
Algebraic & Geometric Topology 10 (2010) 1221–1244 1221

Epimorphisms and boundary slopes of 2–bridge knots

JIM HOSTE

PATRICK D SHANAHAN

In this article we study a partial ordering on knots in S3 where K1 � K2 if there
is an epimorphism from the knot group of K1 onto the knot group of K2 which
preserves peripheral structure. If K1 is a 2–bridge knot and K1 � K2 , then it is
known that K2 must also be 2–bridge. Furthermore, Ohtsuki, Riley and Sakuma
give a construction which, for a given 2–bridge knot Kp=q , produces infinitely many
2–bridge knots Kp0=q0 with Kp0=q0 �Kp=q . After characterizing all 2–bridge knots
with 4 or less distinct boundary slopes, we use this to prove that in any such pair,
Kp0=q0 is either a torus knot or has 5 or more distinct boundary slopes. We also prove
that 2–bridge knots with exactly 3 distinct boundary slopes are minimal with respect
to the partial ordering. This result provides some evidence for the conjecture that all
pairs of 2–bridge knots with Kp0=q0 �Kp=q arise from the Ohtsuki–Riley–Sakuma
construction.

57M25

1 Introduction

Many interesting problems in knot theory involve the question of when one knot
complement can be mapped onto another, or at the algebraic level, when the fundamental
group of one knot complement can be mapped onto the fundamental group of another.
For example, Simon’s Conjecture asserts that the fundamental group of any knot in S3

can surject onto only finitely many knot groups. This conjecture has been established
for 2–bridge knots by Boileau, Boyer, Reid and Wang [2]. On the other hand, given any
2–bridge knot Kp=q , Ohtsuki, Riley and Sakuma [18] show how to construct infinitely
many 2–bridge knots Kp0=q0 whose complements map onto the complement of Kp=q .
Their construction induces an epimorphism �W �1.S

3 �Kp0=q0/! �1.S
3 �Kp=q/

of knot groups which preserves peripheral structure, that is, � takes the subgroup
generated by a longitude and meridian of Kp0=q0 into a conjugate of the subgroup
generated by a longitude and meridian of Kp=q .

For any pair of knots, not just 2–bridge knots, Silver and Whitten [20] define a partial
ordering � on knots in S3 by declaring that K1 �K2 if there exists an epimorphism
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�W �1.S
3�K1/! �1.S

3�K2/ which preserves peripheral structure. If we restrict
our attention to prime knots, then we may drop the requirement that the epimorphism
preserves peripheral structure and still obtain a partial order. This partial order is
studied, for example, in the papers by Kitano and Suzuki [12; 13]. However, in this
article we will focus on the partial order defined by Silver and Whitten which requires
that the epimorphism preserve peripheral structure.

For a given 2–bridge knot Kp=q , the Ohtsuki–Riley–Sakuma (ORS) construction gives
infinitely many 2–bridge knots Kp0=q0 such that Kp0=q0 �Kp=q . This leads naturally
to the following question posed in [18].

Question 1.1 (Ohtsuki–Riley–Sakuma) Is every pair of 2–bridge knots .Kp0=q0 ;Kp=q/

with Kp0=q0 �Kp=q given by the ORS construction?

González-Acuña and Ramı́rez [6] give an affirmative answer to Question 1.1 in the case
where Kp=q is a 2–bridge torus knot. In this paper we give additional evidence that
the answer to Question 1.1 is yes in general. Numerous computations with nontorus
knot ORS pairs .Kp0=q0 ;Kp=q/ with Kp0=q0 � Kp=q suggest that in any such pair
the larger knot Kp0=q0 must be sufficiently complex with respect to a variety of knot
invariants such as: crossing number, degree of the Alexander polynomial, degree of
the A–polynomial, number of distinct boundary slopes, etc. Thus, if the answer to
Question 1.1 is yes, then knots with “small” complexity should be minimal. Here, a
knot K1 is said to be minimal with respect to the Silver–Whitten partial ordering if
K1 �K2 implies that either K2 DK1 , K2 is the mirror image of K1 , or K2 is the
unknot. Throughout the remainder of this paper, we will consider two knots K1 and
K2 to be equivalent, K1 �K2 , if either K2 DK1 or K2 is the mirror image of K1 .

One of the themes of this paper will be to look at the set of distinct boundary slopes
of a knot. These are easily computed for 2–bridge knots due to the classification of
Hatcher and Thurston [7]. Our first main result gives a lower bound on the number of
distinct boundary slopes for the larger knot in an ORS pair.

Theorem 4.2 If Kp0=q0 �Kp=q is a nontrivial ORS pair, then either

(i) Kp0=q0 and Kp=q are both torus knots and Kp0=q0 has precisely two distinct
boundary slopes, or

(ii) Kp0=q0 has at least five distinct boundary slopes.

Our second main result establishes the minimality of 2–bridge knots with exactly three
boundary slopes.
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Theorem 5.1 If Kp=q is a 2–bridge knot with exactly 3 distinct boundary slopes,
then Kp=q is minimal with respect to the Silver–Whitten partial order.

Notice that if the answer to Question 1.1 is yes, then Theorem 4.2 implies Theorem 5.1.
Thus, we may think of Theorem 5.1 as evidence in support of an affirmative answer
to Question 1.1. It is also worth noting that Theorem 4.2 is sharp. That is, there exist
nonminimal 2–bridge knots with 5 distinct slopes. We provide an example of this in
Section 4.

This project began as joint work of the first author and two undergraduate students,
Tómasz Przytycki and Rebecca Nachison, in the summer of 2007 at the Claremont
Colleges REU program. Thanks are due to Tómasz and Rebecca for working out most
of Theorem 3.2. We thank the National Science Foundation, the Claremont Colleges
and Pitzer College in particular, for their support of the REU program. The second
author would also like to thank the Claremont Colleges for their hospitality and Pitzer
College for its support during the completion of this work. Finally, thanks are due to
Alan Reid for helpful conversations regarding character varieties and the referee for a
careful reading and corrections.

2 Preliminaries

We begin with some notation for 2–bridge knots. Recall that each 2–bridge knot
corresponds to a relatively prime pair of integers p and q with q odd. We denote
the knot as Kp=q . Furthermore, Kp=q and Kp0=q0 are ambient isotopic as unoriented
knots if and only if q0 D q and p0 � p˙1 .mod q/ (see Burde and Zieschang [4] for
details). As mentioned earlier, we will not distinguish between a knot Kp=q and its
mirror image K�p=q . Therefore, in this paper we consider two 2–bridge knots Kp=q

and Kp0=q0 to be equivalent if and only if q0 D q and either p0 � p˙1 .mod q/ or
p0 � �p˙1 .mod q/. Because of this classification, it is sometimes convenient to
assume that 0< p < q .

The theory of 2–bridge knots is closely tied to continued fractions. We adopt the
convention used in [18] and define p=qD rC Œb1; b2; : : : ; bn� as the continued fraction:

p=q D r C Œb1; b2; : : : ; bn�D r C
1

b1C
1

b2C

: : :

C
1

bn

Algebraic & Geometric Topology, Volume 10 (2010)



1224 Jim Hoste and Patrick D Shanahan

It is well known that if 0 < p < q then we may write p=q uniquely as p=q D

0C Œb1; b2; : : : ; bn� where each bi > 0 and bn > 1. Furthermore, we may also assume
that b1 > 1 for the following reason. If b1 D 1, reversing the order of the partial
quotients will give p0=q D Œbn; : : : ; b3; b2; 1�D Œbn; : : : ; b3; b2C 1� with 0 < p0 < q

and pp0 � .�1/nC1 (mod q ) (see Burde and Zieschang [4]). Thus, for any 2–bridge
knot K , there exists a continued fraction 0C Œb1; b2; : : : ; bn� with bi > 0; b1 > 1,
and bn > 1 representing K (or its mirror image). In what follows, we will refer
to such a continued fraction as strongly positive. Moreover, we will also refer to a
vector .b1; b2; : : : ; bn/ of positive integers with b1 > 1 and bn > 1 as strongly positive.
Finally, the negation of such a vector we call strongly negative.

b1

b2

b3

bn

Figure 1: A 4–plat diagram for Kp=q where p=q D r C Œb1; b2; : : : ; bn� (n even)

If p=q D r C Œb1; b2; : : : ; bn�, then Kp=q can be represented by the standard 4–plat
diagram shown in Figure 1. In each box there are bi crossings. If i is odd, then
the crossings are right-handed if bi > 0 and left-handed otherwise. For i even the
convention reverses, with bi > 0 corresponding to left-handed crossings and bi < 0

for right-handed. Thus, the 4–plat diagram is alternating precisely when all bi have
the same sign. Notice also that there are two possible ways to “close up” the strands at
the right end of the braid in Figure 1 depending on whether n is even or odd. Figure 1
depicts a 4–plat with n even. If n is odd, strings 1 and 2, and strings 3 and 4, connect
pairwise at the right end of the braid just as they do at the left end. With this notation,
the fraction 1=3 D Œ3� gives the right-hand trefoil knot while 2=5 D Œ2; 2� gives the
figure eight knot.

Now suppose that � is a homomorphism between knot groups that preserves peripheral
structure. Since all nontrivial knots in S3 have Property P [14], there are certain
restrictions placed on the images of a meridian and longitude of K1 .

Theorem 2.1 Let K1 and K2 be nontrivial knots with K1 �K2 . Then there exists
an epimorphism �W �1.S

3�K1/! �1.S
3�K2/ and an integer d such that

�.�1/D �2;

�.�1/D �
d
2 ;

for some choice f�i ; �ig of meridian-(preferred) longitude pairs for Ki .
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Proof Since � preserves peripheral structure we may assume (after conjugation, if
necessary) that

�.�1/D �
a
2�

b
2;

�.�1/D �
c
2�

d
2 ;

for some integers a; b; c; d . If we consider the abelianization map abW �1.S
3�K2/!

Z, then ab.�.�1//D0 since �1 is in the commutator subgroup. However, ab.�.�1//D

ab.�c
2
�d

2
/D c . This shows that c D 0. Moreover, ab.�.�1//D ab.�a

2
�b

2
/D a must

generate Z because ab ı� is onto and �1.S
3�K1/ is generated by conjugates of �1 .

Therefore, aD˙1. By replacing �2 with its inverse if necessary, we may assume that
aD 1.

Now consider 1=b Dehn filling on K2 . This filling kills the image of �1 and any of
its conjugates, and so kills the entire group, since � is onto. Thus the manifold we
obtain after filling is simply connected. Since K2 is a nontrivial knot with Property P,
we must have done trivial surgery. Therefore, b D 0.

Because of Theorem 2.1, it makes sense to write

K1 �d K2

whenever K1 � K2 and there exists an epimorphism � as in Theorem 2.1 with
�.�1/ D �

d
2

. In general, d can take on any integer value. In particular, given the
knot K2 and any integer d , there exists a knot K1 and epimorphism � realizing d .
The reader is referred to Johnson and Livingston [11] for more information on this
subject. On the other hand, if K1 and K2 are 2–bridge knots, then d must be odd.

Theorem 2.2 If Kp0=q0 �d Kp=q where Kp0=q0 and Kp=q are 2–bridge knots and
Kp=q is nontrivial, then d is odd. In particular, the image �.�1/ under the epimor-
phism � cannot be trivial.

Proof Suppose �W �1.S
3�Kp0=q0/! �1.S

3�Kp=q/ is an epimorphism taking �1

to �d
2

and let � be an irreducible parabolic representation of �1.S
3 �Kp=q/ into

SL.2;C/ (such a representation exists by Riley [19]). Composing � with � gives
such a representation for Kp0=q0 . It follows from Hoste and Shanahan [8] that any
irreducible parabolic representation of a 2–bridge knot into SL.2;C/ must take the
longitude into the conjugacy class of an upper triangular matrix with diagonal entries
of �1. Hence � cannot take �1 to an even power of �2 .

The following theorem summarizes some additional properties of the partial ordering
which we will refer to in this article. The first part is classical, the second is in Silver
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and Whitten [20], the third comes from Boileau, Boyer, Reid and Wang [2] and the
fourth appears in Boileau and Boyer [1].

Theorem 2.3 (Silver–Whitten, Boileau–Boyer, Boileau–Boyer–Reid–Wang) Suppose
that K1 �d K2 .

(i) Let �.i/
K
.t/ denote the i –th Alexander polynomial of K . Then �.i/

K2
.t/ divides

�
.i/
K1
.t/.

(ii) Let AK .L;M / denote the A–polynomial of K . Then AK2
.L;M / divides

.Ld � 1/AK1
.Ld ;M /.

(iii) Let X.K/ denote the SL.2;C/ character variety of K . Then the induced
map ��W X.K2/!X.K1/ is an injective, algebraic and closed (in the Zariski
topology) mapping.

(iv) If K1 is a 2–bridge knot, then K2 is a 2–bridge knot. Furthermore, if K1 D

Kp0=q0 and K2 DKp=q , then either K1 �K2 or q0 D kq with k > 1.

Notice that the fact that q divides q0 in Theorem 2.3(iv) is easily derived from (i) and
the fact that q D j�Kp=q

.�1/j is the determinant of Kp=q .

Because of the relationship between the A–polynomial and boundary slopes of a knot,
Theorem 2.3(ii) enables us to use boundary slopes as a tool to study whether one
knot is greater than another. Recall that a boundary slope r D a=b of a knot K is
an element of Q[1 such that K contains a properly embedded, incompressible,
boundary incompressible surface S in its exterior whose boundary is the curve a�Cb�

(or multiple copies of this curve). Here f�; �g is a meridian-(preferred) longitude pair
for K . The Newton polygon of the A–polynomial AK .L;M /D

P
ai j LiM j is the

convex hull of the set of points f.i; j / 2 R2 j ai j ¤ 0g. If r is the slope of a side
of the Newton polygon of AK .L;M /, then it is proven in [5], that r is a boundary
slope of K . A boundary slope of K which appears as a slope of the Newton polygon
is called strongly detected. We shall tacitly assume that the A–polynomial always
includes the component L� 1 corresponding to abelian representations so that 0 is
always a strongly detected slope.

Corollary 2.4 Suppose K1 �d K2 , d ¤ 0, and that r is a strongly detected boundary
slope of K2 . Then dr is a strongly detected boundary slope of K1 .

Proof We establish this result using the following well-known property of New-
ton polygons. For any polynomial P .x;y/ let SP denote the set of slopes of the
sides of the Newton polygon of P . Then for all polynomials P .x;y/ and Q.x;y/,
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SP [SQ D SPQ (a proof may be found in [8]). Now suppose that r is a strongly
detected boundary slope of K2 . Then r is the slope of a side of the Newton polygon of
AK2

.L;M /. Since AK2
.L;M / divides .Ld � 1/AK1

.Ld ;M / it follows that r D 0

or r is a slope of a side of the Newton polygon of AK1
.Ld ;M /. If r D 0, then

dr D 0 is a strongly detected slope of K1 . Now assume that r is a slope of a side
of the Newton polygon of AK1

.Ld ;M /. The Newton polygon of AK1
.Ld ;M / is

obtained from the Newton polygon of AK1
.L;M / by simply replacing every vertex

.i; j / with .i=d; j /. Consequently, dr is the slope of a side of the Newton polygon of
AK1

.L;M /, and therefore, is a strongly detected boundary slope of K1 .

By work of Ohtsuki [17], all boundary slopes of 2–bridge knots are strongly detected.
Thus, for 2–bridge knots we have a stronger result.

Corollary 2.5 Suppose K1�d K2 and that K1 is a 2–bridge knot. If fr1; r2; : : : ; rmg

is the set of boundary slopes of K2 , then fdr1; dr2; : : : ; drmg is a subset of the set of
boundary slopes of K1 .

For any knot K , the diameter of its set of boundary slopes is the maximum difference
between any two slopes. We denote the diameter by diam.K/. For 2–bridge knots,
in fact for all alternating Montesinos knots, cr.K/D diam.K/=2, where cr.K/ is the
crossing number of K . See Hoste and Shanahan [9], Ichihara and Mizushima [10] and
Mattman, Maybrun and Robinson [16]. This leads to the following results.

Corollary 2.6 Suppose K1 is a 2–bridge knot and K1 �d K2 . Then cr.K1/ �

jd jcr.K2/� cr.K2/.

Using Theorem 2.3(iv) and Corollary 2.6 it is now easy to establish the following
corollary. This corollary is a weaker version of Simon’s conjecture for 2–bridge knots
because the epimorphism is required to preserve peripheral structure. This result was
first proven by Boileau, Rubinstein and Wang [3].

Corollary 2.7 A 2–bridge knot can only be greater than or equal to finitely many
other knots.

3 2–Bridge knots with four or less boundary slopes

In preparation for proving Theorem 4.2, we determine in this section those 2–bridge
knots with small numbers of distinct boundary slopes. In [16], the authors determine
necessary but not sufficient conditions on p and q so that Kp=q has 4 or less distinct
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boundary slopes. In order to exploit Corollary 2.5 we require a stronger result than
what appears in [16]. In particular, we need both a complete classification of 2–bridge
knots with 4 or less boundary slopes as well as an explicit description of the associated
slope sets.

We assume the reader is familiar with Hatcher and Thurston’s paper [7] where a method
for computing the boundary slopes of Kp=q is given. We will also make use of a method
equivalent to theirs which is described in [9]. Rather than describing the methodology
in complete detail, we provide a brief description illustrated by an example.

Recall that the Farey graph may be thought of as the edges of the ideal modular
tessellation of H2 obtained by starting with the ideal triangle whose vertices are
1=0; 0=1, and 1=1 and then reflecting it in all possible ways across its edges. The
ideal vertices of this tessellation are Q[f1g. Two vertices a=b and c=d are joined
by an edge precisely when

det
�

a c

b d

�
D˙1

and we call this value the determinant of the directed edge from a=b to c=d . If a=b

and c=d are joined by an edge, then so are a=b and .aC c/=.bC d/ as well as c=d

and .aC c/=.bC d/. In this case the two fractions a=b and c=d , together with their
mediant .aC c/=.b C d/, form the vertices of an ideal triangle in the tessellation.
Finally, given any continued fraction expansion of p=q , the associated sequence of
convergents defines a path in the Farey graph from 1=0 to p=q . The number of triangles
through which the path “turns” at each vertex is equal to the corresponding partial
quotient.

For example, consider 7=17D 0C Œ2; 2; 3�. We picture the relevant portion of the Farey
graph in Figure 2. The sequence of convergents is f0; 1=2; 2=5; 7=17g. The partial
quotients are 2; 2; 3 and the path turns through 2 triangles on the left at 0, 2 triangles
on the right at 1=2 and 3 triangles on the left at 2=5. If all the partial quotients are
positive, as in this example, then the turning at each vertex alternates between triangles
on the left and right. Negative partial quotients correspond to turning in the opposite
direction. Again, the reader is urged to consult [7; 9].

For any p=q , there are infinitely many edge paths in the Farey graph that begin at
1=0 and end at p=q , but only finitely many that are minimal. A path is minimal if it
never backtracks and if it never traverses two edges of the same triangle. The minimal
paths for K7=17 and their corresponding continued fractions are shown in the first two
columns of Table 1. In general, only one of the minimal paths is even, that is, all the
partial quotients are even. In Table 1, the first path is even. According to Hatcher and
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1
0

1
1

1
2

3
7

5
12

7
17

0
1

1
3

2
5

Figure 2: The portion of the Farey graph between 1=0 and 7=17

Thurston, each minimal path determines a boundary slope. The slope can be computed
from the path 
 by the formula

�2.m.
 /�m.
even//

where 
even is the even path and m.
 / is the sum of the determinants of each edge of
the path, excluding the first edge. Thus, the even path always gives a slope of zero. For
any path 
 , we call m.
 / the unadjusted slope. The last two columns of Table 1 give
the unadjusted slopes and the boundary slopes of K7=17 .

minimal path 
 fraction m.
 / slope

f1=0; 1=1; 1=2; 3=7; 5=12; 7=17g 1C Œ�2; 4;�2; 2� 4 0
f1=0; 0=1; 1=2; 3=7; 5=12; 7=17g 0C Œ2; 3;�2� 2 4
f1=0; 1=1; 1=2; 2=5; 7=17g 1C Œ�2; 3; 3� 1 6
f1=0; 0=1; 1=2; 2=5; 7=17g 0C Œ2; 2; 3� �1 10
f1=0; 0=1; 1=3; 2=5; 7=17g 0C Œ3;�2; 4� �3 14

Table 1: Boundary slope data for K7=17

For any p=q , if 
1 and 
2 are two paths from 1=0 to p=q , then we can move from
one path to the other by a sequence of triangle moves. By a triangle move, we mean
replacing two consecutive edges that lie in a single triangle with the third edge of
the triangle, or vice-versa. If 
1 is changed to 
2 by a single triangle move, and
furthermore, the triangle lies on the right of 
1 , then we call the move a right triangle
move. Right triangle moves define a partial order on the set of paths: we say that

1>
2 if 
1 can be changed to 
2 by a sequence of right triangle moves. Furthermore,
it is shown in [9] that right triangle moves strictly decrease the unadjusted slope of
the path, thus, 
1 > 
2 implies that m.
1/ >m.
2/. The upper and lower minimal
paths can now be defined as ones that are either maximal or minimal with respect to
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this partial order, respectively. These paths are well-defined because there is a unique
minimal path with no triangles on its left and a unique minimal path with no triangles
on its right. In Table 1, the first path is the upper path and the last path is the lower
path.

The following lemma gives a lower bound on the number of distinct boundary slopes.

Lemma 3.1 If p=q D r C Œa1; a2; : : : ; am� is a strongly positive continued fraction,
then the number of distinct boundary slopes of Kp=q is at least 2Cbm=2c and at most
fmC1 , where fm is the m–th Fibonacci number (assuming f0 D 0 and f1 D 1).

Proof For the lower bound we will create a sequence of minimal paths 
upper ,

1; : : : ; 
bm=2c , 
lower with strictly decreasing unadjusted slopes. Let 
upper be the upper
path. Next, let 
1 be the path that goes from 1=0 to r=1 to rC Œa1� and then continues
with the rest of the upper path. The path 
1 is obtained from 
upper by a sequence of
a1 right triangle moves. Now let 
2 begin f1=0; r=1; rC Œa1; a2�; rC Œa1; a2; a3�g and
then continue with the rest of the upper path. Notice that 
2 is obtained from 
1 by
a sequence of a2C a3 right triangle moves. We continue in this manner to generate
each path 
i . The fact that both a1 > 1 and am > 1 guarantee that all of these paths
are minimal. Finally, their unadjusted slopes are strictly decreasing since each path is
obtained from the previous one by performing right triangle moves. This establishes the
lower bound. It is shown in [7] that fm is an upper bound on the number of minimal
paths, each of which might give a distinct boundary slope.

As the number m of partial quotients grows, it becomes tedious to characterize all
knots with m partial quotients and exactly k distinct boundary slopes. Therefore, in the
following theorem, we only classify 2–bridge knots with up to four distinct boundary
slopes. Furthermore, we provide the set of slopes for only one knot from each chiral
pair. (Remember that switching from a knot to its mirror image will negate the set of
boundary slopes.)

Theorem 3.2 Let Kp=q be a 2–bridge knot with 2, 3 or 4, distinct boundary slopes.
Then a strongly positive continued fraction representing Kp=q , or its mirror image,
together with the associated slope set, is given in Table 2.

Proof Suppose that Kp=q has 4 or less distinct boundary slopes and strongly positive
continued fraction expansion p=q D 0C Œa1; a2; :::; am�. By Lemma 3.1, it follows
that m � 4. We will examine only the case m D 3 and leave the remaining cases,
which are handled in a similar manner, to the interested reader.
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continued fraction slope set
� Dmultiplicity 2, �� Dmultiplicity 3

2 Œa1�; a1 odd f0; 2a1g

3i Œa1; a2�, a1 even, a2 even f�2a1; 0; 2a2g

3ii Œa1; a2�, a1 even, a2 odd f0; 2a1; 2a1C 2a2g

3iii Œa1; 1; a1�; a1 odd f�4a1� 2;�2a1� 2�; 0g

4i Œa1; a2; a1�, a1 odd, a2 odd, a2 > 1 f�4a1� 2a2;�2a1� 2a�
2
;�2a2; 0g

4ii Œa1; 1; a3�, a1 ¤ a3, a1 odd, a3 odd
f�2a1� 2a3� 2;�2a3� 2;

�2a1� 2; 0g

4iii Œa1; 1; a3�, a1 ¤ a3, a1 even, a3 odd f�2a1; 0;�2a1C 2a3; 2a3C 2g

4iv Œa1; 1; a1; a1C 1�; a1 even f�2a1; 0
�; 2a1C 2�; 4a1C 4g

4v Œ2; 1; 1; 1; 2�D 8=21 f�8;�4�; 0��; 6g

Table 2

Figure 3 shows all possible minimal paths for p=qD Œa1; a2; a3� arranged according to
the partial ordering on paths. Each of the five figures is made up of three main triangles
which are subdivided into a1 , a2 , and a3 smaller triangles, respectively, as we move
from left to right. The five paths 
upper , 
1 , 
2 , 
3 , and 
lower are depicted with heavy
dark lines. Also listed is the unadjusted slope m for each path under the path’s label.

Since a1 > 1 and a3 > 1 we have that 
upper , 
1 , 
2 , and 
lower are minimal. If 
3 is
minimal and a1 ¤ a3 , then we would have 5 distinct boundary slopes. Therefore, we
have two cases to consider.

Assume 
3 is not minimal, which requires a2 D 1, and also that a1 ¤ a3 . Thus,
p=q D 0C Œa1; 1; a3� and we have four distinct boundary slopes. In order to compute
the (adjusted) slopes we need to determine the unique even path. Notice that

p

q
D Œa1; 1; a3�D

1C a3

a1C a3C a1a3

and so in order for q to be odd we need at least one of a1 or a3 to be odd. This gives
three subcases which are listed in Table 3.

These slopes appear in parts 4ii and 4iii of Theorem 3.2. The first two rows correspond
to equivalent knots and only appear in one row of the theorem.

Next assume that 
3 is not minimal and a1 D a3 . In this case, we have 3 distinct
boundary slopes and

p

q
D Œa1; 1; a1�D

1C a1

a2
1
C 2a1

:
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a1

a1 a1

a1

a1

a2

a2
a2

a2

a2

a3

a3 a3

a3

a3

1=0

1=0 1=0

1=0

1=0

0=1

0=1 0=1

0=1

0=1

Œa1�

Œa1� Œa1�

Œa1�

Œa1�

Œa1; a2�

Œa1; a2� Œa1; a2�

Œa1; a2�

Œa1; a2�

Œa1; a2; a3�

Œa1; a2; a3� Œa1; a2; a3�

Œa1; a2; a3�

Œa1; a2; a3�


upper

mD a1C a3� 1


1

mD a3� 1


2

mD a1� 1


3

mD 1


lower

mD�a2� 1

Figure 3: The partially ordered set of minimal paths when mD 4

a1 a3 even path boundary slopes

even odd 
1 f�2a1; 0;�2a1C 2a3; 2a3C 2g

odd even 
2 f�2a3; 2a1� 2a3; 0; 2a1C 2g

odd odd 
lower f�2a1� 2a3� 2;�2a3� 2;�2a1� 2; 0g

Table 3
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Here q is odd if and only if a1 is odd. In this case, the even path is 
lower and the
boundary slopes are

f�4a1� 2;�2a1� 2; 0g

where the second slope �2a1� 2 has multiplicity two, that is, it corresponds to two
paths, 
1 and 
2 . This data appears in part 3iii of Theorem 3.2.

Finally, assume that 
3 is minimal, which means a2 > 1, and a1 D a3 . We now have
four distinct boundary slopes and

p

q
D Œa1; a2; a1�D

1C a1a2

a2
1
a2C 2a1

:

In order for q D a2
1
a2C 2a1 to be odd we must have that both a1 and a2 are odd.

This implies that 
lower is the even path and we obtain the following boundary slopes:

f�4a1� 2a2;�2a1� 2a2;�2a2; 0g:

Notice that the second boundary slope �2a1 � 2a2 has multiplicity two. This data
appears in part 4i of Theorem 3.2. The remaining cases follow by a similar analysis
with mD 1, mD 2, or mD 4.

By working out the fractions p=q for each case of Theorem 3.2 we obtain the following
corollary which strengthens Theorem 3 of [16]. As in Theorem 3.2, we consider a knot
and its mirror image to be equivalent.

Corollary 3.3 Let K be a 2–bridge knot.

(i) K has exactly two distinct boundary slopes if and only if K �K1=q .

(ii) K has exactly three distinct boundary slopes if and only if K is not equivalent
to a knot from part (i) and K �Kp=q for which either

(a) p j q� 1, or
(b) p2 D qC 1.

(iii) K has exactly four distinct boundary slopes if and only if K is not equivalent to
a knot from part (i) or (ii) and K �Kp=q for which either

(a) pC 1 j q and q j p2� 1,
(b) p j qC 1,
(c) .p� 1/3 D q2 , or
(d) p=q D 8=21.
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4 Ohtsuki–Riley–Sakuma knot pairs

In this section we briefly review the method of Ohtsuki, Riley and Sakuma for con-
structing a pair of two bridge knots Kp0=q0 and Kp=q with Kp0=q0 �Kp=q . The reader
is encouraged to consult [18] for a more detailed description. One begins with any
2–bridge knot (or link) Kp=q given by the four-plat shown in Figure 4. The 4–string

a1

a2

a3

ˇ ˇ�1 ˇ�2c1 2c2

B3 B3

B3 B3

S2 � I S2 � I S2 � I S2 � I S2 � I

S2 � I

f

Kp=q

ˇ

Kp0=q0

Figure 4: The Ohtsuki–Riley–Sakuma construction

braid defining Kp=q is denoted by ˇ . There are three associated braids, ˇ�1; ˇ� and
ˇ�1
� , which are obtained by reflecting ˇ through a vertical plane perpendicular to the

plane of the diagram, reflecting ˇ through a horizontal plane perpendicular to the plane
of the diagram, and the composition of these two motions, respectively. In order to
construct a 2–bridge knot Kp0=q0 that is greater than Kp=q we consider a 4–plat with
an odd number of “boxes” each containing either ˇ; ˇ�1; ˇ� , or ˇ�1

� . Starting from
the left in Figure 4, the first box contains ˇ and every other box after that contains ˇ
or ˇ� . The remaining boxes each contain ˇ�1 or ˇ�1

� . Also between each braid box
in Kp0=q0 we may insert an even number of half-twists in the middle two strands of the
4–plat.

Ohtsuki, Riley and Sakuma now construct a branched fold map f from the com-
plement of Kp0=q0 onto the complement of Kp=q . An explicit understanding of f
is not required for this paper and, therefore, we give only a brief description. We
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decompose .S3;Kp0=q0/ along a collection of parallel 2–spheres into two 3–balls
and a number of S2 � I ’s as shown in Figure 4. Each two sphere intersects the braid
transversely in four points. We similarly, decompose .S2;Kp=q/ into two 3–balls and a
single S2�I . A continuous mapping is then defined in a piecewise manner. First each
3–ball “upstairs” is mapped by the identity onto a corresponding 3–ball “downstairs.”
Next, each S2 � I containing one braid box upstairs is mapped homeomorphically
onto the S2 � I downstairs in a way that depends on the presence of ˇ; ˇ�1; ˇ� or
ˇ�1
� . Finally, the mapping is extended to the remaining S2 � I ’s upstairs onto the

3–balls downstairs using 2–fold branched mappings that depend on the combinations of
ˇ; ˇ�1; ˇ� or ˇ�1

� in the adjacent components. Again we refer the interested reader to
[18] for more detail. From the way that f is constructed, the two meridional generators
associated with the bridges at either end of the 4–plat diagram upstairs are taken to the
corresponding generators downstairs. Furthermore, the longitude upstairs is taken to a
power of the longitude downstairs. Thus f induces an epimorphism on fundamental
groups which preserves peripheral structure.

Given a 2–bridge knot Kp=q , Ohtsuki, Riley and Sakuma determine which knots Kp0=q0

are produced by their construction. In particular, they show that p0=q0 gives such a
knot if and only if it lies in the orbit of p=q under the action of �1��p=q , where �r=s

is the infinite dihedral group generated by all reflections in edges of the Farey graph
which end at r=s . Let A1 and A2 be generators of �1 defined by reflection in the
edges h1=0; 0=1i and h1=0; 1=1i, respectively. For p=qD Œa1; a2; : : : ; am� let B1 and
B2 be generators of �p=q defined by reflection in the edges hp=q; Œa1; a2; : : : ; am�1�i

and hp=q; Œa1; a2; : : : ; am � 1�i, respectively. Thus p0=q0 DW .p=q/ where W is a
word in A1;A2;B1 and B2 . Since B1 and B2 fix p=q , and A1 and A2 take p=q

to a fraction representing the same knot, we may assume that we begin by applying a
nontrivial word in A1 and A2 and end by applying a nontrivial word in B1 and B2 .
Hence we may write W as

(1) W DW1W2 � � �Wn with n even;

where

(2) Wi D

8<: .B1B2/
ci B

.1��i /=2
1

; ci 2 Z; �i 2 f1;�1g; if i is odd,

.A1A2/
ci A

.1��i /=2
1

; ci 2 Z; �i 2 f1;�1g; if i is even.

Ohtsuki, Riley and Sakuma then show [18, Lemma 5.3] that

(3) p0=q0 D Œ�1a; 2�1c1; �2a�1; 2�2c2; �3a; 2�3c3; �4a�1; : : : ; �nC1a�;
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where a is the vector aD .a1; a2; : : : ; am/; a�1 means a written backwards, �1 D 1,
and �i D

Qi�1
jD1��j . The following lemma will prove helpful in simplifying continued

fractions.

Lemma 4.1 Let a and b be vectors of integers, possibly empty, and m and n be any
integers. Then

(i) r C Œa;m;�n;b�D r C Œa;m� 1; 1; n� 1;�b�,

(ii) r C Œa;m; 0; n;b�D r C Œa;mC n;b�.

Proof If p=q D r0C Œr1; r2; : : : ; rk � then it follows by induction on k that

˙

�
p

q

�
DM.r0;r1;:::;rk/

�
1

0

�
;

where M.r0;r1;:::;rk/ D

�
r0 1

1 0

��
r1 1

1 0

�
� � �

�
rk 1

1 0

�
:

(A similar expansion can be found in [4].) It is an easy exercise to show that�
�1 0

0 1

�
Mb D .�I/jbjM�b

�
�1 0

0 1

�
;

where jbj is the dimension of the vector b and I is the identity matrix. The proof of
Lemma 4.1(i) follows from

Ma;m;�n;b

�
1

0

�
DMa

�
m 1

1 0

��
�n 1

1 0

�
Mb

�
1

0

�
DMa

�
m� 1 1

1 0

��
1 1

1 0

��
n� 1 1

1 0

��
�1 0

0 1

�
Mb

�
1

0

�
D .�I/jbjMa;m�1;1;n�1;�b

�
�1 0

0 1

��
1

0

�
D .�I/jbjMa;m�1;1;n�1;�b

�
�1

0

�
D .�I/jbjC1Ma;m�1;1;n�1;�b

�
1

0

�
:

The second part of the lemma follows in a similar way.

We are now prepared to show that in any ORS pair .Kp0=q0 ;Kp=q/, if Kp0=q0 is not a
torus knot, then it has at least five distinct boundary slopes.
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Theorem 4.2 If Kp0=q0 �Kp=q is a nontrivial ORS pair, then either

(i) Kp0=q0 and Kp=q are both torus knots and Kp0=q0 has precisely two distinct
boundary slopes, or

(ii) Kp0=q0 has at least five distinct boundary slopes.

Proof Let p=q D Œa1; a2; : : : ; am� D Œa� be a strongly positive continued fraction.
Suppose that p0=q0 DW .p=q/ where W is described in Equations (1) and (2). By
Equation (3) we have that

(4) p0=q0 D Œ�1a; 2�1c1; �2a�1; 2�2c2; �3a; 2�3c3; �4a�1; : : : ; �nC1a�:

Suppose ci D 0 for some i . Because Wi is not the identity, it follows that �i D �1

and hence �i D �iC1 . Therefore, on either side of 2�ici D 0, the continued fraction
appears as p0=q0 D Œ: : : ; �ia˙1; 0; �ia�1; : : : �. Using Lemma 4.1, we may eliminate
the zero to combine �ia˙1 and �ia�1 into a single strongly positive or negative vector.

Let 1� j1 < j2 < � � �< jk � n be the indices of the nonzero ci ’s. Eliminating each of
the n�k zero entries as just described gives the following continued fraction expansion
with n.m� 1/CmC 2k partial quotients,

(5) p0=q0 D Œ�1v1; 2�j1
cj1
; �j2

v2; 2�j2
cj2
; �j3

v3; : : : ; 2�jk
cjk
; �nC1vkC1�

where �1 D 1, each vi is a strongly positive vector, and cji
¤ 0 for all i . Notice

that if m D 1, then a�1 D a D a1 and each vector vi is a single integer given by
vi D .ji�ji�1/a1 if i � k and vkC1D .nC1�jk/a1 . Otherwise, if m> 1, jvi j � 2

for all i .

We now claim that the continued fraction given in Equation (5) can be changed into a
strongly positive one with at least as many partial quotients. Before proving this claim,
consider its consequences. If mD 1 then the number of partial quotients is at least
2kC1 which can only be less than 6 if k D 0; 1, or 2. If m> 1, the number of partial
quotients can only be less than 6 if nDmD 2 and k D 0. Hence, except in the cases
where mD 1 and 0 � k � 2, or nD mD 2 and k D 0, we can express p0=q0 as a
strongly positive continued fractions with at least 6 partial quotients. Lemma 3.1 now
implies that Kp0=q0 has at least 5 distinct boundary slopes. Thus, after proving this
claim, we must analyze these four cases.

To prove the claim, we first assume that m> 1 and proceed by induction on the number
of sign changes in the sequence of partial quotients in Equation (5). If there are none,
then it is easy to check that Equation (5) is already strongly positive. If there are sign
changes, then consider the smallest value of r so that �jr

D 1 and either cjr
or �jr C1

is negative.
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If cjr
> 0 and �jr C1

D�1, then using Lemma 4.1, we obtain

p0=q0 D Œ: : : ; vr ; 2cjr
;�vrC1;�2cjr C1

; : : : �

D Œ: : : ; vr ; 2cjr
;�v1

rC1;�v
2
rC1; : : : ;�v

jvr C1j

rC1
;�2cjr C1

; : : : �

D Œ: : : ; vr ; 2cjr
� 1; 1; v1

rC1� 1; v2
rC1; : : : ; v

jvr C1j

rC1
; 2cjr C1

; : : : �:

This continued fraction is now of the same form as the original, has fewer sign changes,
and has more partial quotients. The result now follows by induction. It is important
here to remember that since m> 1, jvi j � 2 for all i .

If cjr
< 0 and �jr C1

D�1, then using Lemma 4.1, we obtain

p0=q0 D Œ: : : ; vr ; 2cjr
;�vrC1;�2cjr C1

; : : : �

D Œ: : : ; v1
r ; v

2
r ; : : : ; v

jvr j
r ; 2cjr

;�vrC1;�2cjr C1
; : : : �

D Œ: : : ; v1
r ; v

2
r ; : : : ; v

jvr j
r � 1; 1;�2cjr

� 1; vrC1; 2cjr C1
; : : : �:

Again, this continued fraction is now of the same form as the original, has fewer sign
changes, and has more partial quotients. The result now follows by induction.

Finally, suppose that cjr
< 0 and �jr C1

D 1. Applying Lemma 4.1 twice, we obtain

p0=q0 D Œ: : : ; vr ; 2cjr
; vrC1; : : : �

D Œ: : : ; v1
1 ; : : : ; v

jvr j
r � 1; 1;�2cjr

� 2; 1; v1
rC1� 1; v2

rC1; : : : ; v
jvr C1j

rC1
; : : : �:

If cjr
¤�1, then once again we have arrived a continued fraction of the same form

as the original, but with fewer sign changes and more partial quotients. If instead,
cjr
D �1, then we may use Lemma 4.1 to eliminate the zero entry and arrive at a

continued fraction with the same form as the original, fewer sign changes, but now an
equal number of partial quotients. In either case, the result follows by induction.

We now consider the case m D 1. Recall that if m D 1, then a�1 D a D a1 , vi D

.ji � ji�1/a1 for i � k , and vkC1 D .nC 1� jk/a1 . Equation (5) is now of the form

(6) p0=q0DŒ�1j1a1; 2�j1
cj1
; �j2

.j2�j1/a1; 2�j2
cj2
;: : : ;2�jk

cjk
; �nC1.nC1�jk/a1�:

Because a1 � 3, this continued fraction is a member of a family F of continued
fractions all having the form Œv;w� where

� v is a strongly positive vector (possibly of length 1),
� the first entry of the vector w is negative,
� the entries of w alternate between being even and having magnitudes greater

than 2 (the first entry of w can have either property), and
� the last entry of w has magnitude greater than 2.
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We call v the strongly positive part and w the tail of such a continued fraction. We
shall prove, by induction on the length of the tail, that any such continued fraction can
be changed to a strongly positive one with at least as many partial quotients. Since
v is strongly positive, if w has length zero then we are done. Now consider such a
continued fraction where w is not empty. We have

Œv;w�D Œv1; v2; : : : ; vr ; w1; w2; : : : ; ws �

D Œv1; v2; : : : ; vr � 1; 1;�w1� 1;�w2; : : : ;�ws �:

If �w2 > 0, or if �w2 < 0 and �w1� 1> 1, then we have arrived at a member of F
with more partial quotients and a shorter tail. Hence the result follows by induction.
Otherwise, we have ��w1� 1D 1 and ��w2 < 0. Thus

Œv;w�D Œv1; v2; : : : ; vr ;�2; w2; : : : ; ws �

D Œv1; v2; : : : ; vr � 1; 1; 1;�w2; : : : ;�ws �

D Œv1; v2; : : : ; vr � 1; 1; 0; 1; w2� 1; w3; : : : ; ws �

D Œv1; v2; : : : ; vr � 1; 2; w2� 1; w3; : : : ; ws �:

Because the entries of w alternate between being even and having magnitudes greater
than 2, it must be the case that w2 > 2 and hence w2� 1> 1. Hence we have arrived
at a member of F with the same number of partial quotients but with a shorter tail.
Once again, the result now follows by induction.

We have now completed the proof of the claim, and it remains to analyze the four
cases already mentioned above. If m D n D 2 and k D 0, we have p=q D Œa1; a2�

and p0=q0 D Œa1; a2; 0; a2; a1; 0; a1; a2�D Œa1; 2a2; 2a1; a2�. Comparing this strongly
positive continued fraction to the table in Theorem 3.2 we see that Kp0=q0 cannot have
less than 5 distinct boundary slopes.

If mD 1 and k D 0 the continued fraction for p0=q0 collapses to p0=q0 D Œ.nC1/a1�.
Thus Kp0=q0 is a torus knot with exactly 2 slopes.

Next, suppose that m D 1 and k D 1. Then exactly one of the ci ’s is nonzero, say
cj1

. Equation (5) now gives p0=q0 D Œj1a1; 2�j1
cj1
; �nC1.nC 1 � j1/a1�. If all of

these partial quotients are positive, then comparing this strongly positive continued
fraction to the table in Theorem 3.2, we see that Kp0=q0 cannot have less than 5 distinct
boundary slopes. If not, there are either one or two sign changes in the sequence of
partial quotients. These considerations lead to the following cases which are handled
in a fashion similar to that when m> 1:
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� If �j1
cj1
> 0 and �nC1 D�1, then

p0=q0 D Œj1a1; 2�j1
cj1
� 1; 1; .nC 1� j1/a1� 1�:

� If �j1
cj1
< 0 and �nC1 D�1, then

p0=q0 D Œj1a1� 1; 1;�2�j1
cj1
� 1; .nC 1� j1/a1�:

� If �j1
cj1
D�1 and �nC1 D 1, then

p0=q0 D Œj1a1� 1; 2; .nC 1� j1/a1� 1�:

� If �j1
cj1
< �1 and �nC1 D 1, then

p0=q0 D Œj1a1� 1; 1;�2�j1
cj1
� 2; 1; .nC 1� j1/a1� 1�:

In all four of these cases, comparison to the table in Theorem 3.2 gives that Kp0=q0

cannot have less than 5 distinct boundary slopes.

Our final case to consider is when mD 1 and k D 2. Now two of the ci ’s are nonzero,
say cj1

and cj2
. Eliminating zeroes leads to

p0=q0 D Œj1a1; 2�j1
cj1
; �j2

.j2� j1/a1; 2�j2
cj2
; �nC1.nC 1� j2/a1�:

If all of these partial quotients are positive, then comparing this strongly positive
continued fraction to the table in Theorem 3.2, we once again see that Kp0=q0 cannot
have less than 5 distinct boundary slopes. If not, then using Lemma 4.1 to move to a
strongly positive expansion will increase the number of partial quotients to 6 or more,
again resulting in 5 or more boundary slopes, unless the first entry of the tail is �2. In
this case, that entry will remain even, and comparison with the table in Theorem 3.2
again shows that this knot cannot have less than 5 distinct boundary slopes.

The lower bound of five boundary slopes in part (ii) of Theorem 4.2 is sharp. For
example, with p=q D 1=3D Œ3� and p0=q0 D 7=45D Œ3; 0; 3; 2; 3�D Œ6; 2; 3� we have
K7=45 �K1=3 . Furthermore, using Figure 3, it is easy to show that K7=45 has exactly
5 distinct boundary slopes.

Recall that if Kp0=q0 is a 2–bridge knot and Kp0=q0 �K2 , then K2 is also a 2–bridge
knot. Combining this fact with the result in Theorem 4.2 gives the following corollary.

Corollary 4.3 If the answer to Question 1.1 is yes, then 2–bridge knots with exactly
3 or 4 distinct boundary slopes are minimal with respect to the Silver–Whitten partial
ordering.

Notice that if K is a 2–bridge knot with exactly 2 distinct boundary slopes, then K is
the torus knot T2;q and is minimal if and only if q is prime.
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5 2–Bridge knots with three distinct boundary slopes

In this section we provide evidence for an affirmative answer to Question 1.1 by proving
that 2–bridge knots with exactly three distinct boundary slopes are in fact minimal.

Theorem 5.1 If K is a 2–bridge knot with exactly 3 distinct boundary slopes, then
K is minimal with respect to the Silver–Whitten partial order.

Proof Suppose K1 is a 2–bridge knot with exactly three distinct boundary slopes
and that K1 �d K2 with K2 nontrivial. Then, by Theorem 2.3 and Corollary 2.5, K2

is a 2–bridge knot with exactly two or three distinct boundary slopes. If K2 has two
distinct slopes then it is a torus knot and so, by González-Acuña and Ramı́rez [6], K1

is given by the ORS construction. Now Theorem 4.2 contradicts that K1 has exactly
three boundary slopes. Therefore, from Theorem 3.2 there are three possibilities for
K1 and three for K2 , giving a total of 9 different cases to consider. In what follows,
the symbol .3ii ; 3i/, for example, will be used to denote the case where K1 is the
second type of knot with three slopes and K2 is the first type of knot with three slopes,
as listed in Theorem 3.2.

Since boundary slopes of 2–bridge knots are always even, we first consider them mod 4.
If K2 has r distinct slopes equal to 0 mod 4 and s distinct slopes equal to 2 mod 4, then
K1 has the same number of slopes of each type because of Corollary 2.5 and the fact that
d is odd. This observation rules out four cases: .3i ; 3ii/; .3i ; 3iii/; .3ii ; 3i/; .3iii ; 3i/.

Before considering any other cases we note that the Alexander polynomial of a 2–
bridge knot with three boundary slopes is given in Table 4. Note that in each case, no
nontrivial constant can be factored from each polynomial.

knot type Alexander polynomial

3i 0C Œa1; a2�; a1 even, a2 even �
a1a2

4
C

�
1C

a1a2

2

�
t�

a1a2

4
t2

3ii 0C Œa1; a2�; a1 even, a2 odd
a2C1

2
Ca2

a1�1X
iD1

.�1/i t i
C

a2C1

2
ta1

3iii 0C Œa1;�1; a1�; a1 odd
.a1C1/2

4
C

�
1�

.a1C1/2

2

�
tC

.a1C1/2

4
t2

Table 4
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Case .3i ; 3i/ Suppose K1 corresponds to 0C Œa1; a2� and K2 corresponds to 0C

Œb1; b2�. Because of Corollary 2.5, it follows that

f�2db1; 0; 2db2g D f�2a1; 0; 2a2g

and so a1a2 D d2b1b2 . Furthermore, �K2
divides �K1

which implies that d D˙1.
Hence, fa1; a2g D fb1; b2g and we have K2 �K1 .

Case .3ii ; 3iii/ Suppose K1 corresponds to 0C Œa1; a2� and K2 corresponds to
0C Œb1; 1; b1�. From Corollary 2.5 we obtain that d < 0, a1 D �.b1 C 1/d , and
a1Ca2D�.2b1C1/d . From these it follows that a2D�b1d . Since the determinants
of these knots are a1a2 C 1 and b2

1
C 2b1 , respectively, it follows from Theorem

2.3 that k.b2
1
C 2b1/D a1a2C 1D b2

1
d2C b1d2C 1 for some integer k . Hence b1

divides 1 which is a contradiction.

Case .3iii ; 3ii/ Suppose K1 corresponds to 0 C Œa1; 1; a1� and K2 corresponds
to 0 C Œb1; b2�. From Corollary 2.5 we obtain that d < 0; a1 C 1 D �b1d , and
2a1C1D�.b1Cb2/d . From these we obtain that d D�1; b1D a1C1, and b2D a1 .
However, the division of the Alexander polynomials implies that b1 D 2 and this
contradicts that a1 > 1.

Case .3iii ; 3iii/ Suppose K1 corresponds to 0C Œa1; 1; a1� and K2 corresponds to
0C Œb1; 1; b2�. The division of the Alexander polynomials implies that b1 D a1 and
hence K2 DK1 .

Case .3ii ; 3ii/ Suppose K1 corresponds to 0 C Œa1; a2� and K2 corresponds to
0C Œb1; b2�. Using Corollary 2.5 we immediately obtain that a1 D b1d and a2 D b2d .
All evidence suggests that if d ¤ 1, then the Alexander polynomials do not divide (in
fact, they are almost certainly both irreducible), however, we were unable to prove this
in general. Instead we turn to character varieties to settle this last case.

By Theorem 2.3, we have that ��W X.K2/! X.K1/ is an injective, algebraic and
closed (in the Zariski topology) mapping. In particular, this implies that the image
��.X.K2// is a subvariety of X.K1/ that is birationally equivalent to X.K2/. By
Theorem 6.5 of Macasieb, Petersen and Van Luijk [15], both X.K1/ and X.K2/

are irreducible curves and so we conclude that X.K1/ and X.K2/ are birationally
equivalent, and therefore have the same genus. Moreover, by Theorem 6.5 of [15], the
genus of X.K2/ is

(7) 3

�
b2C 1

2

��
b1

2

�
�

b2C 1

2
� 4

b1

2
C 2:
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(To interpret [15, Theorem 6.5] in our setting, note that kD�b2 and lD b1 .) Similarly,
the genus of X.K1/ is

(8) 3

�
db2C 1

2

��
db1

2

�
�

db2C 1

2
� 4

db1

2
C 2:

Equating (7) and (8) gives

d .3db1b2� 5b1� 2b2/D 3b1b2� 5b1� 2b2:

Since d , b1 , and b2 are all positive, this can only be true if d D 1, in which case
K2 DK1 .

Since Theorem 3.2 also classifies those 2–bridge knots with exactly four distinct
boundary slopes, we could hope to apply arguments similar to those above to prove that
2–bridge knots with four slopes are minimal. In particular, looking at boundary slopes
will eliminate most of the 40 cases involved. However, without additional information
about the relevant Alexander polynomials or character varieties, we were unable to
settle several cases. We close with the following conjecture and question.

Conjecture 5.2 A 2–bridge knot with exactly four distinct boundary slopes is minimal
with respect to the Silver–Whitten partial ordering.

Question 5.3 Does there exist a non–2–bridge, nonminimal knot with exactly 3
distinct boundary slopes?
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