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The Equivariant Generating Hypothesis

ANNA MARIE BOHMANN

We state the generating hypothesis in the homotopy category of G –spectra for a
compact Lie group G and prove that if G is finite, then the generating hypothesis
implies the strong generating hypothesis, just as in the non-equivariant case. We
also give an explicit counterexample to the generating hypothesis in the category of
rational S1 –equivariant spectra.

55P91; 55P42

1 The generating hypothesis in an equivariant context

The Freyd conjecture, also known as the Freyd generating hypothesis, is a long-standing
conjecture in stable homotopy theory. Let HoS be the homotopy category of spectra and
let ��.S/–mod be the category of ��.S/–modules, where S is the sphere spectrum.

Conjecture 1.1 (Generating hypothesis) The restriction of the functor

��.�/W HoS! ��.S/–mod

to the subcategory of finite spectra is faithful. That is, if a map f W X!Y between finite
spectra X and Y induces the zero map f�W ��.X /!��.Y /, then f is nullhomotopic.

This conjecture was introduced by Freyd in 1965 [4] and remains open today. Recent
work has examined analogous statements in algebraic categories that share many
properties of the homotopy category of spectra, such as the derived category of a ring
(see Hovey et al [7] or Lockridge [10]) or the stable module category of a finite group
(see Benson et al [1] or Carlson et al [2]). Here we examine the analogous conjecture
for the homotopy category of G –equivariant spectra for a compact Lie group G .

The appropriate generalization of the generating hypothesis to an equivariant context
must take into account the homotopy groups of the fixed-point spectra for each closed
subgroup H � G . This is best formulated in the language of Mackey functors. Let
MŒG� be the category of Mackey functors over a compact Lie group G , let MŒG��
be the category of graded Mackey functors, and let HoGS be the homotopy category
of G –spectra.
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Conjecture 1.2 (Equivariant generating hypothesis) The restriction of the equivariant
homotopy functor �G

� .�/W HoGS!MŒG�� to the subcategory of finite G –spectra is
faithful. That is, if a map f W X ! Y between finite G –spectra X and Y induces the
zero map f�W �G

� .X /! �G
� .Y /, then f is nullhomotopic.

A map M!N of Mackey functors is zero if and only if the map M.G=H /!N.G=H /

is zero for each closed subgroup H �G . Recall that the Mackey functor �G
n .X / is

given at G=H by

�G
n .X /.G=H /D ŒSn

^G=HC;X �
G
D �H

n .X /:

Hence this conjecture can also be stated as requiring a map f W X ! Y of finite G–
spectra to be nullhomotopic if it induces the zero map f�W �H

� .X /! �H
� .Y / for all

closed subgroups H �G . Since the conjecture does not make use of the full structure
of a Mackey functor, we will not give an explicit definition here but instead refer the
reader to Dress [3].

Remark 1.3 The non-equivariant generating hypothesis can be recovered as a special
case of the equivariant generating hypothesis by taking G to be the trivial group;
however, there is no immediate implication between the non-equivariant generating
hypothesis and the equivariant generating hypothesis for any other group of equivariance.
In particular, since the Lewis–May fixed-point spectrum of a finite G –spectrum need
not be finite, the non-equivariant generating hypothesis does not apply to the maps
X H ! Y H induced by an equivariant map X ! Y .

The above formulation of the Freyd Conjecture (Conjecture 1.1) is also known as the
weak generating hypothesis, as opposed to the strong generating hypothesis. Freyd’s
original formulation of the strong generating hypothesis conjectures that the functor
��.�/ is both faithful and full when restricted to the subcategory of finite spectra. In
his initial paper on the subject, Freyd also proves the following relationship between
the weak and strong generating hypotheses.

Theorem 1.4 (Freyd [4, Proposition 9.7]) If the weak generating hypothesis 1.1
holds, then so does the strong generating hypothesis. That is, if the restriction of the
functor ��.�/W HoS ! ��.S/–mod to the subcategory of finite spectra is faithful,
��.�/ is also full on this subcategory.

This type of “faithful implies full” implication does not always hold, as shown by Hovey,
Lockridge, and Puninski in the case of the derived category of a ring [7]. However,
this implication is true in the equivariant case for a finite group G .
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Theorem 1.5 Let G be a finite group, and let MŒG�� be the category of graded
Mackey functors over G . Then, if the functor �G

� .�/W HoGS !MŒG�� is faithful
on restriction to the full subcategory of finite spectra, �G

� .�/ is also full on this
subcategory.

We also consider the generating hypothesis in the category of rational G –spectra. For
a finite group G , Greenlees and May [6, Appendix A] have proved that there is a
natural equivalence between rational G–spectra and the category of graded Mackey
functors over A˝Q, where A is the Burnside ring Mackey functor. This equivalence
is induced by the natural isomorphism

# W ŒX0;Y0�
G
!

Y
n

HomMŒG�.�
G
n .X0/; �

G
n .Y0//(1-6)

for rational G–spectra X0 and Y0 . This isomorphism completely algebraicizes the
rational G –stable homotopy category, and thus in particular establishes that the strong
generating hypothesis holds in this category. As an aside, we note that the isomorphism
(1-6) is also used in proving Theorem 1.5.

For infinite compact Lie groups, the picture is quite different. We prove that the weak
generating hypothesis fails rationally in the simplest case of a non-finite group of
equivariance, that is, for the category of rational T –spectra, where T is the compact
Lie group S1 .

Theorem 1.7 The equivariant generating hypothesis (Conjecture 1.2) does not hold
for the category of rational T –equivariant spectra.

This result suggests that the generating hypothesis should not hold for other infinite
groups of equivariance, and it also makes immaterial the question of whether the
weak generating hypothesis implies the strong generating hypothesis in the category of
rational T –equivariant spectra.

We prove Theorem 1.5 in Section 3. As a technical tool for this proof, in Section 2 we
introduce the construction of an abelian envelope of a triangulated category. In Section
4, we establish Theorem 1.7 by giving a specific counterexample to the generating
hypothesis in the category of rational T –spectra. The structure of the proof of Theorem
1.7 is due in part to John Greenlees, and the author would like to thank him for his
guidance and conversation. The author would also like to thank her advisor, Peter May,
for his guidance and support.
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2 The abelian envelope of a triangulated category

Our proof of Theorem 1.5 follows Freyd’s proof that the weak generating hypothesis
implies the strong generating hypothesis for the category of spectra [4, Proposition 9.7].
In particular, we make use of the abelian category A.G/ associated to the equivariant
stable homotopy category. This is a special case of the general construction of an abelian
envelope of a triangulated category. This construction was first given by Freyd [4]; for
a more modern treatment, including several equivalent constructions, see Chapter 5 of
Neeman’s book on triangulated categories [11].

Given a triangulated category T , its abelian envelope A.T / is an abelian category
with a full and faithful inclusion �W T !A.T / with the properties that

(2-1)

� for any object s in T , its image �.s/ in A.T / is projective and injective,
and every projective or injective object in A.T / is a direct summand of
an object in the image of �,

� this construction is self-dual, in that A.T op/ŠA.T /op , and

� any homological functor H W T !A, where A is an abelian category,
extends uniquely to an additive functor A.T /!A.

By homological functor, we mean a functor that takes exact triangles of T to exact
sequences in A. The self-duality of the construction implies that a cohomological
functor H W T op!A extends to a unique contravariant functor A.T op/DA.T /op

!A
taking exact sequences to exact sequences.

We define A.T / to be the following quotient of the category of maps in T ; this is
Freyd’s original description [4, Section 3] and is also given by Neeman [11, Definition
5.2.1].

Definition 2.2 The objects of A.T / are maps s! t in T , and morphisms in A.T /
are commutative diagrams

s //

��

t

��
s0 // t 0

under the additive equivalence relation defined by setting such a morphism equal to
zero if the composite s! t! t 0 or s! s0! t 0 is zero. The embedding �W T !A.T /
is given by sending an object s to the identity morphism s! s .

We can think of the functor � as a universal homological functor from T to an abelian
category. Because � is full and faithful, we will usually identify an object s 2 T with
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its image under �. For a proof that A.T / has the desired properties (2-1), see [11,
Chapter 5].

In order to make use of this construction in proving Theorem 1.5, we need to show
that if a version of the generating hypothesis holds in a triangulated category T , it also
holds in the category A.T /. Recall that an object X in a triangulated category T is
compact if for any family of objects fYig, the natural map

L
T .X;Yi/! T .X;

`
Yi/

is an isomorphism.

Lemma 2.3 Let T be a triangulated category, let A be an abelian category, and let
H W T ! A be a homological functor. If H is faithful on restriction to the category
of compact objects of T , then its extension to A.T / is also faithful on restriction to
objects with a projective resolution by compact objects of T .

Proof Objects in A.T / with a projective resolution by compact objects of T are the
same as objects s! t where s and t are compact objects of T [11, Chapter 5]. The
value of a homological functor H on an object s! t in A.T / is given by the image
in A of the map H.s/!H.t/. If s , t , s0 and t 0 are compact objects of T and we
have a morphism

s
i //

��

t

��
s0

i0 // t 0

in A.T /, then by definition the map H.s! t/!H.s0! t 0/ is zero if and only if
the induced map im H.i/! im H.i 0/ is zero. But if this is the case, then the map
H.s/!H.s0/!H.t 0/ is zero. Hence, assuming H is faithful on compact objects of
T , the map s! s0! t 0 is zero, and so our original morphism is also zero.

This lemma says that in any triangulated category where a version of the generating
hypothesis holds, the generating hypothesis extends to the abelian envelope of that
category. We will make use of this result in the case T D HoGS in the next section.

3 The proof of Theorem 1.5: Faithful implies full

We now prove that for a finite group G , the generating hypothesis for G –spectra implies
the strong generating hypothesis for G –spectra. Let A.G/ be the abelian envelope of
the triangulated category HoGS as discussed in Section 2. In particular, A.G/ is an
abelian category with a full embedding HoGS!A.G/ such that the image of every
G –spectrum is both projective and injective. Since the embedding is full and faithful,
we identify the group of maps A.G/.X;Y / with ŒX;Y �G for G –spectra X and Y .
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Proof of Theorem 1.5 Let G be a finite group. Let X and Y be finite G –CW spectra,
and let S be the sphere G –spectrum. Let �G

� .S/ be the graded Green functor that is
�G

n .S/ in degree n, meaning that �G
� .S/ is a graded Mackey functor with a compatible

ring structure. Note that �G
0
.S/ is the Burnside ring Green functor. Similarly, let

�G
� .X / be the graded Mackey functor that is �G

n .X / in degree n. Composition makes
�G
� .X / a module over �G

� .S/.

Suppose we have a natural transformation �W �G
� .X /!�G

� .Y /. To prove that �G
� .�/

is full, we must find a map f W X ! Y such that �G
� .f / D � . The structure of the

proof is in two steps. First, we use the embedding �W HoGS!A.G/ to construct a
sequence of maps ffnW X ! Y g such that .fn/�W �

G
j .X /! �G

j .Y / agrees with �
for j � n. Lemma 3.1 then shows that ffng has a constant cofinal subsequence whose
value is then the desired map f .

For each conjugacy class of subgroups H �G and each j , choose a set of generators
of �G

j .X /.G=H /D Œ†j .S ^G=HC/;X �
G . Denote these generators by

j̨ ;H ;i W †
j .S ^G=HC/!X:

Define a spectrum Wn by

Wn D

_
j�n

_
H�G

_
i

†j .S ^G=HC/:

Since X is a finite spectrum, its homotopy groups are finitely generated and thus Wn

is a finite spectrum as well. Let ˛nW Wn!X be the map given on wedge summands
by j̨ ;H ;i . Similarly, let hnW Wn ! Y be the map given on wedge summands by
�. j̨ ;H ;i/.

Let �nW Kn!Wn be the kernel of the map ˛nW Wn!X in A.G/. Thus, the sequence
0! Kn!Wn! X is exact in A.G/. We first show that �G

� .hn ı �n/ D 0. Then
we apply the assumption that �G

� .�/ is faithful to conclude that hn ı �n is zero. By
construction, and because � is a natural transformation of Mackey functors,

�G
� .hn ı �n/D �

G
� .hn/ ı�

G
� .�n/

D �G
� .�.˛n// ı�

G
� .�n/

D �.�G
� .˛n// ı�

G
� .�n/

D �.�G
� .˛n ı �n//:

Since ˛n ı �n D 0 in A.G/, we see that �G
� .hn ı �n/D �.�

G
� .˛n ı �n//D 0. We are

assuming the generating hypothesis holds in HoGS , so we can apply Lemma 2.3 to
conclude that hn ı �nW Kn!Wn! Y is zero in A.G/.
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Now we construct our maps fn . Let �nW Wn ! Dn be the cokernel of the map
�nW Kn!Wn . Note that, as Kn is the kernel of ˛nW Wn!X , the map ˛nW Wn!X

factors through an injection �nW Dn ! X . Since hn ı �n D 0, the map hn factors
through a map nW Dn! Y . Also let �nW X ! Cn be the cokernel of ˛nW Wn!X .
The object Y is injective in the category A.G/, as mentioned in (2-1), so the map
nW Dn! Y extends to a map fnW X ! Y such that fn ı �n D n . We summarize
these definitions in the following commutative diagram in A.G/.

0 // Kn
�n //

0

��

Wn
˛n //

�n

!!
hn

��

X
�n //

fn

oo

Cn
// 0

Dn

�n

>>

n

}}
Y

We have constructed ˛n such that �G
� .˛n/ is a surjection �G

j .Wn/ ! �G
j .X / for

j � n. Since �G
� .fn/ı�

G
� .˛n/D �

G
� .hn/D �

�
�G
� .˛n/

�
, it follows that �G

j .fn/D �

for j � n. We need to construct a map f D f1 that has this property for all n.

By construction, we have an inclusion inW Wn ! WnC1 such that ˛n D ˛nC1 ı in
and hn D hnC1 ı in . For any m> n, iterating these inclusions of summands gives an
inclusion Wn!Wm which makes the diagram

Wn
//

hn

��

˛n

''
Wm

hm||

˛m

// X

fm
nnY

commute. Hence the restriction of the map fm ı˛mW Wm!X ! Y to the summands
contained in Wn is the map hn ; that is, fm ı ˛n D hn . By the universal property of
the cokernel �nW X ! Cn , we obtain a factorization of the map fm�fn through Cn .

Wn
˛n //

0 ++

X
�n //

fm�fn

��

Cn

~~
Y

Since X is finite, we may choose d large enough so that H G
j .X IA/D 0 for all j > d ,

where A is the Burnside ring Mackey functor for the group G and H G
� is Bredon
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homology. We claim that A.G/.Cd ;Y / is finite, or equivalently, since A.G/.Cd ;Y /

is finitely generated, that the group A.G/.Cd ;Y /˝Q D 0. This will complete the
proof.

Lemma 3.1 Let X , Y , Wd and Cd be as above. Then the group A.G/.Cd ;Y /˝Q
is zero.

Proof First consider H G
� .Cd IA/. Since the functor H G

j .�IA/W A.G/!MŒG� is
exact, for each H �G we have an exact sequence of abelian groups

H G
j .Wd IA/.G=H /

.˛d /�
�! H G

j .X IA/.G=H /!H G
j .Cd IA/.G=H /! 0(3-2)

for each j . When j >d , the Mackey functor H G
j .X IA/ is zero, and thus H G

j .Cd IA/

is zero as well. As May and Greenlees show [6, Appendix A], the rationalization of
the sphere G –spectrum is the Eilenberg–Maclane G –spectrum H.A˝Q/. Thus we
can equate the rationalization of the sequence (3-2) with the sequence

�G
j .Wd /˝Q

.˛d /�
�! �G

j .X /˝Q! �G
j .Cd /˝Q! 0:

When j � d , the map ˛d is surjective on rational homotopy by construction, so
�G

j .Cd /˝QD 0 for j � d . Since �G
j .Cd /˝QDH G

j .Cd IA/˝QD 0 for j > d ,
the graded Mackey functor �G

� .Cd /˝Q is zero.

Denote by Z0 the rationalization of a G –spectrum Z ; then

ŒZ;Z0�G ˝QD ŒZ0;Z
0
0�

G
D ŒZ;Z00�

G :

By restricting to the category of rational G–spectra, we in principal get an abelian
category A0.G/ for rational stable homotopy as in the construction of Definition
2.2. However, the rationalization functor HoGS ! HoGS0 induces an extension
A.G/! A0.G/. This functor is an equivalence after tensoring with Q; this does
not change the category A0.G/ since A0.G/ is already rational. Hence we do not
distinguish between A.G/˝Q and A0.G/.

For G –spectra Z and Z0 , we restate the isomorphism (1-6) in terms of tensoring with
Q:

(3-3) # W ŒZ;Z0�G ˝Q!
Y

n

HomMŒG�.�
G
n .Z/˝Q; �G

n .Z
0/˝Q/:

Moreover, for a fixed Z0 , both sides of (3-3) are cohomology theories on G –spectra,
so this isomorphism extends to A.G/. Setting Z0 D Y then allows us to conclude
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that the group A.G/.Cd ;Y /˝Q is zero. More precisely, the columns are exact in the
following diagram.

0 //

��

0

��

A.G/.Cd ;Y /˝Q //

��

Q
n

HomMŒG�.�
G
n .Cd /˝Q; �G

n .Y /˝Q/

��

ŒX;Y �G ˝Q //

��

Q
n

HomMŒG�.�
G
n .X /˝Q; �G

n .Y /˝Q/

��

ŒWd ;Y �
G ˝Q //

Q
n

HomMŒG�.�
G
n .Wd /˝Q; �G

n .Y /˝Q/

Here we are identifying A.G/.Z;Y / with ŒZ;Y �G for a G–spectrum Z . By (3-3),
the bottom two rows are isomorphisms and hence the five lemma implies

A.G/.Cd ;Y /˝QŠ
Y

n

HomMŒG�.�
G
n .Cd /˝Q; �G

n .Y /˝Q/:

But �G
� .Cd /˝QD 0, so in fact A.G/.Cd ;Y /˝QD 0.

Returning to our proof of Theorem 1.5, Lemma 3.1 shows that A.G/.Cd ;Y / is a finite
group. Therefore, the sequence ffnW Cd ! Y g has a constant cofinal subsequence,
and we can take its value to be the desired map f W X ! Y for which �G

� .f /D � .

Thus, for a finite group G , the weak generating hypothesis implies the strong generating
hypothesis, just as in the non-equivariant case.

4 The rational equivariant case

Restricting to the category of rational G –spectra for a group G greatly simplifies the
structure of the category, and after this simplification the rational G –stable homotopy
categories for finite and infinite compact Lie groups exhibit very different behavior. As
mentioned in the introduction, the strong generating hypothesis holds in the rational
stable homotopy category for a finite group G , but even the weak generating hypoth-
esis fails in the category of T –spectra, where T is the circle group. In fact, using
Greenlees’s algebraic model for the category of rational T –spectra, we find an explicit
counterexample to the generating hypothesis in this category.
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Theorem 1.7 The generalized Freyd conjecture does not hold for the category of
rational T –equivariant spectra.

Before proving this theorem, we prove the following lemma about the equivariant
homotopy groups of the suspension spectrum XD†1CX of a free T –space X .

Lemma 4.1 Let X be a free rational T –space, and let XD†1CX denote the suspen-
sion spectrum of XC . Then, for a closed subgroup H � T ,

�H
� .X/D

(
��.†X=T / if H D T

��.X/ if H < T :

Proof The tom Dieck splitting theorem [9] states that for such an X and for any
closed subgroup H � T ,

(4-2) �H
� .X/D

M
K�H

��
�
†1.EWH KC ^WH K †ad.WH K /X K

C /
�
;

where the sum runs over conjugacy classes of closed subgroups K�H and ad.WH K/

is the adjoint representation of the Weyl group WH K . Let us first consider �T
� .X/.

Since X is free, the space X K
C is a point unless K is the trivial group. Hence the only

summand that contributes to �T
� .X/ is the summand corresponding to the trivial group

1� T . The Weyl group of 1� T is T itself, and the adjoint representation of T is
trivial. Thus

�T
� .X/D ��

�
†1.ETC ^T †XC/

�
D ��.†X=T /:

Now suppose H is a proper closed subgroup of T . Then H is finite, so ad.WH K/ is
zero for all K �H . Since X is free, the summand of (4-2) corresponding the trivial
group is the only summand contributing to �H

� .X/, just as in the previous case. Hence
�H
� .X/ reduces to

�H
� .X/D ��

�
†1.EHC ^H XC/

�
D ��.X=H /:

Since we are working rationally, ��.X=H /DH�.X=H /. As H is necessarily finite,
H�.X=H /DH�.X/=H . This follows because rationally the homology theories given
by H�.�=H / and H�.�/=H agree on orbits H=K , and thus must be isomorphic [8,
page 29]. However, since H is acting as a subgroup of the connected group T , H

must in fact act trivially on H�.X/. Thus ��.X=H /DH�.X/D ��.X/, where the
second equality again follows by rationality. That is, for any proper closed subgroup
H � T , the H –homotopy groups �H

� .X/ are in fact the non-equivariant homotopy
groups ��.X/.

Algebraic & Geometric Topology, Volume 10 (2010)



The Equivariant Generating Hypothesis 1013

Proof of Theorem 1.7 We restrict our attention to free rational T –spectra and use
the results of Greenlees in [5]. Throughout the following proof, we assume that all
spectra are rational without explicitly indicating this in our notation.

Let X and Y be finite rational T –spectra. The equivariant Freyd conjecture asserts
that a map f W X! Y is zero if and only if it induces the zero map on �H

� .�/ for all
closed subgroups H � T . We give a counterexample where X and Y happen to be
free rational T –spectra.

Greenlees proves [5, Theorem 3.1.1] that for free rational T –spectra, there is a natural
Adams short exact sequence

0! ExtQŒc�.�
T
� .†X/; �T

� .Y //! ŒX;Y �T� ! HomQŒc�.�
T
� .X/; �

T
� .Y //! 0;

where QŒc� is the graded polynomial algebra on an element c in dimension �2. This
element c comes from the Euler class of the representation of T on C by multiplication
[5, Theorem 2.4.1]. Note that Hom and Ext are graded, and Ext here means Ext1;� .
This short exact sequence is our main tool in finding a counterexample to the equivariant
Freyd conjecture.

Let X and Y be free rational T –spaces, and let XD†1CX and Y D†1C Y . Consider
the space TC ^XC with T acting diagonally. There is an isomorphism

Œ†1.TC ^XC/;Y �
T
� Š ŒX;Y ��

between equivariant homotopy classes of maps from †1.TC ^XC/ to Y and non-
equivariant homotopy classes of maps from X to Y , and since X and Y were assumed
to be rational, ŒX;Y �� is also isomorphic to HomQ.��.X/; ��.Y //.

Write QŒc�D k and †1.TC^XC/DW for conciseness. The projection pW W !X
induces a map of short exact sequences

0 // Extk.�T
� .†X/; �T

� .Y //
//

p�

��

ŒX;Y �T�

p�

��

// Homk.�
T
� .X/; �

T
� .Y //

//

p�

��

0

0 // Extk.�T
� .†W /; �T

� .Y //
// ŒW ;Y �T�

// Homk.�
T
� .W /; �T

� .Y //
// 0

which can be rewritten as

0 // Extk.�T
� .†X/; �T

� .Y //
//

p�

��

ŒX;Y �T�

p�

��

// Homk.�
T
� .X/; �

T
� .Y //

//

p�

��

0

0 // Extk.�T
� .†W /; �T

� .Y //
// HomQ.��.X/; ��.Y // // Homk.�

T
� .W /; �T

� .Y //
// 0
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Let f W X! Y be a map inducing the zero map �H
� .X/! �H

� .Y / for all subgroups
H � T . By Lemma 4.1 this is equivalent to assuming that f�W �T

� .X/! �T
� .Y / and

f�W ��.X/! ��.Y / are both zero. In other words, p�.f / is zero in

HomQ.��.X/; ��.Y //D HomQ.�
H
� .X/; �

H
� .Y //

and also f maps to zero in Homk.�
T
� .X/; �

T
� .Y //. Hence f is either zero, or lifts to a

nontrivial element of Extk.�T
� .†X/; �T

� .Y //. To show that the generating hypothesis
fails for the category of rational T –spectra, it is enough to show that the map

Extk.�
T
� .†X/; �T

� .Y //! Extk.�
T
� .†W /; �T

� .Y //(4-3)

has a nontrivial kernel. Any element of this kernel must be nonzero as an element of
ŒX;Y �T� , but must map to zero in the group ŒW ;Y �T� by definition, and will map to zero
in Homk.�

T
� .X/; �

T
� .Y // by exactness. Thus such an element gives a counterexample

to the generating hypothesis.

We now give a concrete example where the map (4-3) has a nontrivial kernel. The group
T acts on the complex plane C by multiplication. Consider the diagonal action of T
on Ca , for some positive integer a. Let S.a/ be the unit sphere in this representation
of T and consider the rational suspension spectrum of S.a/C . We will denote this
spectrum by S.a/. We claim that for integers a, b > 1, the spectra S.a/ and S.b/
provide a counterexample to the equivariant generating hypothesis.

To prove this claim, it suffices to calculate the groups

ExtQŒc�
�
�T
� .†S.a//; �T

� .S.b//
�

and ExtQŒc�
�
�T
� .†W /; �T

� .S.b//
�

where now W D†1.TC ^S.a/C/. First note that Lemma 4.1 implies �T
� .S.a//D

��.†S.a/=T /. Since S.a/ is the suspension spectrum of S.a/C and we are working
rationally, we may pass to the space level to see that

��.†S.a/=T /D ��.†CPa�1/D†2a�1QŒc�=.ca/

as a graded module over QŒc�. Similarly, Lemma 4.1 implies �T
� .W /D ��.†S.a//,

and passing to the space level yields

��.†S.a//D ��.†S2a�1/D†Q˚†2aQ;

again as a graded module over QŒc�. Hence our Ext calculations reduce to finding the
groups

ExtQŒc�
�
†2aQŒc�=.ca/; †2b�1QŒc�=.cb/

�
and

ExtQŒc�
�
†2Q˚†2aC1Q; †2b�1QŒc�=.cb/

�
:
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To calculate the first group, we use the free resolution

0!QŒc�
ca

�!†2aQŒc�!†2aQŒc�=.ca/! 0

of †2aQŒc�=.ca/. Applying HomQŒc�

�
�; †2b�1QŒc�=.cb/

�
to this resolution gives

an exact sequence

� � � !†2b�1�2aQŒc�=.cb/
ca

�!†2b�1QŒc�=.cb/

! ExtQŒc�
�
†2aQŒc�=.ca/; †2b�1QŒc�=.cb/

�
! 0

so that

ExtQŒc�
�
†2aQŒc�=.ca/; †2b�1QŒc�=.cb/

�
D

(
†2b�1QŒc�=.ca/ if a� b;

†2b�1QŒc�=.cb/ if a> b.

To calculate ExtQŒc�
�
�T
� .†W /; �T

� .S.b//
�
, we use the free resolution

0!QŒc�˚†2a�1QŒc�!†2QŒc�˚†2aC1QŒc�!†2Q˚†2aC1Q! 0

of †2Q˚†2aC1Q. Applying Hom
�
�; †2b�1QŒc�=.cb/

�
to this sequence gives the

exact sequence

� � � !†2b�3QŒc�=.cb/˚†2b�2a�2QŒc�=.cb/

!†2b�1QŒc�=.cb/˚†2b�2aQŒc�=.cb/

! ExtQŒc�
�
†2Q˚†2aC1Q; †2b�1QŒc�=.cb/

�
! 0:

Hence

ExtQŒc�
�
†2Q˚†2aC1Q; †2b�1QŒc�=.cb/

�
D†2b�1Q˚†2b�2aQ:

For any positive integer n, the set of maps from †2b�1QŒc�=.cn/ to †2b�1Q ˚
†2b�2aQ has a Q–basis given by two non-zero maps, one that takes the generator of
†2b�1Q.c/=.cn/ to degree 2b�1 and one that takes this generator to degree 2b�2a.
If n� 2, neither of these maps is injective. Hence, for a; b > 1, the map (4-3) cannot
be injective. Any nontrivial element of the kernel of (4-3) yields a nontrivial map
S.a/! S.b/ that induces the trivial map on homotopy. Therefore S.a/ and S.b/
provide the desired counterexample to the equivariant generating hypothesis for the
category of rational T –spectra.

Remark 4.4 The rational Burnside ring of a compact Lie group G is a von Neumann
regular ring. As such, a theorem of Hovey, Lockridge and Puninski [7] implies that the
appropriate formulation of the generating hypothesis in the derived category of this ring
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holds. This contrasts with our Theorem 1.7, which suggests that generating hypothesis
should fail in the category of G –equivariant spectra. Despite the formal analogy of the
statements, the generating hypothesis in the derived category of the Burnside ring of G

is not germane to the generating hypothesis for the G –equivariant homotopy category.
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