by a discrete torsion-free group of
isometries, �M is a complete (infinite-volume) hyperbolic manifold without boundary.
The inclusion �M ,!Hn induces an isometric inclusion M ,! �M which realizes M

as the convex core of �M (see eg [6]). Therefore, there exists a well-defined piecewise
smooth nearest point retraction of �M onto M , which maps �M n int.M / onto @M .

Let ext.M"/ D �M n int.M"/. If " is sufficiently small, by composing the retrac-
tions �M !M , M !M" mentioned above we get a retraction pW �M !M" such
that p.ext.M"// � @M" . Such a map is piecewise smooth and induces a homotopy
equivalence of pairs pW . �M ; ext.M"//! .M"; @M"/.

Since M retracts to M" via a homotopy equivalence, the set �M" D �
�1.M"/� �M is

simply connected, and provides therefore the Riemannian universal covering of M" .
If ext. �M"/DHn n int. �M"/, then by construction ext. �M"/ is a �–invariant disjoint
union of closed half-spaces and closed horoballs. In particular, every component of
ext. �M"/ is convex.

3 Straightening and smearing

Introduced by Thurston in [23], the smearing construction plays a fundamental role
in several proofs of Theorem 1.2 (see eg Thurston [23] and Kuessner [16]). Such a
construction takes usually place in the setting of the so-called measure homology (see
Thurston [23], Zastrow [25], Hansen [10] and Löh [19]). In order to make the proof
of Theorem 1.4 as self-contained as possible and to get rid of some technicalities, we
follow here some ideas described in Löh and Sauer [20], where a “discrete version” of
the smearing construction is introduced.

3.1 Straight simplices

We now fix some notation we will be extensively using from now on. For i 2N we
denote by ei the point .0; 0; : : : ; 1; : : : ; 0; 0; : : :/ 2 RN , where the unique nonzero
coefficient is at the i –th entry (entries are indexed by N , so .1; 0; : : :/ D e0 ). We
denote by �p the standard p–simplex, ie the convex hull of e0; : : : ; ep , and we observe
that with this notation we have �p ��pC1 . If � 2 Sp.X / is a singular simplex, we
let @i� 2 Sp�1.X / be the i –th face of � .

Let k 2N , and let x0; : : : ;xk be points in Hn . We recall here the well-known definition
of straight simplex Œx0; : : : ;xk � 2 Sk.H

n/ with vertices x0; : : : ;xk : if k D 0, then
Œx0� is the 0–simplex with image x0 ; if straight simplices have been defined for every
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h�k , then Œx0; : : : ;xkC1�W �kC1!Hn is determined by the following condition: for
every z 2�k ��kC1 , the restriction of Œx0; : : : ;xkC1� to the segment with endpoints
z; ekC1 is a constant speed parameterization of the geodesic joining Œx0; : : : ;xk �.z/

to xkC1 (the fact that Œx0; : : : ;xkC1� is well-defined and continuous is an obvious
consequence of the fact that any two given points in Hn are joined by a unique geodesic,
and hyperbolic geodesics continuously depend on their endpoints – see also Remark
3.1 below). It is not difficult to show that the image of a straight k –simplex coincides
with the hyperbolic convex hull of its vertices, and is therefore a (possibly degenerate)
geodesic k –simplex. For later purposes we point out the following:

Remark 3.1 Since Hn is nonpositively curved, for every p 2 Hn the exponential
map exppW TpHn ! Hn is a diffeomorphism. Moreover, if z 2 �k�1 and q D

tzC .1� t/ek 2�k , then for every .kC 1/–uple of vertices .x0; : : : ;xk/ 2 .H
n/kC1

we have

Œx0; : : : ;xk �.q/D expxk

�
t � exp�1

xk
.Œx0; : : : ;xk�1�.z//

�
:

Using this formula and an obvious inductive argument, it is not difficult to show
that every straight simplex in Hn is smooth. Moreover, if we endow the space of
straight simplices with the C 1 –topology, then the map that takes every .kC 1/–uple
.x0; : : : ;xk/ 2 .H

n/kC1 into the straight simplex Œx0; : : : ;xk � is continuous.

Keeping notation from Sections 2.1 and 2.2, if �M is a hyperbolic n–manifold with
universal covering � W Hn ! �M then we say that � W �k !

�M is straight if it is
obtained by composing a straight simplex in Hn with the covering projection � .

The results stated in the following remarks will not be used in this paper.

Remark 3.2 Let � 2 Sk. �M /, take a lift z� 2 Sk.H
n/ and define strk.�/ D � ı

Œz�.e0/; : : : ; z�.ek/�. Since isometries preserve geodesics we have  ı Œx0; : : : ;xk �D

Œ .x0/; : : : ;  .xk/� for every  2 � , so strk.�/ does not depend on the choice of z� .
It is well-known that str� linearly extends to a chain endomorphism of C�. �M / which
is algebraically homotopic to the identity.

Remark 3.3 Straight simplices may be defined in the much more general setting of
nonpositively curved complete Riemannian manifolds. Almost all the properties of
straight simplices (and of the associated straightening procedure) described above also
hold in this wider context. It is maybe worth mentioning, however, that in the simply
connected nonconstant curvature case, straight simplices need not be convex.
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3.2 Some estimates on the volume of straight simplices

As explained in Section 1.3, in order to prove our main theorem we have to construct
fundamental cycles whose simplices have large volume. We are therefore interested
in giving lower bounds on the volume of simplices which approximate, in a suitable
sense, the geodesic ideal regular n–simplex.

For every L> 0, let qL
0
; : : : qL

n 2Hn be the vertices of a fixed regular simplex with
edgelength L such that the embedding �L D ŒqL

0
; : : : ; qL

n � of the standard simplex in
Hn is orientation-preserving. For later purposes we insist that, as L tends to infinity,
the vertices of �L converge to the ideal vertices of a geodesic ideal regular simplex:

Lemma 3.4 We can choose the simplices �L , L > 0 in such a way that for every
i D 0; : : : ; n we have limL!1 qL

i D q1i 2 @H
n , where q1

0
; : : : ; q1n are the ideal

vertices of a geodesic ideal regular positively-oriented n–simplex.

Proof Via an orientation-preserving identification of Hn with the Poincaré disk model
of hyperbolic space, the ideal boundary @Hn is canonically identified with the unit
sphere Sn�1 , and if q1

0
; : : : ; q1n 2 Sn�1 are the vertices of a positively-oriented

regular Euclidean n–simplex inscribed in Sn�1 , then the hyperbolic convex hull of
the q1i ’s is in fact a regular ideal positively-oriented geodesic simplex with vertices
q1

0
; : : : ; q1n . Let ˛i be the geodesic ray which starts at the origin O of the Poincaré

disk model and is asymptotic to q1i , i D 0; : : : ; n. For every r > 0 let pr
i be the point

on ˛i at distance r from O . It is easily seen that the straight simplex Œpr
0
; : : : ;pr

n�

is a regular simplex of edgelength `.r/, where `W .0;1/! .0;1/ is increasing and
bijective. In order to conclude it is now sufficient to set qL

i D p`
�1.L/

i .

We are now interested in studying limits, as L tends to infinity, of volumes of straight
simplices which approximate �L .

Definition 3.5 We denote by RL be the set of all straight n–simplices � in Hn

satisfying the following property: there exists g 2 IsomC.Hn/ such that the distance
between g.qL

i / and the i –th vertex of � is at most one for every iD0; : : : ; n. Moreover,
we set

VL D inffVolalg.�/ j � 2RLg;

where Volalg is the signed volume of � , ie the value obtained by integrating the volume
form of Hn on � (so jVolalg.�/j D Vol.Im.�//).

As pointed out in Remark 3.1, straight simplices continuously depend (with respect to
the C 1 –topology) on their vertices, and this readily implies that the algebraic volume
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of a straight simplex continuously depends on its vertices. Together with a similar
(but deeper) continuity result for possibly ideal geodesic simplices (see Ratcliffe [22,
Theorem 11.3.2]), this fact allows us to prove the following:

Lemma 3.6 We have
lim

L!1
VL D vn:

In particular, there exists L0 > 0 such that if L�L0 then every element of RL is an
embedded positively-oriented straight simplex in Hn .

Proof Observe that by the very definitions a hyperbolic straight simplex is embedded
and positively-oriented if and only if it has positive algebraic volume. Therefore it is
sufficient to show that if fLj gj2N is a sequence of positive real numbers such that
limj Lj DC1 and �j 2RLj

, then limj Volalg.�
j /D vn (here and in what follows,

whenever ff .j /gj2N is a real sequence we denote simply by limj f .j / the limit
limj!1 f .j /, if it exists).

Recall from Lemma 3.4 that the simplices �L , L > 0 have been chosen in such a
way that limL!1 qL

i D q1i 2 @H
n for i D 0; : : : ; n, where q1

0
; : : : ; q1n are the ideal

vertices of a regular ideal positively-oriented geodesic n–simplex �1 .

For every i D 0; : : : ; n, let wj
i be the i –th vertex of �j 2 RLj

. Then by the very
definitions there exists gj 2 IsomC.Hn/ such that for every i D 0; : : : ; n we have
d.gj .w

j
i /; q

Lj
i /� 1, and this readily implies limj gj .w

j
i /D q1i . As a consequence

we get

(1) lim
j

Vol.�j /D lim
j

Vol.gj
� �j /D Vol.�1/D vn;

where the first equality is due to the fact that isometries preserve the hyperbolic volume,
while the second one is due to the fact that the hyperbolic volume of a geodesic simplex
with vertices in Hn[ @Hn is a continuous function of its vertices (see Ratcliffe [22,
Theorem 11.3.2]).

Suppose now by contradiction that for every j0 2N there exists j � j0 such that �j

is not positively-oriented. Since the gj ’s are orientation-preserving, up to passing to a
subsequence we may then suppose Volalg.g

j � �j /D Volalg.�
j /� 0 for every j 2N .

For every j 2N , i D 0; : : : ; n let vj
i .t/, t 2 Œ0; 1� be a geodesic path joining gj .w

j
i /

with qLj
i . Since �Lj is positively-oriented we have Volalg.�

Lj / > 0 for every j 2N .
Moreover, as observed above the algebraic volume of a straight simplex continuously
depends on its vertices, so for every j � j0 there exists tj 2 Œ0; 1� such that the straight
simplex y�j with vertices vj

0
.tj /; : : : ; v

j
n .tj / has null algebraic volume, whence in

particular limj Vol.y�j /D limj jVolalg.y�
j /j D 0. However, we have by construction
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y�j 2RLj
, so, by applying to the y�j ’s the argument described in the first part of the

proof, we get limj Vol.y�j /D vn . This contradiction shows that there exists j0 such
that Volalg.�

j /� 0 for every j � j0 .

Together with Equation (1), this implies limj Volalg.�
j /D limj Vol.�j /D vn , whence

the conclusion.

3.3 Haar measure

Let G be a locally compact Hausdorff topological group and A be the � –algebra of
the Borel subsets of G . A measure � on A is called regular if for each A 2A

�.A/D supf�.K/ jK compact set; K �Ag;

�.A/D inff�.U / j U open set; A� U g:

Definition 3.7 A Haar measure �G on G is a nonnegative regular measure �G on
the � –algebra A such that

� �G.K/ <1 for each compact set K 2A;

� �G.A/¤ 0 for each nonempty open set A 2A;

� �G.gA/ D �G.A/ for all g 2 G and for all A 2 A, namely the measure is
left-invariant.

It is well-known that every locally compact Hausdorff group admits a Haar measure,
which is unique up to multiplication by a positive constant [11; 24]. The group G is
called unimodular if each left-invariant Haar measure on it is also right-invariant.

From now on we denote by G the group Isom.Hn/ of isometries of Hn , endowed
with the compact-open topology, and by GC � G (resp. G� � G ) the subset of
orientation-preserving (resp. orientation-reversing) elements of G . Of course, GC is
a subgroup of G , and it is well-known that GC , G� are the connected components
of G . Also observe that since M is orientable we have � <GC .

Proposition 3.8 [2; 22] The group G is locally compact and unimodular. Moreover,
the Haar measure �G on G can be normalized in such a way that the following
condition holds: for every basepoint x0 2Hn and every Borel set R�Hn , the Haar
measure �G.GR/ of the Borel set

GR D fg 2G jg.x0/ 2Rg

is equal to the hyperbolic volume of R.
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From now on we fix a Haar measure �G on G satisfying the normalization condition
described in Proposition 3.8. Keeping notation from the preceding section, � acts
properly discontinuously on G via left translations as a group of measure-preserving
diffeomorphisms, so if W is a Borel subset of �nG we can set

��nG.W /D �G. �W /;

where �W �G is any Borel set that projects bijectively onto W . It is readily seen that
this definition of ��nG.W / does not depend on the choice of �W , and that ��nG is in
fact a regular right-invariant measure on �nG . The following lemma will prove useful
later:

Lemma 3.9 Let A� �M be a Borel subset, fix a basepoint x0 2Hn and set

T˙ D fg 2G˙ j�.g.x0// 2Ag:

Then T˙ is a Borel subset of G such that  � T˙ D T˙ for every  2 � and
��nG.�nT

˙/DVol.A/=2, where Vol denotes the measure induced by the hyperbolic
volume form of �M .

Proof Let us consider the map f ˙x0
W G˙! �M defined by f ˙x0

.g/D �.g.x0//. Then
f ˙x0

is continuous, and for every  2� we have f ˙x0
.g/Df ˙x0

.g/. Being the preimage
of A under f ˙x0

, the set T˙ is therefore Borel and invariant with respect to the left
action of � on G˙ . Moreover, if D � Hn is a Borel set of representatives for the
action of � on Hn , then the set yT˙ D fg 2G˙ jg.x0/ 2D\��1.A/g is a Borel set
of representatives for the left action of � on T˙ . We have therefore ��nG.�nT˙/D
�G. yT

˙/, so in order to conclude it is sufficient to show that �G. yT
C/D�G. yT

�/ and
�G. yT

C/C�G. yT
�/D Vol.A/.

Since yT � D yTC �g , where g 2 G� is any orientation-reversing isometry fixing x0 ,
the first equality is an immediate consequence of the right-invariance of �G . On
the other hand the chosen normalization of �G readily gives Vol.D \ ��1.A// D

�G. yT
C[ yT �/D �G. yT

C/C�G. yT
�/, where the last equality is due to the fact that

yTC\ yT ��GC\G�D∅. Since the projection �jD W D! �M is measure-preserving,
this implies in turn Vol.A/D Vol.D\��1.A//D �G. yT

C/C�G. yT
�/, whence the

conclusion.

3.4 � –Nets

In order to define a “discrete” smearing procedure in the spirit of [20] we now need to
introduce the notion of � –net. A � –net in Hn is given by a discrete subset zƒ�Hn

(called set of vertices) and a collection of Borel sets f zBxgx2zƒ
(called cells) such that

the following conditions hold:
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(1) x 2 zBx for every x 2 zƒ, HnD
S

x2zƒ
zBx and zBx\

zBy D∅ for every x;y 2 zƒ

with x ¤ y .

(2)  .zƒ/D zƒ for every  2 � and  . zBx/D zB.x/ for every x 2 zƒ,  2 � .

(3) diam . zBx/� 1 for every x 2 zƒ.

(4) If zK is a connected component of ext. �M"/, then zK D
S

x2zƒ\ zK
zBx .

We begin with the following:

Lemma 3.10 There exists a � –net.

Proof Let fTigi2N be a smooth triangulation of �M which restricts to a smooth
triangulation of M" and is such that diam.Ti/ � 1=2 for every i 2 N . Since M" is
compact, the set of simplices of the triangulation whose internal part is contained in
M" is finite, so we may assume that indices are ordered in such a way that i < j for
every pair of simplices such that int.Ti/�M" and int.Tj /ª M" .

If xi is any point in int.Ti/ we now set ƒD fxigi2N and Bxi
D Ti n .

S
j>i Tj /. By

construction Bxi
is a simply connected Borel subset of �M for every i 2N , and if K

is a connected component of ext.M"/, then K D
S

x2ƒ\K Bx .

Let now zƒ D ��1.ƒ/. For i 2 N , since Bxi
is simply connected, every point

zx 2��1.xi/ is contained in exactly one connected component zBzx of ��1.Bxi
/�Hn .

It is now readily seen that the pair .zƒ; f zBxgx2zƒ
/ is a � –net.

3.5 Smearing

We now fix L> 0, and for i D 0; : : : ; n we denote simply by qi the vertex qL
i of the

straight simplex �L introduced in Section 3.2. We also fix a � –net .zƒ; f zBxgx2zƒ
/ and

let Sƒn .
�M / denote the set of straight n–simplices in �M with vertices in ƒD �.zƒ/.

We would like to define real coefficients a� in such a way that the sumX
�2Sƒ

n . �M /

a��

is finite and defines a cycle in Cn. �M ; ext.M"//. Roughly speaking, the coefficient a�
will measure the difference between the accuracy with which � approximates a
positively-oriented isometric copy of �L and the accuracy with which it approximates
a negatively-oriented isometric copy of �L .
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So let us fix � 2Sƒn .
�M /, let z� be a lift of � to Hn , and let zx0; : : : ; zxn be the vertices

of z� . Since � 2 Sƒn we have zxj 2
zƒ for every j , and we denote by zBj the cell of the

net containing zxj . It is readily seen that the sets

�˙
z� D fg 2G˙ jg.qj / 2 zBj for every j g;��˙� D [

2�

�˙ �z�

are Borel. Since different lifts of � differ by the action of an element of � , the set��˙� only depends on � , ie it is independent of the chosen lift z� . Moreover, as a
consequence of property (2) of � –nets it is easy to see that for every  2 � we have
 ��˙

z�
D�˙

 �z�
, so ��˙� D [

2�

 ��˙
z� ;

and in particular  ���˙� D ��˙� for every  2 � .

We now claim that �˙
z�

provides a Borel set of representatives for the action of � on��˙� . In fact, let us suppose by contradiction that there exist ;  0 2 � with  ¤  0 and
�˙
 �z�
\�˙

 0z�
¤ ∅. If g 2 �˙

 �z�
\�˙

 0z�
, then g.q0/ 2  . zB0/\ 

0. zB0/¤ ∅, and by
property (2) of � –nets this readily implies  .zx0/D

0.zx0/, whence �1. 0.zx0//D zx0 ,
a contradiction since the action of � on Hn is free.

We denote by �˙� � �nG the quotient set �˙� D �n��˙� , and we observe that as a
consequence of the claim just proved we have ��nG.�˙� /D �G.�

˙
z�
/.

Remark 3.11 In principle, in what follows one could work only with the sets �˙
z�

and
the Haar measure �G on G , rather than define also �˙� and the quotient measure ��nG
on �nG . However, we have preferred to introduce some more notions (and notation)
since this choice will allow us to simplify some proofs, exploiting the properties of the
most convenient object as and when.

We now divide the simplices of Sƒn .
�M / into different classes. We denote by W C

(resp. W � ) the set of simplices which intersect int.M"/ and are “almost isometric” to
a positively-oriented (resp. negatively-oriented) copy of �L :

W ˙ D f� 2 Sƒn .
�M / j Im .�/\ int.M"/¤∅ and �˙� ¤∅g:

Moreover, we denote by W ˙int the subset of W ˙ given by those simplices whose image
is entirely contained in int.M"/:

W ˙int D f� 2W ˙ j Im .�/� int.M"/g;
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and we finally define

W DW C[W �; Wint DW Cint [W �int; Wext DW nWint:

For every � 2W we now set

b˙� D ��nG.�
˙
� /; a� D bC� � b�� :

We will prove soon that W is finite and that each a� is a well-defined real num-
ber (see Lemma 3.13). Moreover, we will show in Proposition 3.14 that the sumP
�2W a�� defines a relative cycle in Cn. �M ; ext.M"//, which defines in turn a cycle

in Cn.M"; @M"/ via a projection which does not affect simplices supported in int.M"/.
Therefore if L is large and “most” simplices of W are contained in int.M"/, then a
fundamental cycle for M" exists most simplices of which have volume close to vn .
As explained in Section 1.3, this is sufficient for proving that the simplicial volume of
M" (whence of SM ) is close to Vol.M"/=vn (whence to Vol.M /=vn ).

Lemma 3.12 If z� 2 Sn.Hn/ is a lift of a simplex � 2W , then diam.Im.z�//�LC2.

Proof The edges of �L have length L, and if � 2W then the vertices of z� are at
distance at most 1 from the vertices of an isometric copy of �L . This implies that the
distance between any two vertices of z� is at most LC 2. But z� is the convex hull of
its vertices and the hyperbolic distance is convex, so the diameter of z� is realized by
the distance between two vertices.

From now on, for Y � �M (resp. Y �Hn ) and R� 0 we denote by NR.Y / the closed
R–neighbourhood of Y in �M (resp. in Hn ).

Lemma 3.13 The set W is finite and

Vol.M" nNLC3.@M"// � 2
P
�2W

C
int

bC� � 2
P
�2W C bC� � Vol.NL.M"//;

Vol.M" nNLC3.@M"// � 2
P
�2W �int

b�� � 2
P
�2W � b�� � Vol.NL.M"//:

Proof Let D �Hn be a compact fundamental region for the action of � on �M" . If
� 2W there exists a lift z� 2 Sn.Hn/ of � such that Im.z�/\D¤∅. By Lemma 3.12
the diameter of z� is at most LC2, so Im.z�/�NLC2.D/. However, zƒ is discrete and
NLC2.D/ is compact, so the number of straight simplices in Hn which are contained
in NLC2.D/ and have vertices in zƒ is finite. Since every � 2 W is obtained by
composing such a simplex with the covering projection � we get that also W is finite.
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We now prove the first sequence of inequalities of the statement, the proof of the second
one being very similar. We define the subsets HC

L
;KC

L
�GC as follows:

KC
L
D fg 2GC jg.q0/ 2 �M" nNLC3.@ �M"/g;

HC
L
D fg 2GC jg.q0/ 2NL. �M"/g:

By Lemma 3.9 these sets are � –invariant Borel subsets of GC such that

(2) ��nG.�nK
C

L
/D

Vol.M" nNLC3.@M"//

2
; ��nG.�nH

C

L
/D

Vol.NL.M"//

2
:

We now show that

(3) KC
L
�

[
�2W

C
int

��C� � [
�2W C

��C� �HC
L
;

and these inclusions readily imply that

(4) �nKC
L
�

[
�2W

C
int

�C� �
[

�2W C

�C� � �nH
C

L
:

Suppose first g 2 KC
L

. Then g.q0/ lies in �M" nNLC3.@ �M"/, so if yi 2
zƒ is the

vertex of the cell containing g.qi/, then y0 lies in �M" nNLC2.@ �M"/. Let now z� be
the straight simplex with vertices y0; : : : ;yn and set � D � ı z� . By Lemma 3.12 the
image of z� lies in int. �M"/, so Im.�/� int.M"/. Moreover, we have by construction
g 2 �C

z�
� ��C� , so �C� D �n��C� ¤ ∅ and � 2W Cint . We have thus proved the first

inclusion in (3).

The second inclusion is an obvious consequence of the inclusion W Cint �W C , so we are
left to prove the last inclusion in (3). Suppose g 2 ��C� for some � 2W C . Then there
exists a lift z� of � with vertices y0; : : : ;yn 2

zƒ such that g2�C
z�

, whence g.qi/2 zByi

for every iD0; : : : ; n. Also observe that since � 2W C we have Im.z�/\ int. �M"/¤∅.
Suppose by contradiction g.q0/ …NL. �M"/. Having diameter L and being connected,
the image of gı�L is then contained in a component zK of ext. �M"/. Since g.qi/2 zByi

,
by property (4) in the definition of � –net we have therefore yi 2

zK for every i , so
Im.z�/� zK by convexity of zK , whence Im.z�/\ int. �M"/D∅, a contradiction. This
concludes the proof of (3), whence of (4).

Since the �C� ’s are mutually disjoint, condition (4) now implies

��nG.�nK
C

L
/�

X
�2W

C
int

��nG.�
C
� /�

X
�2W C

��nG.�
C
� /� ��nG.�nH

C

L
/:

By Equations (2) and the very definition of the bC� ’s, these inequalities are in fact
equivalent to the first sequence of inequalities in the statement.
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We now set
�L;" D

X
�2W

a�� 2 Cn. �M /:

Proposition 3.14 We have d�L;" 2 Cn�1.ext.M"//, so �L;" is a relative n–cycle in
Cn. �M ; ext.M"//.

Proof Fix a .n � 1/–face � 2 Sƒ
n�1

. �M / of some � 2 W . We will show that if
Im.�/\int.M"/¤∅, then the coefficient of � in d�L;" is null. For every j D 0; : : : ; n

let us set �˙j .�/ D f� 2 W ˙ j @j� D �g and �j .�/ D �Cj .�/ [ �
�
j .�/. Since the

coefficient of � in d�L;" is given by

nX
jD0

.�1/j

 X
�2�j .�/

a�

!
;

it is sufficient to prove that, under the assumption Im.�/\ int.M"/¤∅, we haveX
�2�
C

j
.�/

bC� D
X

�2��
j
.�/

b��

for every j D 0; : : : ; n.

Let us suppose j D n, the other cases being similar. Let z� be a fixed lift of � to Hn ,
and for every � 2 �n.�/ let us denote by z� the unique lift of � such that @nz� D z� .
By construction we have z�.ei/ 2 zƒ for every i D 0; : : : ; n � 1, and we denote by
zBi the cell zBz�.ei / containing z�.ei/. Now if � 2 �n.�/ then z�.en/ belongs to zƒ and
z�.ei/D z�.ei/ for every i D 0; : : : ; n� 1. Recall that the set

�˙
z� D

˚
g 2G˙

ˇ̌
g.qi/ 2 zBi for i D 0; : : : ; n� 1; g.qn/ 2 zBz�.en/

	
satisfies b˙� D �G.�

˙
z�
/, and define

�˙
z� D

˚
g 2G˙

ˇ̌
g.qi/ 2 zBi for every i D 0; : : : ; n� 1

	
:

We claim that, under the assumption Im.�/\ int.M"/¤∅, we have

(5) �˙
z� D

[
�2�˙n .�/

�˙
z� :

The inclusion � is obvious, while in order to get the inclusion � it is sufficient to
observe that if g2�˙

z�
and z� is the straight simplex with vertices in the cells containing

g.q0/; : : : ;g.qn/, then necessarily Im.z�/\ int. �M"/� Im.z�/\ int. �M"/¤∅, so that
� D � ı z� belongs to �˙n .�/ and g belongs to �˙

z�
.
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Since the �C
z�

’s (resp. the ��
z�

’s) are pairwise disjoint, from Equation (5) we finally getP
�2�
C
n .�/

bC� D
P
�2�
C
n .�/

�G.�
C

z�
/ D �G

�S
�2�
C
n .�/

�C
z�

�
D �G.�

C

z�
/;P

�2��n .�/
b�� D

P
�2��n .�/

�G.�
�
z�
/ D �G

�S
�2��n .�/

��
z�

�
D �G.�

�
z�
/;

so in order to conclude we are left to show that �G.�
C

z�
/ D �G.�

�
z�
/. However, if

sz� 2G� is the reflection with respect to a hyperbolic hyperplane containing z� (such
a hyperplane is unique if z� is embedded), then ��

z�
D sz� ��

C

z�
, and the conclusion

follows from the left-invariance of �G .

Let now p�W Cn. �M ; ext.M"//! Cn.M"; @M"/ be the map induced by the piecewise
smooth retraction pW . �M ; ext.M"//! .M"; @M"/ described in Section 2.2. The cycle

�L;" D p�.�L;"/

is our “efficient cycle”: in order to prove Theorem 1.4, in the next section we estimate
both the L1 –norm of �L;" and the proportionality factor between the class of �L;" in
Hn.M"; @M"/ and the fundamental class ŒM"� of M" .

4 Proof of the main theorem

We begin by estimating the L1 –norm of �L;" .

Lemma 4.1 We have
k�L;"k � Vol.NL.M"//:

Proof Since p�W Cn. �M ; ext.M"//! Cn.M"; @M"/ is norm nonincreasing we have

k�L;"k � k�L;"k D
X
�2W

ˇ̌
bC� � b��

ˇ̌
�

X
�2W C

bC� C
X
�2W �

b�� � Vol.NL.M"//;

where the last inequality is due to Lemma 3.13.

4.1 The volume form

In order to compute the proportionality factor between Œ�L;"� and ŒM"� we would
like to evaluate the Kronecker product of Œ�L;"� with the volume coclass of M" . As
usual, we first have to take care of the fact that differential forms can be integrated
only on smooth simplices. So let S s

k
. �M / (resp. S s

k
.ext.M"//) be the set of smooth

simplices with values in �M (resp. in ext.M"/), let C s
k
. �M / (resp. C s

k
.ext.M"//)

be the free R–module generated by S s
k
. �M / (resp. by S s

k
.ext.M"//) and let us set

C s
k
. �M ; ext.M"//D C s

k
. �M /=C s

k
.ext.M"//. A standard result of differential topology

(see eg Lee [18]) ensures that a chain map sm�W C�. �M /! C s
�.
�M / exists such that
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(1) smk.�/ 2 S s
k
. �M / for every � 2 Sk. �M / and smk.�/ 2 S s

k
.ext.M"// for every

� 2 Sk.ext.M"//;

(2) sm� restricts to the identity of C s
�.M"/;

(3) if j�W C
s
�.M"; @M"/! C�.M"; @M"/ is induced by the natural inclusion, then

sm� induces a map C�.M"; @M"/! C s
�.M"; @M"/, which will still be denoted

by sm� , such that j� ı sm� is homotopic to the identity of C�.M"; @M"/.

We fix an orientation on �M (whence on M" ) by requiring that the fixed covering
� W Hn! �M is orientation-preserving, and we denote by ! the volume differential
form on �M . Since the retraction pW �M !M" defined in Section 2.2 is piecewise
smooth, for every � 2 Sn. �M / it makes sense to integrate ! over the composition of
smn.�/ with p . We then define � �M W Cn. �M /!R as the linear extension of the map

Sn. �M / �! R
� 7�!

R
pısmn.�/

!:

Since sm� is a chain map, if c 2 Cn. �M / is a boundary then smn.c/ is the boundary
of a smooth .nC 1/–chain, so p�.smn.c// is the boundary of a piecewise smooth
.nC 1/–chain and as a consequence of Stokes’ Theorem we have � �M .c/D 0. This
proves that ı� �M D 0, ie that � �M is an absolute cocycle. Moreover, by property (1)
of the smoothing operator, if Im.�/ � ext.M"/ then Im.smn.�// � ext.M"/, so
Im.p ı smn.�// � @M" and � �M .�/ D 0. It follows that the cochain � �M vanishes
on Cn.ext.M"//, ie that � �M is in fact a relative cocycle, and defines therefore a
cohomology class Œ� �M � 2H n. �M ; ext.M"//.

Recall now that for every topological pair .X;Y / there exists a well-defined pairing
(usually called Kronecker pairing) given by

h � ; � iW H p.X;Y /�Hp.X;Y /!R; hŒ'�; Œc�i D '.c/:

Let �L;" 2 Cn. �M ; ext.M"// be the cycle constructed above such that �L;" D p�.�L;"/,
and let i W .M"; @M"/! . �M ; ext.M"// be the inclusion.

Lemma 4.2 We have

Œ�L;"�D
� �M .�L;"/

Vol.M"/
ŒM"�:

Proof We begin by recalling that

hŒ� �M �; i�.ŒM"�/i D Vol.M"/:

In fact, if 'W �n!M" is a positively-oriented smooth embedding, then by the very
definitions we have that � �M .i�.'// equals the hyperbolic volume of Im.'/. We
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may now represent the fundamental class ŒM"� 2 Hn.M"; @M"/ by a finite sum of
positively-oriented embeddings 'i W �n! Ti , i 2 I , where fTigi2I is a finite smooth
triangulation of M" . So

hŒ� �M �; i�.ŒM"�/i D� �M
 

i�

 X
i2I

'i

!!
D

X
i2I

Vol.Ti/D Vol .M"/ :

Since Hn. �M ; ext.M"//ŠHn.M"; @M"/ŠR, this readily implies

Œ�L;"�D
hŒ� �M �; Œ�L;"�i

Vol.M"/
� i�.ŒM"�/D

� �M .�L;"/

Vol.M"/
� i�.ŒM"�/;

whence

Œ�L;"�D p�.Œ�L;"�/D
� �M .�L;"/

Vol.M"/
p�.i�.ŒM"�//D

� �M .�L;"/

Vol.M"/
ŒM"�:

In order to estimate the proportionality coefficient between Œ�L;"� and ŒM"� we are
therefore left to compute � �M .�L;"/. From now on, we denote by L0 the positive
constant provided by Lemma 3.6. Also recall that RL and VL were introduced in
Definition 3.5.

Corollary 4.3 Suppose L�L0 . For every � 2W we have � �M .a��/� 0. Moreover,
if � 2W Cint (resp. � 2W �int ), then � �M .�/� VL (resp. � �M .�/� �VL ).

Proof Since the covering projection � W Hn! �M is an orientation-preserving local
isometry, if � is any straight simplex in �M and z� is any lift of � in Hn , then � �M .�/

is the signed volume of the portion of Im.z�/ contained in �M" .

Now, if � 2 W C and z� is any lift of � , then by construction we have z� 2 RL ,
so by Lemma 3.6 the simplex z� is positively-oriented and Volalg.z�/ � VL . This
implies that the signed volume of the portion of Im.z�/ contained in �M" is nonneg-
ative, so � �M .�/� 0. Moreover, if � 2W Cint , then Im.z�/ � int. �M"/, so � �M .�/D

Volalg.z�/� VL .

On the other hand, it is easily seen that if z� is any lift of a simplex � 2 W � and
g 2 G� is any orientation-reversing isometry of Hn , then g � z� 2 RL . Therefore
Volalg.g � z�/�VL and g � z� is positively-oriented, so Volalg.z�/D�Volalg.g � z�/��VL ,
and z� is negatively-oriented. Just as before, this readily implies that � �M .�/� 0, and
that � �M .�/� �VL whenever � 2W �int .

In order to conclude we are left to show that � �M .a��/ � 0 for every � 2 W . As
observed above, if � 2W C (resp. � 2W � ), then every lift of � is positively-oriented
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(resp. negatively-oriented), and this readily implies that W C\W � D∅. Therefore,
if � 2W , then either � 2W C , and � �M .a��/D bC� � �M .�/ � 0, or � 2W � , and
again � �M .a��/D�b��� �M .�/� 0.

4.2 The final step

We are now ready to provide the required estimate on � �M .�L;"/.

Proposition 4.4 Suppose L�L0 . Then

� �M .�L;"/� VL �Vol.M" nNLC3.@M"//:

Proof We decompose �L;" as the sum �L;" D �
C
intC �

�
intC �ext , where

�Cint D
X
�2W

C
int

bC� �; ��int D�
X
�2W �int

b�� �; �ext D
X
�2Wext

a��:

By Corollary 4.3 and Lemma 3.13 we get

� �M .�Cint/ �
�P

�2W
C

int
bC�
�
VL �

�
Vol.M" nNLC3.@M"// �VL

�
=2;

� �M .��int/ �
�P

�2W �int
b��
�
VL �

�
Vol.M" nNLC3.@M"// �VL

�
=2;

� �M .�ext/ D
�P

�2Wext
� �M .a��/

�
� 0;

whence the conclusion by linearity of � �M .

Corollary 4.5 We have

(6)
Vol.M /

k SM k
�

Vol.M" nNLC3.@M"//

Vol.NL.M"//
�VL:

Proof Since SM is diffeomorphic to M" we have k SM k D kM"k D kŒM"�k. Thus
from Lemma 4.1, Lemma 4.2 and Proposition 4.4 we get

k SM k D

 Vol.M"/

� �M �
�L;"

� ��L;"�
�

ˇ̌̌̌
ˇ Vol.M"/

� �M �
�L;"

� ˇ̌̌̌ˇ k�L;"k � Vol.NL.M"// �Vol.M"/

VL �Vol.M" nNLC3.@M"//
:

Since Vol.M /� Vol.M"/, this readily implies the conclusion.

In order to conclude we now need some estimates on the volume of L–neighbourhoods
of geodesic hypersurfaces in hyperbolic manifolds. For t � 0 let

g.t/D 2

Z L

0

coshn�1.t/ dt:
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An easy computation (see eg Basmajian [1]) shows that if A is an embedded totally
geodesic hypersurface in a hyperbolic n–manifold X , then the n–dimensional volume
of any embedded tubular t –neighbourhood of A in X is given by g.t/ �Vol.A/.

Lemma 4.6 For every L> 0 we have

lim
"!0

Vol.NL.@M"//� g.L/ �Vol.@M /:

Proof Recall that @M" D @M [T" , where T" is the union of the boundaries of the
deleted cusps. Therefore NL.@M"/ D NL.@M /[NL.T"/ and it is easily seen that
lim"!0 Vol.NL.T"//D 0, whence lim"!0 Vol.NL.@M"//D Vol.NL.@M //.

Let now B be a connected component of @M and let X ! �M be the Riemannian
covering associated to the image of �1.B/ into �1.M /. Then X is diffeomorphic
to B � .�1;C1/ and contains a totally geodesic hypersurface B � f0g isometric to
B . The L–neighbourhood of B � f0g in X is embedded and has therefore volume
g.L/ �Vol.B/. Since the projection X! �M is a local isometry and maps (possibly not
injectively) such a neighbourhood onto NL.B/� �M , it follows that Vol.NL.B//�

g.L/ �Vol.B/. If B1; : : : ;Bk are the components of @M we then have

Vol.NL.@M //�

kX
iD1

Vol.NL.Bi//� g.L/

 
kX

iD1

Vol.Bi/

!
D g.L/ �Vol.@M /;

whence the conclusion.

Let us put the estimate of Lemma 4.6 into inequality (6). We have

Vol.M" nNLC3.@M"//� Vol.M"/�Vol.NLC3.@M"//;

so since lim"!0 Vol.M"/D Vol.M / we get

lim
"!0

Vol.M" nNLC3.@M"//� Vol.M /�g.LC 3/ �Vol.@M /:

In the same way we get lim"!0 Vol.NL.M"//�Vol.M /Cg.L/�Vol.@M /. Therefore,
if r D Vol.@M /=Vol.M /, then passing to the limit in the right-hand side of (6) we
obtain

(7)
Vol.M /

k SM k
�

1� r �g.LC 3/

1C r �g.L/
�VL:

Let now � < vn be given. By Lemma 3.6 there exists L1 �L0 (only depending on n

and �) such that VL1
> vn� �=2. Since

lim
r!0

.1� r �g.L1C 3//=.1C r �g.L1//D 1;
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there exists k > 0 (only depending on L1 , that is on n and �) such that

.1� r �g.L1C 3//=.1C r �g.L1// > .vn� �/=.vn� �=2/

for every r�k . Inequality (7) with LDL1 now shows that if r DVol.@M /=Vol.M /� k

then
Vol.M /

k SM k
�

vn� �

vn� �=2
.vn� �=2/D vn� �;

and this concludes the proof of Theorem 1.4.
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