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On reciprocality of twisted Alexander invariants

JONATHAN A HILLMAN

DANIEL S SILVER

SUSAN G WILLIAMS

Given a knot and an SLnF representation of its group that is conjugate to its dual,
the representation that replaces each matrix with its inverse-transpose, the associated
twisted Reidemeister torsion is reciprocal. An example is given of a knot group and
SL3Z representation for which the twisted Reidemeister torsion is not reciprocal.
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1 Introduction

Let R be a ring. A Laurent polynomial f .t/2RŒt˙1� is reciprocal if f .t/D uf .t�1/,
for some unit u 2 RŒt˙1�. If R has no zero divisors, the condition is equivalent to
f .t�1/D˙t if .t/, for some i 2 Z.

The Alexander polynomial �.t/ of a knot k can be computed from a diagram of k or
from a presentation of the knot group (see Kawauchi [5], for example). It is an integral
Laurent polynomial, well defined up to multiplication by units, and usually normalized
to be a polynomial with nonzero constant coefficient. It is well known that �.t/ is
reciprocal. This is a consequence of Poincaré duality of the knot exterior (see Torres
and Fox [15] for an alternative approach based on duality in the knot group).

In 1990 X S Lin introduced a more sensitive knot invariant by using information
from representations of the knot group [10]. Later, refinements were described by
M Wada [16] and others including P Kirk and C Livingston [6], and J Cha [1]. These
twisted Alexander invariants have proven to be useful for a variety of questions about
knots including questions about concordance [6], knot symmetry (see Hillman, Liv-
ingston and Naik [4]), and fibrations (see Friedl and Vidussi [2]). See Friedl and
Vidussi [3] for a survey.

We briefly review the definition of perhaps the best-known twisted Alexander invariant.
Let k be a knot with exterior X , endowed with the structure of a CW complex. We fix
a Wirtinger presentation hx0;x1; : : : ;xk j r1; : : : ; rki for the knot group � D �1.X /.
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Let �W Fk! � be the associated projection of the free group Fk D hx0;x1; : : : ;xk j i

to � . It induces a ring homomorphism z�W ZŒFk �! ZŒ��.

Let �W �!H1.X IZ/Š ht j i be the abelianization mapping each xi to t . It induces
a ring homomorphism z�W ZŒ��! ZŒt˙1�.

Let R be a Noetherian unique factorization domain. Assume that 
 W �! GLnR is a
linear representation. Let z
 W ZŒ��!Mn.R/ be the associated ring homomorphism to
the algebra of n� n matrices over R. We obtain a homomorphism

(1-1) z
 ˝z�W ZŒ��!Mn.RŒt
˙1�/;

mapping g to �.g/
 .g/; that we denote more simply by ˆ.

Let M
˝� denote the k � .kC 1/ matrix with .i; j /–component equal to the n� n

matrix ˆ
�
@ri

@xj

�
2Mn.RŒt

˙1�/. Here @ri

@xj
denotes Fox partial derivative. Let M 0


˝�

denote the k � k matrix obtained by deleting the column corresponding to x0 . We
regard M 0


˝� as a kn� kn matrix with coefficients in RŒt˙1�.

Definition 1.1 The Wada invariant W
 .t/ is

det M 0

˝�

detˆ.x0� 1/
:

When 
 is the trivial 1-dimensional representation, M 0

˝� is a matrix M.t/ that we call

the Alexander matrix of k . (This terminology is used, for example, by Rolfsen [13], but
it is not standard.) The determinant of M.t/ is the (untwisted) Alexander polynomial
�.t/ of k .

Remark 1.2 Although the rational function W
 .t/ is often a polynomial, it need
not be. However, in general it is well defined up to multiplication by .�t/ni . See
Wada [16].

Let zX denote the universal cover of X , with the structure of a CW complex that is
lifted from X . The matrix M
˝� represents a boundary homomorphism for a twisted
chain complex

(1-2) C�.X IV Œt
˙1�
 /D .RŒt

˙1�˝R V /˝
 C�. zX /:

Here V D Rn is a free module on which � acts via 
 , while C�. zX / denotes the
cellular chain complex of zX with coefficients in R. The group ring RŒ�� acts on the
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left via deck transformations. On the other hand, RŒt˙1�˝R V has the structure of of
a right RŒ��–module via

.p˝ v/ �g D .�.g/p/˝ .v
 .g//; for 
 2 �:

The homology group H1.X IV Œt
˙1�/ of the chain complex (1-2) is a finitely gener-

ated RŒt˙1�–module. Its 0th elementary divisor �
 .t/, which is well defined up to
multiplication by units in RŒt˙1�, lately competes with W
 .t/ for the name “twisted
Alexander polynomial.” In many cases they are equal (up to multiplication by units);
generally, �
 .t/ is det M 0


˝� divided by a factor of detˆ.x0 � 1/. See Kirk and
Livingston [6] or Silver and Williams [14] for details.

The representation 
 induces a representation 
 W �!GLn.F.t//, where F.t/ is the
field of fractions of RŒt˙1�. When det M 0


˝� ¤ 0, the chain complex

(1-3) C�.X IV .t/
 /D .F.t//˝R V /˝
 C�. zX /

is acyclic (see Kitano [7]), and hence the Reidemeister torsion �
 .t/ is defined. It
coincides with the Wada invariant (see [7] and also [6]).

Remark 1.3 (1) Conjugating the representation 
 corresponds to a change of basis
for V . It is well known that the invariants �
 .t/ and �
 .t/ are unchanged.

(2) The indeterminacy of sign in the definition of �
 .t/ can be removed (see Ki-
tayama [8]).

T Kitano used Poincaré duality to prove in [7] that for orthogonal representations

 W � ! SOn.R/, the torsion �
 .t/ is reciprocal, where reciprocality for rational
functions is defined as for Laurent polynomials. (In fact Kitano shows that �
 .t�1/

and �
 .t/ are equal up to multiplication by ˙tni .) He asked whether reciprocality
holds for more general representations.

For representations 
 W �! GLn.C/, “reciprocality” can have another meaning. One
can require that �
 .t/ be equal up to multiplication by a unit to the expression obtained
by inverting t and also taking complex conjugates of coefficients. Kirk and Livingston
showed in [6] that �
 .t/ satisfies such a condition whenever 
 is unitary.

It is not difficult to find representations 
 W �!GLnF such that �
 .t/ is non-reciprocal.
For example, consider the Wirtinger presentation

hx0;x1;x2 j x0x1 D x2x0;x1x2 D x0x1i
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of the trefoil knot group � . The assignment xi 7!Xi 2GL1F , such that XiD
�
2
�
; i D

0; 1; 2; yields the non-reciprocal invariant

�
 .t/D
4t2� 2t C 1

2t � 1
:

(This simple example was suggested to us by S Friedl.) The question of reciprocality
for representations in SLnF is more subtle. The question was proposed by Kitano [7];
it appeared recently in [3].

In Section 2 we show that reciprocality need not hold for general representations
in SLnF . The representations 
 that we consider have the property that the dual
representation x
 , obtained by replacing each matrix 
 .g/;g 2 � , by its inverse-
transpose, is not conjugate to 
 .

In Section 3 we prove that if a representation 
 W �! GLnF is conjugate to its dual,
then the torsion �
 .t/ is reciprocal.

2 Examples

Any reciprocal even-degree integral polynomial �.t/ such that �.1/D˙1 arises as
the Alexander polynomial of a knot (see Kawauchi [5], for example). Let f .t/ be any
monic integral polynomial with constant coefficient �1 and f .1/ D ˙1. Choose a
knot k with Alexander polynomial �.t/D f .t/f .t�1/.

Let C be the companion matrix of .t�1/f .t/. Then C 2 SLnZ, where degf D n�1.
Consider the cyclic representation 
 W �!SLnZ sending each generator x0;x1; : : : ;xk

of a Wirtinger presentation of � to C . We have

(2-1) �
 .t/D
det M 0


˝�

detˆ.x0� 1/
D

det M 0

˝�

f .t�1/.t � 1/
:

The matrix M 0

˝� can be obtained from the .k � k/ Alexander matrix M.t/ by

replacing each polynomial entry
P

ai t
i with the .n � n/ block matrix

P
ai.tC /

i .
Since the n� n blocks commute,

det M 0

˝� D

Y
�

det M.t�/;

where � ranges over the eigenvalues of C , that is, the roots of .t�1/f .t/ (see Kovacs,
Silver and Williams [9] for details). Hence

det M 0

˝� D

Y
�

�.t�/ D �.t/
Y

�Wf .�/D0

f .t�/f .t�1��1/:
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Since �.t/ and det M 0

˝�.t/ are integral polynomials, so is

g.t/D
Y

�Wf .�/D0

f .t�/f .t�1��1/:

Lemma 2.1 If degf D 2, then g.t/ is reciprocal.

Proof Our assumptions about f .t/ imply that its roots have the form �;���1 ,
for some � 2 C n f0g. Then g.t/ D f .t�/f .t�1��1/f .�t��1/f .�t�1�/ while
g.t�1/D f .t�1�/f .t��1/f .�t�1��1/f .�t�/: Observe that g.t/ and g.t�1/ have
the same roots:

� f .t�/ and f .�t�1��1/ have roots: t D 1;���2 ;

� f .t�1��1/ and f .�t�/ have roots: t D�1; ��2 ;

� f .�t��1/ and f .t�1�/ have roots: t D 1;��2 ;

� f .�t�1�/ and f .t��1/ have roots: t D�1; �2 .

It follows that g.t�1/D ˛g.t/, for some ˛ 2Cnf0g. Letting t D 1, we see that ˛D 1.
Hence g.t�1/D g.t/.

Remark 2.2 The numerator det M 0

˝� of Definition 1.1 is a polynomial invariant

D
 .t/ of k , well defined up to multiplication by units in CŒt˙1� (see Silver and
Williams [14]). Since �.t/ is reciprocal, Lemma 2.1 implies that D
 .t/ is reciprocal
whenever degf D 2. Example 2.5 below shows that this conclusion need not hold
when degf > 2.

Proposition 2.3 Let f .t/ be a polynomial as above with degree 2. If f .t/ is non-
reciprocal, then �
 .t/ is a non-reciprocal integral polynomial of the form .t � 1/h.t/.

Proof From equation (2-1),

(2-2) �
 .t/D
f .t/f .t�1/g.t/

f .t�1/.t � 1/
D
f .t/g.t/

t � 1
:

Since g.t/ and t � 1 are reciprocal but f .t/ is not, �
 .t/ is non-reciprocal. To see
that �
 .t/ has the desired form, note that .t � 1/2 divides g.t/ since both factors
f .t�/; f .�t��1/ of g.t/ vanish when t D 1.
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Example 2.4 Let f .t/D t2� t � 1. Then

C D

0@0 0 �1

1 0 0

0 1 2

1A :
Computation shows that g.t/D .t�1/2.tC1/2.t2�3tC1/.t2C3tC1/: By equation
(2-2),

�
 .t/D .t
2
� t � 1/.t � 1/.t C 1/2.t2

� 3t C 1/.t2
C 3t C 1/;

which is non-reciprocal.

Example 2.5 Let f .t/D t3� t � 1. Then

C D

0BB@
0 0 0 �1

1 0 0 0

0 1 0 1

0 0 1 1

1CCA :
Computation shows that g.t/ D .t � 1/3.t3 � t � 1/2.t3 � t2 C 2t � 1/.t6 C 3t5 C

5t4C 5t3C 5t2C 3t C 1/: The polynomial f .t/f .t�1/g.t/ is the numerator D
 .t/

of Wada’s invariant (see Definition 1.1). It is non-reciprocal.

It is not difficult to see that for any cyclic representation, D
 .t/ D �
 .t/ (see [14,
Section 3]) Hence this example shows that �
 .t/ can also be non-reciprocal.

3 Sufficient condition for reciprocality

If 
 W G! GLnF is a linear representation, then the dual (or contragredient) represen-
tation x
 is defined by

x
 .g/D t
 .g/�1;

where t denotes transpose.

The following elementary lemma is included for the reader’s convenience.

Lemma 3.1 A representation 
 W G ! GLnF is conjugate to its dual if and only
if there exists a nondegenerate bilinear form .v; w/ 7! fv;wg 2 F on V such that
fv �g; w �gg D fv;wg for all v;w 2 V and g 2G .

Proof Assume that x
 is conjugate to 
 . Then there exists a matrix A2GLnF such that
A�1
 .g/AD t
 .g/�1 , for all g 2G . Define fv;wg D vA tw . Since A is invertible,

Algebraic & Geometric Topology, Volume 10 (2010)



On reciprocality of twisted Alexander invariants 1023

the bilinear form is nondegenerate. It is easy to check that fv �g; w �gg D fv;wg for
all v;w 2 V .

Conversely, assume that 
 preserves a nondegenerate bilinear form .v; w/ 7! fv;wg.
There exists an invertible matrix A 2 GLnF such that fv;wg D vA tw: Since 

preserves the form, we have v
 .g/A t
 .g/ tw D fv � g; w � gg D fv;wg D vA tw ,
for all v;w 2 V;g 2 G . It follows that 
 .g/A t
 .g/ D A for all g 2 G . Hence
A�1
 .g/AD t
 .g/�1 , and so x
 is conjugate to 
 .

As before, let k be a knot with group � . Assume that 
 W �!GLnF is a representation,
where F is an arbitrary field. As above, V D Fn is a right ZŒ��–module via v �g D
v
 .g/; for all v 2 V and 
 2 � . Let W D Fn with the dual ZŒ��–module structure
given by w �g D w t
 .t/�1 .

Theorem 3.2 Assume that det M 0

˝� ¤ 0: If 
 is conjugate to its dual representation

x
 , then both �
 .t/ and �
 .t/ are reciprocal.

Proof The following argument is similar to those of Kitano [7] and of Kirk and
Livingston [6].

Recall that X is the exterior of k , endowed with a CW cell structure. Let X 0 be
the same space but with the dual cell structure. Let xW F.t/! F.t/ be the involution
induced by t 7! t�1 .

Assume that 
 W � ! GLnF is a representation that is conjugate to its dual. By
Lemma 3.1 there exists a nondegenerate bilinear form .v; w/ 7! fv;wg such that
fv �g; w �gg D fv;wg for all v;w 2 V;g 2 � . Consider the twisted chain complexes

C� D .F.t/˝F V /˝
 C�. zX /; D� D .F.t/˝F W /˝x
 C�. zX
0; @ zX 0/;

where zX and zX 0 denote universal covering spaces of X and X 0 , respectively. We
abbreviate these by V
˝�˝C�. zX / and Vx
˝�˝C�. zX /, respectively.

Define a bilinear pairing Cq �D3�q! F.t/ by

(3-1) hp˝ v˝ z1; q˝w˝ z2i D

X
g2�

.z1 �gz2/pxqfv �g; wg;

where z1 � gz2 is the algebraic intersection number of cells z1 and gz2 . We extend
linearly.

The pairing induces a F.t/–module isomorphism D3�q!Hom.Cq;F.t//, where Hom
denotes the dual space with .q �h/.z/Dxq.h.z//, for all q 2F.t/; z 2 Cq . Consequently,
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there exists a nondegenerate pairing Hq.X IV .t// �H3�q.S
0; @X 0IW .t// ! F.t/.

Since the torsion of C� is defined, by our hypothesis, the torsion of D� is too.

Choose a basis fvig over F for V and lifts to zX of simplices of X to get a preferred
F.t/–basis for C� . Basis elements have the form 1˝ vi ˝ zj . Then D� has a natural
dual basis over F.t/ obtained by picking a basis for W that is dual to the basis for
V with respect to f; g, and dual cells in zX 0 of the fixed lifts of simplices of X . As
observed by Kirk and Livingston [6], the bases for C� and D� that we build are dual
with respect to bilinear form (3-1).

Let �.X IV
˝�/ denote the torsion of C� . Similarly, let �.X 0; @X 0IVx
˝�/ denote the
torsion of D� . Then �.X IV
˝�/ D �.X 0; @X 0IVx
˝x�/ by Milnor [12, Theorem 1’].
Futhermore,

�.X 0; @X 0IVx
˝x�/D �.X; @X IVx
˝x�/ .by subdivision/

D �.X; @X IV
˝x�/ .since 
 is conjugate to x
 /

D x�.X; @X IV
˝�/

D x�.X IV
˝�/;

using Milnor [11, Lemma 2] and �.@X IV
˝�/ D 1 (see Kirk and Livingston [6]).
Hence

�
 .t/D �.X IV
˝�/D x�.X IV
˝�/D x�
 .t/:

In order to show that �
 .t/ is also reciprocal, we need the fact from [6] that �
 .t/ is
equal to �
 .t/ times the 0th elementary divisor of H0.X IV Œt

˙1�/, computed using the
chain complex (1-2). We observe that H0.X IV Œt

˙1�/ is the cokernel of the boundary
homomorphism @1 . For any g 2 � , the set of eigenvalues of 
 .g/ is closed under
inversion, since 
 is conjugate to its dual. It follows that the 0th elementary of
H0.X IV Œt

˙1�/ is reciprocal. Hence so is �
 .t/.

Remark 3.3 If F DR, and the bilinear form in Lemma 3.1 is positive-definite, then
by considering a basis for V that is orthonormal with respect to the form, we see that
A is the identity matrix. In this case, 
 .g/D t
 .g/�1 for all g 2G , and hence 
 is
conjugate to an orthogonal representation. Similarly, if F DC and the bilinear form is
hermitian and positive-definite, 
 is conjugate to a unitary representation.

Corollary 3.4 If 
 W �! Sp2nF is a symplectic representation, then �
 .t/ is recipro-
cal.

Proof The representation preserves the bilinear form given by AD
�

0n In

�In 0n

�
.

Since Sp2F D SL2F , the following is immediate.
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Corollary 3.5 If 
 is any representation of � in SL2F , then �
 .t/ is reciprocal.

Corollary 3.5 shows that Example 2.4 is, in a sense, the simplest possible.
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