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Quantum traces in quantum Teichmüller theory

CHRISTOPHER HIATT

We prove that for the torus with one hole and p > 1 punctures and the sphere with
four holes there is a family of quantum trace functions in the quantum Teichmüller
space, analog to the non-quantum trace functions in Teichmüller space, satisfying the
properties proposed by Chekhov and Fock in [2].

81R05

1 Introduction

The physicists L Chekhov and V Fock and, independently, R Kashaev introduced a
quantization of the Teichmüller space as an approach to quantum gravity in 2C 1

dimensions. A widespread philosophy in mathematics is that studying a space is the
same as studying the algebra of functions on that space. The quantum Teichmüller
space of Chekhov–Fock and Kashaev T q

S
is a certain non-commutative deformation of

the algebra of rational functions on the usual Teichmüller space T .S/. Namely, T q
S

depends on a parameter q D ei„ and converges to the algebra of functions on T .S/ as
q! 1 or, equivalently as the Planck constant „! 0.

At this point in time, the quantum Teichmüller space is only defined for surfaces with
punctures. Namely, the surface S must be obtained by removing finitely many points
from a compact surface xS ; and this in such a way that at least one point is removed
from each boundary component and that, when @ xS D � , at least one point is removed.

There actually are two versions of the quantum Teichmüller space. the “logarithmic”
version is the original version developed by Chekhov and Fock [2]. The “exponential”
version was developed by F Bonahon and X Liu [6; 1] and is better adapted to math-
ematics. For instance, the exponential version has an interesting finite dimensional
representation theory, which turns out to be connected to hyperbolic geometry [1].

A simple closed curve ˛ on the surface S determines a trace function T˛W T .S/!R
defined as follows: If a point of T .S/ is represented by a group homomorphism
r W �1.S/!SL2.R/, then T˛.r/ is the trace of r.˛/2SL2.R/ . Much of the structure
of the Teichmüller space T .S/ can be reconstructed from these trace functions. See
Culler and Shalen [3], Goldman [4] and Luo [7].
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In [2] Chekhov and Fock proposed the following problem:

Problem 1 For every simple closed curve ˛ on S , there is a quantum analogue T
q
˛

of the trace function T˛ such that:

(1) T
q
˛ 2 T q

S
is well defined, independent of choice of coordinates.

(2) as q! 1, T
q
˛ converges to the non-quantum trace function T˛ in T .S/

(3) If ˛ and ˇ are disjoint, T
q
˛ and T

q

ˇ
commute.

(4) If ˛ and ˇ meet in one point, and if ˛ˇ and ˇ˛ are obtained by resolving the
intersection point as in Figure 1, then T

q
˛ T

q

ˇ
D q1=2T

q

˛ˇ
C q�1=2T

q

ˇ˛
.

(5) If ˛ and ˇ meet in two points of opposite algebraic intersection sign, and if ˛ˇ ,
ˇ˛ , 1 , 2 , 3 , and 4 are obtained by resolving the intersection points as in
Figure 2, then T

q
˛ T

q

ˇ
D qT

q

˛ˇ
C q�1T

q

ˇ˛
CT

q
1

T
q
2
CT

q
3

T
q
4

.

It can be shown that, if the quantum trace functions T
q
˛ exist, they are unique by

conditions (4) and (5). Compare for instance Luo [7].

˛ ˇ ˛ˇ
ˇ˛

Figure 1: Resolving a single crossing

In [2], Chekhov and Fock have verified Problem 1 for the once-punctured torus, obtained
by removing one point from the torus, in the case of the logarithmic model of the
quantum Teichmüller space.

The exponential model offers some technical challenges, because certain issues involv-
ing square roots have to be resolved to make sense of Problem 1, in particular with
respect to coordinate changes.

The coordinate change isomorphisms introduced by Chekhov–Fock [2], Kashaev [5]
and Liu [6] satisfy the following:

Theorem 2 (Chekhov–Fock [2], Kashaev [5], Liu [6]) There exists a family of
algebra isomorphisms

ˆ��0 W T
q

�0
! T q

�

indexed by pairs of ideal triangulations �, �0 of a punctured surface S , which satisfy
the following conditions:
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(1) ˆ��00 Dˆ��0 ıˆ�0�00 for any ideal triangulations �, �0 , and �00 of S .

(2) If �0D�� is obtained by reindexing � by a permutation � 2Sn , then ˆ��0.X
0

i /D

X
0

�.i/
for any 1 6 i 6 n.

The first part of this paper is devoted to resolving these technical issues in the exponential
model for the quantum Teichmüller space. This part culminates in the following
theorem.

Theorem 3 There is a family of linear maps in the exponential model for the quantum
Teichmüller space which satisfy the conditions of Theorem 2.

The second part of this paper solves Problem 1 for surfaces which are at one level of
complexity higher that the once-punctured torus.

We consider the case of the torus with a wide hole and p > 1 punctures, namely a
surface obtained from the compact surface of genus one with one boundary component
by removing p > 1 punctures from its boundary, but none from its interior.

Theorem 4 If the surface S is a torus with a wide hole and p > 1 punctures, then
there exists a (unique) family of quantum trace functions as in Problem 1.

We then investigate the case of the sphere with four holes, where the holes can be either
wide or just punctures. Namely, such a surface is obtained from the compact surface of
genus zero with k boundary components by removing p points from its interior and at
least one point from each boundary component, with kCp D 4.

Theorem 5 If S is a sphere with four holes, then there exists a (unique) family of
quantum trace functions as in Problem 1.

The overall organization of this paper is as follows: We introduce the classical Te-
ichmüller Space and the traces in the non-quantum context. Then we introduce the
“exponential” model of the quantum Teichmüller Space and the analogous quantum
traces. We then resolve the technical issues arising from the square roots. Finally we
prove Theorem 4 and Theorem 5.

Acknowledgements I would like to thank Francis Bonahon for his constant help and
encouragement. I couldn’t have done this paper without his help. I would also like to
thank God for giving me the ability to complete this paper. This work was partially
supported by NSF grant DMS-0103511 at The University of Southern California.
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2 Ideal triangulations

Throughout this paper we will consider an oriented surface S of finite topological
type, where S D xS � fv1; : : : ; vp g is obtained by removing p points fv1; : : : ; vp g

from a compact oriented surface S̄ of genus g, with d > 0 boundary components. The
requirements for S are that p > 1, and each component of @S contains at least one of
the vi .

Definition 6 An ideal triangulation of S is a triangulation of the closed surface S̄
whose vertex set is exactly fv1; : : : ; vp g.

Such an ideal triangulation exists if and only if S is not one of the following surfaces:
the sphere with at most two points removed, the disk with one point removed and the
disk with two points on the boundary removed. We will always assume that S is not
one of these surfaces to insure the existence of an ideal triangulation.

If pint of the points vi are in the interior of xS and if p@ of the points vi are on the the
boundary @ xS , an easy Euler characteristic argument shows that any ideal triangulation
has nD 6g� 6C 3pintC 2p@ edges.

Two ideal triangulations are considered the same if they are isotopic. In addition,
we require that each ideal triangulation � is endowed with an indexing of its edges
�1; : : : ; �n . Let ƒ.S/ denote the set of isotopy classes of such indexed ideal triangula-
tions �.

The set ƒ.S/ admits a natural action of the group Sn of permutations of n elements,
acting by permuting the indices of the edges of �. Namely y�D �.�/ for � 2 Sn , if its
i th edge y�i is equal to ��.i/ .

Another important transformation of ƒ.S/ is provided by the i th diagonal exchange
map �i W ƒ.S/!ƒ.S/ defined as follows. The i th edge �i of an ideal triangulation
� 2ƒ.S/ is adjacent to two triangles. If these two triangles are distinct, their union
forms a square Q with diagonal �i . Then �i.�/ is obtained from � by replacing edge
�i by the other diagonal y�i of the square Q. By convention, �i.�/D � when the two
sides of �i belong to the same triangle; this happens exactly when �i is the only edge
of � leading to a puncture of S.

3 The exponential shear coordinates for the enhanced Teich-
müller space

Definition 7 The Teichmüller space of S is the space T .S/ of complete hyperbolic
metrics on S for which @S is geodesic, considered up to isotopy.
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Consider a complete hyperbolic metric m2 T .S/. It is well-known that the ends of the
complete hyperbolic surface .S;m/ can be of three types: spikes bounded on each side
by two components of @S (possibly equal), finite area cusps bounded on one side by a
horocycle; and infinite area funnels bounded on one side by a simple closed geodesic.

It is convenient to enhance the hyperbolic metric m 2 T .S/ with some additional data,
consisting of an orientation for each closed geodesic bounding a funnel end. Let the
enhanced Teichmüller space �T .S/ consist of all isotopy classes of hyperbolic metrics
m2T .S/ enhanced with such a choice of orientation. The enhanced Teichmüller space�T .S/ inherits from the topology of T .S/ a topology for which the natural projection�T .S/! T .S/ is a branched covering map.

Thurston associated a certain system of coordinates for the enhanced Teichmüller space�T .S/ to an ideal triangulation �, called the shear coordinates.

Consider an enhanced hyperbolic metric m2 �T .S/ together with an ideal triangulation
�. Each edge �i specifies a proper homotopy class of paths going from one end
of .S;m/ to another end. This proper homotopy class is also realized by a unique
m–geodesic gi such that each end of gi , either converges toward a spike, or converges
towards a cusp end of S , or spirals around a closed geodesic bounding a funnel end in
the direction specified by the enhancement of m. The closure of the union of the gi

forms an m–geodesic lamination g .

The enhanced hyperbolic metric m2�T .S/ now associates to an edge �i of � a positive
number xi defined as follows. The geodesic gi separates two triangle components T 1

i

and T 2
i of S �g . Isometrically identify the universal covering of .S;m/ to the upper

half-space model H2 for the hyperbolic plane. Lift gi , T 1
i and T 2

i to a geodesic
zgi and the two triangles �T 1

i and �T 2
i in H2 so that the union zgi [

�T 1
i [

�T 2
i forms

a square �Q in H2 . Let z� , zC , zr and zl be the vertices of �Q, indexed in such a
way that zgi goes from z� to zC and that, for this orientation of zgi , the points zr , zl

are respectively to the right and to the left of zgi for the orientation of �Q given by the
orientation of S . Then

xi D�crossratio.zr ; zl ; z�; zC/D�
.zr � z�/.zl � zC/

.zr � zC/.zl � z�/

Note that xi is positive since the points zl , z� , zr and zC occur in this order in the
real line bounding the upper half-space H2 .

The real numbers xi are the exponential shear coordinates of the enhanced hyperbolic
metric m2�T .S/ (see Thurston [9]). The standard shear coordinates are their logarithms,
log.xi/, but the xi turn out to be better behaved for our purposes.
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There is an inverse construction which associates a hyperbolic metric to each system of
positive weights xi attached to the edges �i of the ideal triangulation �: Identify each
of the components of S �� to a triangle with vertices at infinity in H2 , and glue these
hyperbolic triangles together in such a way that adjacent triangles for a square whose
vertices have cross-ratio xi as above. This defines a possibly incomplete hyperbolic
metric on the surface S . An analysis of this metric near the ends of S shows that its
completion is a hyperbolic surface S 0 with a geodesic boundary, and that each end
of an edge of � either spirals towards a component of @S 0 or converges towards a
cusp end of S 0 . Extending S 0 to a complete hyperbolic metric m on S whose convex
core is isometric to S 0 . In addition, the spiraling pattern of the ends of � provides an
enhancement of the hyperbolic metric m.

The xi then defines a homeomorphism ��W �T .S/!Rn
C between enhanced Teichmüller

space �T .S/ and Rn
C .

4 Trace functions

A simple closed curve ˛ on the surface S determines a trace function T˛W T .S/!
R, defined as follows: The monodromy of m 2 T .S/ is a group homomorphism
rmW �1.S/ ! PSL2.R/ well defined up to conjugation. The trace of rm.˛/ 2

PSL2.R/ is only defined up to sign. Let T˛.m/D jTr.rm.˛//j.

This trace function T˛ has a nice expression in terms of shear coordinates. Fix an ideal
triangulation �, and consider the associated parametrization ��W �T .S/!Rn

C by shear
coordinates.

Proposition 8 For every ideal triangulation � and every simple closed curve ˛ , the
function T˛ ı�

�1
�
W Rn
C!R is a Laurent polynomial in

˚
x

1=2
1
;x

1=2
2
; : : : ;x

1=2
n

	
, the

square roots of the shear coordinates.

Proof As in [2] let us introduce the “left” and “right” turn matrices L�
�

1 1
0 1

�
and

R�
�

1 0
1 1

�
: To each edge �i in � we associate

S.xi/D

�
x

1=2

i
0

0 x
�1=2

i

�
where the coordinate shear along �i is xi . For a closed curve ˛ in S , choose any
point & on ˛ and trace once around ˛ until you return to the point & . Looking at
the directed path traced along ˛ , we record an S.xi/ every time ˛ crosses �i . If the
directed path traced along ˛ crosses �i and then �j , we record an L if both �i and
�j are asymptotic to each other on the left of the directed path, and we record a R if
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both �i and �j are asymptotic to each other on the right of the directed path. This
yields a string of matrices P1S.xi1

/P2S.xi2
/ : : :PnS.xin

/ where the Pi are either R

or L depending on the criterion above.

An argument in [2] shows that rm.˛/D P1S.xi1
/P2S.xi2

/ : : :PnS.xin
/ up to conju-

gation.

Note that the trace of P1S.xi1
/P2S.xi2

/ : : :PnS.xin
/ is a Laurent poynomial in the

x
1=2
i with positive coefficients. In particular, it is positive. Therefore, T˛.m/ D

Tr.P1S.xi1
/P2S.xi2

/ : : :PnS.xin
// is a Laurent polynomial in the x

1=2
i .

5 The Chekhov–Fock algebra

We consider a quantization of the enhanced Teichmüller space �T .S/, by defining a
deformation depending on a parameter q , of the algebra Rat �T .S/ of all the rational
functions of �T .S/.
Fix an indexed ideal triangulation � 2 ƒ.S/. Its complement S � � has 2n spikes
converging towards the punctures, and each spike is delimited by one of the indexed
edges �i of � on one side, and one �j on the other side; here i D j is possible. For
i; j 2 1; 2; : : : ; n, let ˛�ij denote the number of spikes of S � � which are delimited
on the left by �i and on the right by �j , and set

��ij D ˛
�
ij �˛

�
ji :

Notice that ��ij can only belong to the set f�2;�1; 0; 1; 2g, and that ��ij D��
�
ji .

The Chekhov–Fock algebra T q

�
associated to the ideal triangulation � is the algebra

defined by the generators X1;X
�1
1
;X2;X2;X

�1
2
; : : : ;Xn;X

�1
n , with each pair X˙1

i

associated to an edge �i of �, and by the relations

XiXj D q2��
ijXj Xi(1.1)

XiX
�1
i DX�1

i Xi D 1(1.2)

If q D 1, then the Xi commutes and is equal to the Thurston shear coordinates xi

introduced in Section 2.

The Chekhov–Fock algebra is a Noetherian ring and a right Ore domain so we can
introduce the fraction division algebra yT q

�
consisting of all formal fractions PQ�1

with P;Q 2 T q

�
and Q¤ 0. Two such fractions P1Q�1

1
and P2Q�1

2
are identified if

there exists S1;S2 2 T q

�
such that P1S1 D S2P2 and Q1S1 D S2Q2 .

Chekhov–Fock [2] and Kashaev [5] (see also Liu [6]) introduced the following:
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Theorem 9 (Chekhov–Fock [2], Kashaev [5], Liu [6]) There exists a family of
algebra isomorphisms

ˆ��0 W yT
q

�0
! yT q

�

indexed by pairs of ideal triangulations �, �0 2 ƒ.S/, which satisfy the following
conditions:

(1) ˆ��00 Dˆ��0 ıˆ�0�00 for any �, �0 , and �00 2ƒ.S/.

(2) If �0D�� is obtained by reindexing � by a permutation � 2Sn , then ˆ��0.X 0i/D
X 0
�.i/

for any 1 6 i 6 n.

The ˆ��0 are called the Chekhov–Fock coordinate change isomorphisms. We can now
define the quantum Teichmüller space by using the Chekhov–Fock fraction algebras
yT q

�
as charts and the Chekhov–Fock isomorphisms as coordinate change maps. More

precisely:

Definition 10 The quantum (enhanced) Teichmüller space of a surface S is the algebra

T q
S
D

� G
�2ƒ.S/

T q

�

��
Ï;

where the relation Ï is defined by the property that, for X 2 T q

�
and X 0 2 T q

�0
,

X Ï X 0,X Dˆ��0.X
0/

The construction is specially designed so that, when q D 1, there is a natural isomor-
phism between T 1

S
and the algebra Rat �T .S/ of rational functions on the enhanced

Teichmüller space �T .S/. See Chekhov and Fock [2], and Bonahon and Liu [1; 6].

6 Square roots

In the non-quantum case the formula which defines the traces involves square roots
of the shear coordinates. Therefore we need an algebra which is generated by the
square roots of the generators of the Chekhov–Fock algebra. This leads us to the square
root algebra T q1=4

�
defined by the generators Z1;Z

�1
1
;Z2;Z

�1
2
; : : : ;Zn;Z

�1
n , where

Zi DX
1=2
i , with each pair Z˙1

i associated to an edge �i of �, and by the relations

ZiZj D q.1=2/�
�
ijZj Zi(1.1)

ZiZ
�1
i DZ�1

i Zi D 1(1.2)
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The square root algebra T q1=4

�
is just the Checkhov–Fock algebra with a different q .

In particular, we need to choose a 4th root, q1=4 , for q . There is a natural inclusion
map:

i W T q

�
,! T q1=4

�
I Xi 7!Z2

i

which induces the inclusion:
yi W yT q

�
,! yT q1=4

�

of the fraction division algebras yT q

�
and yT q1=4

�
.

Unfortunately there is no nice extension of the Chekhov–Fock coordinate changes to
the square root algebra T q1=4

�
. This leads us to introduce the following definitions.

The first definition is specially designed to address the problem that we are facing and
the second definition is very classical.

Definition 11 For an ideal triangulation � with edges �1; �2; : : : ; �n and a simple
closed curve ˛ which crosses edges �i1

; �i2
; : : : ; �ih

, an element T of yT q1=4

�
is ˛–odd

if it can be written as
T DZ�1

i1
Z�1

i2
: : :Z�1

ih
R

with R 2 yT q

�
. The set of ˛–odd elements is denoted by yT q1=4

�
.˛/.

Remark 12 It is worth noting that the set yT q1=4

�
.˛/ is not an algebra. Also for every

T 2 yT q1=4

�
.˛/, the square T 2 is in the subalgebra yT q

�
� yT q1=4

�

Definition 13 For a monomial Zi1
Zi2

: : :Zir
2 yT q1=4

�
the Weyl ordering coefficient

associated to this monomial is the coefficient qw with w D�1
4

P
j<k �ij ik

.

The exponent w is engineered so that the quantity qwZi1
Zi2

: : :Zir
is unchanged

when one permutes the Zis
’s.

Given an ideal triangulation � of a surface S of genus g with p punctures, pint

on the interior and p@ on the boundary, label its triangles by T1;T2; : : : ;Tm , where
m D �2�.S/Cp@ D 4g � 4C 2pintCp@ . Each triangle Tm determines a triangle
algebra T q1=4

Tm
, defined by the generators Zi;m , Z�1

i;m , Zj ;m , Z�1
j ;m , Zk;m , Z�1

k;m
with

each pair Z˙1
l;m

associated to an edge �l of the triangle Tm , and by the relations

Zi1;mZi2;m D q1=2Zi2;mZi1;m

if Zi1;m ,Zi2;m 2 T
q1=4

Tm
are the generators associated to two sides of Tm with Zi1;m

associated to the side that comes first when going counterclockwise at their common
vertex.
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The square root algebra T q1=4

�
has a natural embedding into the tensor product algebra

mO
iD1

T q1=4

Ti
D T q1=4

T1
˝ � � �˝ T q1=4

Tm

defined as follows. If the generator Zi of T q1=4

�
is associated to the i th edge �i of �,

define

(1) Zi 7!Zi;j ˝Zi;k if �i separates two distinct faces Tj and Tk , and if Zi;j 2

T q1=4

Tj
and Zi;k2T

q1=4

Tk
are the generators associated to the sides of Tj and Tk

corresponding to �i .

(2) Zi 7! q�1=4Zi1;j Zi2;j D q1=4Zi2;j Zi1;j if �i corresponds to the two sides of
the same face Tj , and if Zi1;j ;Zi2;j 2 T

q1=4

Tj
are the generators associated to

these two sides with Zi1;j associated to the side that comes first when going
counterclockwise at their common vertex.

(a)

�i

�j

�k

�l

�m

˛

(b)

˛

T1

T2

(c)

˛

(d)

˛

(e)

˛

(f)

˛

Figure 2: Cases for definition of coordinate change maps

Consider an ideal triangulation � with edges �1; �2; : : : ; �n , and let ˛ be a simple
closed curve in S which is transverse to �, where ˛ does not backtrack over the edges
of �. Namely, ˛ never enters a triangle of S �� through one side and exits through
the same side.

Now consider a square Q in the triangulation � formed by the edges �i , �j , �k , �l ;

and �m as in Figure 2 (a). Then ˛ can cross the square Q several times. There are six
possibilities for doing so, which are depicted in Figure 2. To each time ˛ crosses Q,
we associate a ”block” B 2

Nm
iD1 T

q1=4

Ti
defined as follows.
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(1) B D q�1=4Z�1
j ;1

Z�1
k;1

when ˛ crosses Q is as in Figure 2 (a).

(2) B D q�1=2Z�1
k;1

Z�1
i
yZ�1

l;2
when ˛ crosses Q is as in Figure 2 (b).

(3) B D q�1=4Z�1
l;2

Z�1
m;2

when ˛ crosses Q is as in Figure 2 (c).

(4) B D q1=2Z�1
j ;1

Z�1
i Z�1

m;2
when ˛ crosses Q is as in Figure 2 (d).

(5) B DZ�1
j ;1

Z�1
i Z�1

l;2
when ˛ crosses Q is as in Figure 2 (e).

(6) B DZ�1
k;1

Z�1
i Z�1

m;2
when ˛ crosses Q is as in Figure 2 (f).

Note the Weyl ordering of the q coefficent of the block B in each case.

Lemma 14 Let B1;B2; : : : ;Br be blocks associated to a simple closed curve ˛ in S

crossing squares Q1;Q2; : : : ;Qr as in Figure 2.

Then every T 2 yT q1=4

�
.˛/ can be written in a unique way as T D qwB1B2 : : :Br R

with R 2 yT q

�
, where qw is the Weyl ordering coefficient of the blocks Bi .

Proof Every element T 2 yT q1=4

�
.˛/ can be written as T DZ�1

i1
Z�1

i2
: : :Z�1

ih
R with

R 2 yT q

�
. The result follows from the fact that B1B2 : : :Br D qbZ�1

i1
Z�1

i2
: : :Z�1

ih
for

some power of q .

We now want to generalize to the non-commutative context the coordinate change
isomorphisms ˆq

��0
from Liu [6], described in the previous section, by introducing

appropriate linear maps ‚q

y��
W yT q1=4

�
.˛/! yT q1=4

y�
.˛/ in the following way:

Definition 15 Given a simple closed curve ˛ in the surface S , and ˛–odd ideal
triangulations �, y� separated by a single diagonal exchange, define

‚
q

y��
W yT q1=4

�
.˛/! yT q1=4

y�
.˛/

as follows:

If T D qwB1B2 : : :Br R as in Lemma 14, ‚q

y��
.T / is obtained from T by

(1) Keeping the same coefficient qw

(2) Replacing R with ˆy��.R/ 2
yT q

y�

(3) Replacing BiD q�1=4Z�1
j ;1

Z�1
k;1

with yBiD q�1=2 yZ�1
j ;1
yZ�1

i
yZ�1

k;2
when the block

Bi is associated to the configuration of Figure 2 (a).

(4) Replacing BiD q�1=2Z�1
k;1

Z�1
i Z�1

l;2
with yBiD q�1=4 yZ�1

k;2
yZ�1

l;2
when the block

Bi is associated to the configuration of Figure 2 (b).

(5) Replacing Bi D q�1=4Z�1
l;2

Z�1
m;2

with yBi D q�1=2 yZ�1
l;2
yZ�1

i
yZ�1

m;1
when the

block Bi is associated to the configuration of Figure 2 (c).
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(6) Replacing Bi D q1=2Z�1
j ;1

Z�1
i Z�1

m;2
with yBi D q1=4 yZ�1

j ;1
yZ�1

m;1
when the block

Bi is associated to the configuration of Figure 2 (d).

(7) Replacing Bi D Z�1
j ;1

Z�1
i Z�1

l;2
with yBi D

yZ�1
j ;1
. yZi C

yZ�1
i /�1 yZ�1

l;2
when the

block Bi is associated to the configuration of Figure 2 (e).

(8) Replacing Bi D Z�1
k;1

Z�1
i Z�1

m;2
with yBi D

yZ�1
k;2
. yZi C

yZ�1
i / yZ�1

m;1
when the

block Bi is associated to the configuration of Figure 2 (f).

Remark 16 ‚
q

y��
is only a linear map, not an algebra homomorphism. Indeed,

yT q1=4

�
.˛/ is not even an algebra.

Lemma 17 ‚
q

y��
.T / is ˛–odd.

Proof The only case which requires some thought is that of blocks of type (7) and (8)
from Definition 15. However, note that in type (7)

yBi D
yZ�1

j ;1.
yZi C

yZ�1
i /�1 yZ�1

l;2

D yZ�1
j ;1
yZ�1

i .1C yZ�2
i /�1 yZ�1

l;2

D yZ�1
j ;1
yZ�1

i
yZ�1

l;2 .1C q�1 yZ�2
i /�1

with type (8) working the same way.

Lemma 18 The map ‚q

y��
W yT q1=4

�
.˛/! yT q1=4

y�
.˛/ is independent of the order of the

blocks Bi .

Proof Note that, when two blocks B1 , B2 are replaced by blocks yB1 and yB2 , then
yB1 and yB2 satisfy the same skew commutativity relation as B1 and B2 . Namely, if
B1B2 D q2bB2B1 , then yB1

yB2 D q2b yB2
yB1 .

This follows from a simple computation. For instance, if B1 and B2 are respectively
of type (7) and (8) of Definition 15 then

B1B2 D .Z
�1
j ;1Z�1

i Z�1
l;2 /.Z

�1
k;1Z�1

i Z�1
m;2/

D q�1.Z�1
k;1Z�1

i Z�1
m;2/.Z

�1
j ;1Z�1

i Z�1
l;2 /D q�1B2B1

and yB1
yB2 D . yZ

�1
j ;1.
yZi C

yZ�1
i /�1 yZ�1

l;2 /.
yZ�1

k;2.
yZi C

yZ�1
i / yZ�1

m;1/

D . yZ�1
j ;1
yZ�1

l;2 /.
yZ�1

k;2.
yZi C

yZ�1
i /�1. yZi C

yZ�1
i / yZ�1

m;1/

D . yZ�1
j ;1
yZ�1

l;2 /.
yZ�1

k;2
yZ�1

m;1/D q�1. yZ�1
k;2
yZ�1

m;1/.
yZ�1

j ;1
yZ�1

l;2 /

D q�1. yZ�1
k;2
yZ�1

m;1/.
yZ�1

j ;1.
yZi C

yZ�1
i /. yZi C

yZ�1
i /�1 yZ�1

l;2 /

D q�1. yZ�1
k;2.
yZi C

yZ�1
i / yZ�1

m;1/.
yZ�1

j ;1.
yZi C

yZ�1
i /�1 yZ�1

l;2 /D q�1 yB2
yB1:

The result immediately follows from this property.

Algebraic & Geometric Topology, Volume 10 (2010)



Quantum traces in quantum Teichmüller theory 1257

The map ‚q

y��
is specially designed so that:

Lemma 19 For all Z�1
i1

Z�1
i2
: : :Z�1

il
R 2 yT q1=4

�
.˛/,�

‚
q

y��

�
Z�1

i1
Z�1

i2
: : :Z�1

il
R
��2
Dˆy��

��
Z�1

i1
Z�1

i2
: : :Z�1

il
R
�2�
;

where
�
Z�1

i1
Z�1

i2
: : :Z�1

il
R
�2
2 yT q

�
.

Proof This lemma follows from simple calculations. Given a simple closed curve ˛
which crosses edges �i1

; : : : ; �il
, label Z� D Z�1

i1
: : :Z�1

il
. The definition of ‚q

y��
was specifically designed so that

(1) ˆy��..Z�/
2/D Œ‚

q

y��
.Z�/�

2:

For example, consider Z� D Z�1
j ;1

Z�1
i Z�1

l;2
as in (7) from Definition 15. Then we

have: �
‚

q

y��

�
Z�

��2
D
�
‚

q

y��

�
Z�1

j ;1Z�1
i Z�1

l;2

��2
D
�
yZ�1

j ;1

�
yZi C

yZ�1
i

��1 yZ�1
l;2

��
yZ�1

j ;1

�
yZi C

yZ�1
i

��1 yZ�1
l;2

�
D
�
yZ�1

j ;1

�
1C yZ2

i

��1 yZi
yZ�1

l;2

��
yZ�1

j ;1
yZi

�
1C yZ2

i

��1 yZ�1
l;2

�
D yZ�2

j ;1

�
1C q yZ2

i

��1 yZ2
i

�
1C q�1 yZ2

i

��1 yZ�2
l;2

D yZ�2
j ;1

�
1C q yZ2

i

��1 yZ2
i
yZ�2

l;2

�
1C q yZ2

i

��1

Dˆy��

�
Z�2

j ;1Z�2
i Z�2

l;2

�
Dˆy��

�
ŒZ�1

j ;1Z�1
i Z�1

l;2 �
2
�

Next we will prove a small lemma:

Sublemma 20 Given a simple closed curve ˛ which crosses edges �i1
; : : : ; �i;n of

ideal triangulation �, then ˆy��.Z�Xr Z�/D‚
q

y��
.Z�/ˆy��.Xr /‚

q

y��
.Z�/, for Z� D

Z�1
i1
: : :Z�1

il
and for all r 2 f1; 2 : : : ; ng.

Proof Given that Xr Z� D qaZ�Xr we have

ˆy��.Z�Xr Z�/D qaˆy��.Z�Z�Xr /D qaˆy��.Z�Z�/ˆy��.Xr /

D qa‚
q

y��
.Z�/‚

q

y��
.Z�/ˆy��.Xr /D‚

q

y��
.Z�/ˆy��.Xr /‚

q

y��
.Z�/

as required.

A direct corollary of Sublemma 20 is, given a polynomial P 2 T q

�
, ˆy��.Z�PZ�/D

‚
q

y��
.Z�/ˆy��.P /‚

q

y��
.Z�/. Using this corollary, we then have, given polynomials
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P;Q 2 T q

�
:

ˆy��.Z�PQ�1Z�/Dˆy��.Z�PZ�/ˆy��.Z
�1
� Q�1Z�/

D‚
q

y��
.Z�/ˆy��.P /‚

q

y��
.Z�/

�
ˆy��.Z�QZ�/

��1
ˆy��.Z

2
�/

D‚
q

y��
.Z�/ˆy��.P /‚

q

y��
.Z�/

�
‚

q

y��
.Z�/

��1�
ˆy��.Q/

��1�
‚

q

y��
.Z�/

��1
‚

q

y��
.Z�/‚

q

y��
.Z�/ .Using .1//

D‚
q

y��
.Z�/ˆy��.P /

�
ˆy��.Q/

��1
‚

q

y��
.Z�/

D‚
q

y��
.Z�/ˆy��.PQ�1/‚

q

y��
.Z�/:

Now we can finally prove the lemma with the following computations:�
‚

q

y��
.Z�1

i1
Z�1

i2
: : :Z�1

il
R/
�2
D‚

q

y��
.Z�1

i1
Z�1

i2
: : :Z�1

il
R/‚

q

y��
.Z�1

i1
Z�1

i2
: : :Z�1

il
R/

D‚
q

y��
.Z�1

i1
Z�1

i2
: : :Z�1

il
/ˆy��.R/‚

q

y��
.Z�1

i1
Z�1

i2
: : :Z�1

il
/ˆy��.R/

Dˆy��.Z
�1
i1

Z�1
i2
: : :Z�1

il
RZ�1

i1
Z�1

i2
: : :Z�1

il
/ˆy��.R/

Dˆy��.Z
�1
i1

Z�1
i2
: : :Z�1

il
RZ�1

i1
Z�1

i2
: : :Z�1

il
R/

Dˆy��.ŒZ
�1
i1

Z�1
i2
: : :Z�1

il
R�2/

This concludes the proof of Lemma 19.

This leads us to another lemma.

Lemma 21 If ideal triangulations � and y� are separated by a single diagonal exchange
then the maps ‚q

�y�
and ‚q

y��
are such that ‚q

y��
D .‚

q

�y�
/�1 .

Proof To prove this it is sufficient to show this is true for the six blocks in Definition 15.
Let the edges of � and y� involved in the diagonal exchange be labeled as represented
in Figure 3. The result then follows from computations, all similar to the following.�
‚

q

�y�

��1�
Z�1

k;2

�
Zi CZ�1

i

�
Z�1

m;1

�
D yZ�1

k;1
yZ�1

i
yZ�1

m;2

‚
q

y��

�
Z�1

k;2

�
Zi CZ�1

i

�
Z�1

m;1

�
D‚

q

y��

�
Z�1

k;2Z�1
i

�
1CZ2

i

�
Z�1

m;1

�
D‚

q

y��

�
Z�1

k;2Z�1
i Z�1

m;1

�
1C q�1Z2

i

��
D‚

q

y��

�
Z�1

k;2Z�1
i Z�1

m;1

�
ˆy��

��
1C q�1Z2

i

��
D yZ�1

k;1

�
yZi C

yZ�1
i

��1 yZ�1
m;2

�
1C q�1 yZ�2

i

�
D yZ�1

k;1
yZ�1

i

�
1C yZ�2

i

��1 yZ�1
m;2

�
1C q�1 yZ�2

i

�
D yZ�1

k;1
yZ�1

i

�
1C yZ�2

i

��1�
1C yZ�2

i

�
yZ�1

m;2

D yZ�1
k;1
yZ�1

i
yZ�1

m;2:

This completes the proof.
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�j
y�j

�l
y�l

�i
y�i�m

y�k�k
y�m

T1

T2

T1

T2

Figure 3: Diagonal exchange

The following lemma about the ‚q

�y�
makes computations easier.

Lemma 22 Given two ideal triangulations � and y� which differ only by a diagonal
exchange and if the edges of � and y� involved in the diagonal exchange are labeled as
depicted in Figure 3, then the following relations are satisfied:

‚
q

�y�

�
yZj ;1
yZi
yZl;2C

yZ�1
j ;1
yZi
yZ�1

l;2 C
yZ�1

j ;1
yZ�1

i
yZ�1

l;2

�
D

Zj ;1ZiZl;2CZj ;1Z�1
i Zl;2CZ�1

j ;1Z�1
i Z�1

l;2

‚
q

�y�

�
yZk;1
yZi
yZm;2C

yZk;1
yZ�1

i
yZm;2C

yZ�1
k;1
yZ�1

i
yZ�1

m;2

�
D

Zk;1ZiZm;2CZ�1
k;1ZiZ

�1
m;2CZ�1

k;1Z�1
i Z�1

m;2

‚
q

�y�

�
q�1=4 yZj ;1

yZk;1C q�1=4 yZ�1
j ;1
yZ�1

k;1

�
D q�1=2Zj ;1ZiZk;1C q�1=2Z�1

j ;1Z�1
i Z�1

k;1

‚
q

�y�

�
q�1=2 yZk;1

yZi
yZl;2C q�1=2 yZ�1

k;1
yZ�1

i
yZ�1

l;2

�
D q�1=4Zk;2Zl;2C q�1=4Z�1

k;2Z�1
l;2

‚
q

�y�

�
q1=2 yZj ;1

yZi
yZm;2C q1=2 yZ�1

j ;1
yZ�1

i
yZ�1

m;2

�
D q1=4Zj ;1Zm;1C q1=4Z�1

j ;1Z�1
m;1

‚
q

�y�

�
q�1=4 yZl;2

yZm;2Cq�1=4 yZ�1
l;2
yZ�1

m;2

�
D q�1=2Zl;2ZiZm;1Cq�1=2Z�1

l;1 Z�1
i Z�1

m;2

Proof The first relation is the result of the following computation.

‚
q

�y�
. yZj ;1

yZi
yZl;2C

yZ�1
j ;1
yZi
yZ�1

l;2C
yZ�1

j ;1
yZ�1

i
yZ�1

l;2 /

D‚
q

�y�
.q�1 yZ2

j ;1
yZ�1

j ;1
yZ�1

i
yZ�1

l;2
yZ2

i
yZ2

l;2Cq yZ2
i
yZ�1

j ;1
yZ�1

i
yZ�1

l;2C
yZ�1

j ;1
yZ�1

i
yZ�1

l;2 /

D q�1.1CqZ2
i /Z

2
j ;1Z�1

j ;1.ZiCZ�1
i /�1Z�1

l;2 Z�2
i .1CqZ2

i /Z
2
l;2

CqZ�2
i Z�1

j ;1.ZiCZ�1
i /�1Z�1

l;2CZ�1
j ;1.ZiCZ�1

i /�1Z�1
l;2

D q�1Zj ;1.1CqZ2
i /.1CZ2

i /
�1ZiZ

�1
l;2 .Z

�2
i Cq/Z2

l;2

C.1CqZ�2
i /Z�1

j ;1.ZiCZ�1
i /�1Z�1

l;2

DZj ;1ZiZl;2Cq�1Zj ;1ZiZ
�1
l;2Z�2

i Z2
l;2CZ�1

j ;1.1CZ�2
i /.1CZ�2

i /�1Z�1
i Z�1

l;2

DZj ;1ZiZl;2CZj ;1Z�1
i Zl;2CZ�1

j ;1Z�1
i Z�1

l;2

The remaining relations follow from similar calculations.
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7 The pentagon relation for square roots

The goal of this section is to show that the linear maps ‚q

�y�
from Section 6 are

compatible with the pentagon relation satisfied by the diagonal exchange maps �i

introduced in Section 2.

�a�a

�a �a

�b

�x

�y

�d
�e �c

�2

�3�4

�0 D ˛x!y�
5

�1

˛

�a

ˇ

�x

�y
�x

�y

�x�y

�x

�y

Figure 4: The Pentagon Relation

Consider a pentagon cycle of geodesic laminations

�0; �1
D�x.�

0/; �2
D�y.�

1/;

�3
D�x.�

2/; �4
D�y.�

3/; �5
D�x.�

4/D ˛x!y.�
0/

as represented in Figure 4.

Lemma 23 The Pentagon Relation

‚
q

�0�1 ı‚
q

�1�2 ı‚
q

�2�3 ı‚
q

�3�4 ı‚
q

�4�5 D Id

is satisfied.

Proof There are only two non isotopic curves to consider, which are the ˛ and ˇ
curves depicted in Figure 4. First we will consider ˛ . If we let ˛ be as represented in
Figure 4 and label the edges of the pentagons also as depicted in Figure 4 then we really
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only need to look at where q�1=4Z�1
d;1

Z�1
e;1

is mapped to. If we apply the definition of
‚

q

�y�
and use Lemma 21 on this monomial we obtain:

‚
q

�1�0.q
�1=4Z�1

d;1Z�1
e;1/D q�1=2Z�1

b;2Z�1
x Z�1

c;1

‚
q

�2�1.q
�1=2Z�1

b;2Z�1
x Z�1

c;1/D q�1=4Z�1
e;3Z�1

y;3q�1=2Z�1
y;2Z�1

x Z�1
a;1

D q�3=4Z�1
e;3Z�1

y Z�1
x Z�1

a;1

‚
q

�4�0.q
�1=4Z�1

d;1Z�1
e;1/D q�1=4Z�1

a;1Z�1
b;1

‚
q

�3�4.q
�1=4Z�1

a;1Z�1
b;1/D q�1=2Z�1

c;2Z�1
y Z�1

d;1

‚
q

�2�3.q
�1=2Z�1

c;2Z�1
y Z�1

d;1/D q�1=2Z�1
e;3Z�1

y Z�1
x;2q�1=4Z�1

x;1Z�1
a;1

D q�3=4Z�1
e;3Z�1

y Z�1
x Z�1

a;1

Thus

‚
q

�0�1 ı‚
q

�1�2 ı‚
q

�2�3 ı‚
q

�3�4 ı‚
q

�4�.5/
.q�1=4Z�1

d;1Z�1
e;1/D Id.q�1=4Z�1

d;1Z�1
e;1/:

Now we will consider ˇ . If we let ˇ be as depicted in Figure 4 and label the edges of
the pentagons also as represented in Figure 4 then we really only need to look at where
Z�1

a;3
Z�1

x Z�1
c;2

is mapped to. If we apply the definition of ‚q

�y�
and use Lemma 21 on

this monomial we obtain:

‚
q

�4�0

�
Z�1

a;3Z�1
x Z�1

c;2

�
DZ�1

c;3

�
Zy CZ�1

y

��1
Z�1

e;2

‚
q

�3�4

�
Z�1

c;3

�
Zy CZ�1

y

��1
Z�1

e;2

�
D‚

q

�3�4

�
q�1=4Z�1

c;3z�1
y;3q1=4z�1

y;2

�
1CZ�2

y

��1
Z�1

e;2

�
D q�1=4Z�1

e;1Z�1
y Z�1

x

�
1CZ�2

x

�
1C qZ�2

y

���1
Z�1

b;3

‚
q

�1�0

�
Z�1

a;3Z�1
x Z�1

c;2

�
D‚

q

�1�0

�
q1=4Z�1

a;3Z�1
x;3q�1=4Z�1

x;2Z�1
c;2

�
D q�1=4Z�1

d;3Z�1
y Z�1

x Z�1
a;1

‚
q

�2�1

�
q�1=4Z�1

d;3Z�1
y Z�1

x Z�1
a;1

�
D‚

q

�2�1

�
q�1=4Z�1

d;3Z�1
y Z�1

x;2Z�1
x;1Z�1

a;1

�
D q�1=4Z�1

b;1

�
ZxCZ�1

x

��1
Z�1

y Z�1
d;2

‚
q

�3�2

�
q�1=4Z�1

b;1

�
ZxCZ�1

x

��1
Z�1

y Z�1
d;2

�
D‚

q

�3�2

�
q�1=4Z�1

b;1

�
1CZ�2

x

��1
Z�1

x;1Z�1
x;3Z�1

y Z�1
d;2

�
D q�1=4Z�1

e;1

�
1CZ�2

y

�
1C qZ2

x

��1��1
Z�1

y

�
ZxCZ�1

x

��1
Z�1

b;3

D q�1=4Z�1
e;1

�
1C q�1Z2

xZ�2
y

��1
Z�1

y ZxZ�1
b;3

D q�1=4Z�1
e;1

�
Z�2

x C q�1
CZ�2

x Z�2
y

��1
Z�2

x Z�1
y ZxZ�1

b;3

D q�1=4Z�1
e;1Z�1

y Z�1
x

�
1CZ�2

x

�
1C qZ�2

y

���1
Z�1

b;3
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Thus

‚
q

�0�1 ı‚
q

�1�2 ı‚
q

�2�3 ı‚
q

�3�4 ı‚
q

�4�5

�
Z�1

a;3Z�1
x Z�1

c;2

�
D Id.Z�1

a;3Z�1
x Z�1

c;2/:

The diagonal exchanges and edge reindexings satisfy the following relations:

Composition Relation: If ı and  are each either a diagonal exchange or a edge
reindexing then .ı /.�/D ı ı  .�/.

Reflexivity Relation: If �i is an i th-diagonal exchange map then �2
i .�/D �.

Reindexing Relation: If  2 Sn is a reindexing and �i is an ith-diagonal ex-
change map then �i ı  D  ı�.i/ .

Distant Commutativity Relation: If �i and �j are edges of the ideal triangu-
lation � 2 ƒ.S/ that do not belong to the same triangle then �i ı�j .�/ D

�j ı�i.�/.

We now state the following two results of Penner. Refer to [8] for their proofs.

Theorem 24 Given two ideal triangulations �, y�, there exists a finite sequence of
ideal triangulations �D �0; �1; : : : ; �m D y� such that �kC1 is obtained from �k by a
single diagonal exchange or by edge reindexing.

Theorem 25 Given two ideal triangulations �, y� and two sequences of ideal triangu-
lations

�D �0; �1; : : : ; �m
D y� and �D y�0; y�1; : : : ; y�m

D y�

such that �kC1 is obtained from �k by a single diagonal exchange or by edge reindexing
and y�kC1 is obtained from y�k by a single diagonal exchange or by edge reindexing,
these two sequences can be related to each other by applications of the following moves
and their inverses:

(1) Use the the Composition Relation to replace

: : : ; �k ; ı.�k/;  ı ı.�k/; : : : with : : : ; �k ; . ı/.�k/; : : :

where ı and  are each either a diagonal exchange or a edge reindexing.

(2) Use the Reflexivity Relation to replace

: : : ; �k ; : : : with : : : ; �k ; �i.�
k/; �k ; : : :

(3) Use the Reindexing Relation to replace

: : : ; �k ;  .�k/;�i. .�
k//; : : : with : : : ; �k ; �.i/.�

k/;  .�.i/.�
k//; : : :

where  2 Sn is an edge reindexing.
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(4) Use the Distant Commutativity Relation to replace

: : : ; �k ; : : : with : : : ; �k ; �i.�
k/;�j .�i.�

k//;�j .�
k/; �k : : :

where �i and �j are two edges of �k that do not belong to the same triangle.

(5) Use The Pentagon Relation to replace : : : ; �k ; : : : with

: : : ; �k; �i.�
k/;�jı�i.�

k/;�iı�jı�i.�
k/;�jı�iı�jı�i.�

k/; ˛i$j .�
k/; �k; : : :

where �i and �j are two diagonals of a pentagon of �k .

Note: If we are given two ideal triangulations � and y� we can find a sequence of ideal
triangulations � D �0; �1; : : : ; �m D y� where each �kC1 is obtained from �k by a
diagonal exchange or by an edge reindexing. Define ‚q

�y�
, as the composition of the

‚
q

�k�kC1 . Lemma 21 and Lemma 23 along with Theorem 24 and Theorem 25 show
that this ‚q

�k�kC1 is independent of the choice of the sequence of �k .

Theorem 26 Given ideal triangulations �, �0 , �00 then

‚
q

��00
D‚

q

��0
ı‚

q

�0�00

Proof This result simply follows from the definition.

8 Punctured tori

Figure 5: The once punctured torus

Figure 6: A torus with a wide hole and p > 1 punctures
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Let the once-punctured torus be the surface obtained by removing one point from a
torus. Let a torus with a wide hole and p > 1 punctures be the surface that is obtained
from the compact surface of genus one with one boundary component by removing
p > 1 punctures from its boundary but none from its interior.

In this section, S will denote either a once punctured torus or a torus with a wide hole
and p > 1 punctures. Let †.S/ be the set of simple closed unoriented curves in S

Definition 27 For an ideal triangulation � of S with edges �1; : : : ; �n and given
˛ 2†.S/, define ˛ as �–simple if it meets each �i in at most one point.

Definition 28 Given an ideal triangulation � of S with edges �1; : : : ; �n and given
˛ 2†.S/, define � as ˛–simple if and only if ˛ is �–simple.

�j

�j
�k

�k

˛

˛

T1

T2

Figure 7: Two dimensional torus with a wide hole

We may now state the two main theorems of this section.

Theorem 29 Let S be either a once punctured torus or a torus with a wide hole and
p > 1 punctures. There exists a family of T �

˛ 2 T
q1=4

�
.˛/, with � ranging over all ideal

triangulations of S and ˛ over all essential simple closed curves of S , which satisfies:

(1) If ˛ is in †.S/ and � and y� are two triangulations of S , then ‚
�y�

�
T
y�
˛

�
D T �

˛ .

(2) As q! 1, T �
˛ converges to the non-quantum trace function T˛ in T .S/

(3) If ˛ and ˇ are disjoint, T �
˛ and T �

ˇ
commute.

(4) If ˛ meets each edge of � at most once then T �
˛ is obtained from the classical

trace T˛ of Section 4 by multiplying each monomial by the Weyl ordering
coefficient.
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˛ ˇ ˛ˇ
ˇ˛

Figure 8: Resolving crossing in the torus

Theorem 30 The traces T �
˛ of Theorem 29 satisfy the following property: If ˛ and

ˇ meet in one point, and if ˛ˇ and ˇ˛ are obtained by resolving the intersection point
as in Figure 8, then

T �
˛ T �

ˇ D qT �
˛ˇC q�1T �

ˇ˛:

In addition, T �
˛ with ˛ non-separating is the only one which satisfy this property and

conditions (1) and (4) of Theorem 29.

We restrict our attention to the case where S is a torus with a wide hole and p > 1

punctures. The case of the once-punctured torus is similar, and simpler.

A key result used to prove Theorem 29 is the following proposition.

Proposition 31 For an essential curve ˛ in †.S/ and ˛–simple ideal triangulations
� and y� of S there exists a sequence of ideal triangulations

�D �0; �1; �2; : : : ; �m�1; �m
D y�

such that each �iC1 is obtained from �i by a diagonal exchange and �i is ˛–simple.

Proof To prove Proposition 31 we must prove the following lemmas.

Lemma 32 If � and y� are ˛–simple ideal triangulations of S , there exists a sequence
of ˛–simple ideal triangulations �D �0; �1; : : : ; �m and a sequence of ˛–simple ideal
triangulations y�D y�0; y�1; : : : ; y�n such that:

(1) �lC1 is obtained from �l by a diagonal exchange and y�lC1 is obtained from y�l

by a diagonal exchange

(2) there exists edges �i and y�j of �m and y�n , respectively, such that one component
C1 of S ��i and one component yC1 of S �y�j are tori with exactly one spike
at infinity.

(3) �m and y�n coincide outside of C1 .
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S1

S2

S3

S4

S5

Figure 9: Quadrilateral in the surface

Proof of Lemma 32 We will use the following proof for both � and y�. Consider
a quadrilateral as represented in Figure 9 with vertices at infinity S1;S2;S3;S4 ,
occurring counterclockwise in this order, and where and the edge from S1 to S2 is a
boundary curve, the edges in this quadrilateral are edges S1 to S2 , S1 to S3 , S1 to
S4 , S2 to S3 and S3 to S4 . If S1 D S2 then we are done. Assume from now on that
S1 ¤ S2

Case 1 If S3 D S1 and S4 D S1 then doing a diagonal exchange on both � and y�
in this quadrilateral lowers the number of edges ending at S1 by one. Also since ˛
cannot cross the edge connecting S1 to S2 when you do this diagonal exchange the
resulting triangulation remains ˛–simple.

Case 2 If S1D S3 and S1¤ S4 , then doing a diagonal exchange on both � and y� in
this quadrilateral lowers the number of edges ending at S1 by two. Also, the resulting
triangulation remains ˛–simple.

Case 3 If S1 ¤ S3 and S1 ¤ S4 , then doing a diagonal exchange on both � and y�
in this quadrilateral decreases the number of edges ending at S1 by one. Also, the
resulting triangulation remains ˛–simple.

Case 4 If S1¤S3 and S1DS4 . then after doing a diagonal exchange on both � and
y� in this quadrilateral if we consider the new quadrilateral created with edges S1 to
S2 , S2 to S4 , S1 to S4 and a new point S5 and edges S1 to S5 and S4 to S5 then
we see that we are again in Case 2 or Case 3. Thus after another diagonal exchange on
both � and y� in this new quadrilateral we reduce the number of edges ending at S1 by
one or two. For the same reason as above after the first diagonal exchange the resulting
triangulation remains ˛–simple and similarly after the second diagonal exchange the
resulting triangulation remains ˛–simple.

Now if we repeat this process until there are only two edges going to S1 then we
can effectively “forget” about the point at infinity S1 and then repeat this process for
another point at infinity. If we continue repeating this process we obtain a sequence of
˛–simple ideal triangulations �D �0; �1; : : : ; �r and a sequence of ˛–simple ideal
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triangulations y� D y�0; y�1; : : : ; y�n such that there exists edges �i and y�j of �r and
y�n , respectively, such that one component C1 of S � �i and one component yC1 of
S �y�j are tori with exactly one spike at infinity.

By the method of the proof ˛ lies in the component C1 therefore any diagonal exchange
in the component outside C1 results in an ˛–simple ideal triangulation. Thus by
Theorem 24 there is a sequence of ˛–simple diagonal exchanges �r ; �rC1; : : : ; �m

such that �m and �n correspond outside of C1 and there exists edges �i and y�j of
�m and y�n , respectively, such that one component C1 of S ��i and one component
yC1 of S �y�j are tori with exactly one spike at infinity. This completes the proof of
Lemma 32.

Case C �Case B� Case C

Case A�Case A Case B

T1

T1

˛

˛
˛

˛
˛

˛ �i

D D

D

1 diagonal

exchange

2 diagonal

exchanges

Figure 10: Pentagon moves

Lemma 33 After changing the ideal triangulation � by ˛–simple diagonal exchanges,
we can arrange that, for the component C1 of S ��i which is a torus with one spike at
infinity, the triangle T1 containing @C1 is disjoint from ˛ .

Proof of Lemma 33 This can be accomplished in the following way. If you are in
case A, A� , C , or C � as represented in Figure 10 then you are done. If you are
in case B as represented in Figure 10 then first rearrange the identifications on the
pentagon to move to case B� then simply perform the one diagonal exchange to move
from case B� to case C � . The only other possible cases are represented in Figure 11
as case D and Case B

0

. If you are in case D then perform the one diagonal exchange
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Case B
0

Case B

Case B�

Case D

˛

˛

˛

˛ �i

1 diagonal

exchange

D

Figure 11: More pentagon cases

to move to case B and repeat the process to move from case B to case C � . If you are
in case B

0

then rearrange the indentifications on the pentagon to move to case B� and
perform the one diagonal exchange to move to case C � . One thing to note is that all
diagonal exchanges performed are ˛–simple diagonal exchanges. This completes the
proof of Lemma 33.

Figure 12: Torus slope changes

Change both triangulations � and y� such that the triangle T1 containing @C1 and @ yC1

is disjoint from ˛ as in Lemma 33. If we consider the two nonboundary edges �1 ,
�2 that make up the triangle T1 , they are completely determined by how many times
they wrap around the boundary. Also, if edge �1 wraps around the boundary k times
then edge �2 is restricted to wrap around the boundary kC 1 or k � 1 times. Now
it is clear from Figure 10 that if edges �1 and �2 wrap around the boundary k and
kC 1 times respectively that through a series of ˛–simple diagonal exchanges we can
move to ideal triangulation �0 where the two edges �0

1
and �0

2
, which are edges in

the triangle on the boundary, wrap around the boundary either kC 1 and kC 2 time
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respectively or k � 1 and k times respectively. This is further illustrated in Figure 12.
Thus we can change � and y� so that the edges �1 and �2 which make up the triangle
on the boundary of C1 and yC1 coincide.

If we cut the surface along the edges �1 and �2 from above we are left with a cylinder
with two spikes at infinity, four edges going between those spikes and ˛ as a meridian
of the cylinder as depicted in Figure 13. It is clear that, if we perform a diagonal
exchange along any one of the two edges that spiral around the cylinder, the resulting
ideal triangulation remains ˛–simple. In addition, the diagonal exchanges of this type
enable us to go between any two ideal triangulations of the cylinder.

Thus, we can always reduce an ideal triangulation to the case with only one spike at
infinity.

This concludes the proof of Proposition 31

Figure 13: Cylinder in the torus

We now prove Theorem 29 which we restate for the sake of the reader.

Theorem 34 There exists a family of T �
˛ 2 T

q1=4

�
.˛/ with � ranging over all ideal

triangulations of S and ˛ over all essential simple closed curves of S , which satisfies:

(1) If ˛ is in †.S/ and � and y� are two triangulations of S , then ‚
�y�

�
T
y�
˛

�
D T �

˛ .

(2) As q! 1, T �
˛ converges to the non-quantum trace function T˛ in T .S/:

(3) If ˛ and ˇ are disjoint, T �
˛ and T �

ˇ
commute.

(4) If ˛ meets each edge of � at most once then T �
˛ is obtained from the classical

trace T˛ of Section 4 by multiplying each monomial by the Weyl ordering
coefficient.

Proof For an ideal triangulation � and a simple closed curve ˛ in S which is �–simple,
define T �

˛ to be obtained from the non-quantum trace function T˛ by multiplying each
monomial of T˛ with the Weyl quantum ordering coefficient.

When ˛ is not �–simple and is not homotopic to the boundary, one easily finds
an ˛–simple ideal triangulation �� . In this case define T �

˛ D ‚���
�
T ��

˛

�
where

T ��

˛ 2
yT 1=4

��
.˛/ is defined by the previous case.
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When ˛ is not �–simple and is homotopic to the boundary define T �
˛ to be obtained

from the non-quantum trace function T˛ by multiplying each monomial of T˛ with
the Weyl quantum ordering coefficient.

In the case where ˛ is not homotopic to the boundary let us show that T �
˛ is well

defined, namely is independent of the choice of the ˛–simple ideal triangulation �� .
The main step is to prove the following lemma.

Lemma 35 For any two ˛–simple ideal triangulations � and y� of S , ‚
�y�

�
T
y�
˛

�
DT �

˛ .

Proof The main step in the proof is the following.

Lemma 36 Given two ˛–simple ideal triangulations � and y� which differ by only
one diagonal exchange, ‚

�y�

�
T
y�
˛

�
D T �

˛ .

�j
y�j

�l
y�l

�i
y�i�m

y�k�k
y�m

T1

T2

T1

T2

Figure 14: Diagonal exchange

�j
y�j

�l y�l

�i
y�i

�m
y�m�k

y�k
˛

˛

Case 1

�j
y�j

�l y�l

�i
y�i

�m
y�m�k

y�k

˛ ˛

Case 2

�j
y�j

�l
y�l

�i
y�i

�m
y�m�k

y�k

˛ ˛

Case 3

�j
y�j

�l y�l

�i
y�i

�m
y�m�k

y�k

˛ ˛

Case 4
Figure 15
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Proof We must separate this into four cases, each represented in Figure 15. In each
case we have ˛ 2 †.S/ and ˛–simple ideal triangulations � and y� with � and y�
differing only by exchanging edge �i and y�i . The edges of the quadrilaterals involved
in the diagonal exchange are �i , �j , �k , �l , �m , y�i , y�j , y�k , y�l and y�m with the
quadrilaterals edges in � and y� ordered as represented in Figure 14. This lemma
follows from simple calculations of which we will do one of the four possible cases.

Case 1 Let all edges of the quadrilateral be distinct and let the diagonal �i go from
the vertex adjoining y�j to y�k to the vertex adjoining y�l to y�m . Also, let ˛ cross edges
y�j , y�i , and y�l as depicted in Case 1 of Figure 15. Then by simple calculations we
have:

T
y�
˛ D

yA
�
yZj ;2
yZi
yZl;1C

yZ�1
j ;2
yZi
yZ�1

l;1 C
yZ�1

j ;2
yZ�1

i
yZ�1

l;1

�
yB

C yC
�
q�1=2 yZj ;2

yZi
yZ�1

l;1

�
yDC yE

�
q1=2 yZ�1

j ;2
yZi
yZl;1

�
yF

where yA; yB; yC ; yD; yE; yF 2 T q1=4

y�
and

‚
�y�

�
T
y�
˛

�
D‚

�y�

�
yA
�
yZj ;2
yZi
yZl;1C

yZ�1
j ;2
yZi
yZ�1

l;1 C
yZ�1

j ;2
yZ�1

i
yZ�1

l;1

�
yB

C yC
�
q�1=2 yZj ;2

yZi
yZ�1

l;1

�
yDC yE

�
q�1=2 yZ�1

j ;2
yZi
yZl;1

�
yF
�

DA
�
‚
�y�

�
yZ�1

j ;2
yZ�1

i
yZ�1

l;1
yZ2

j ;2
yZ2

i
yZ2

l;1

C q�1 yZ�1
j ;2
yZ�1

i
yZ�1

l;1
yZ2

i C
yZ�1

j ;2
yZ�1

i
yZ�1

l;1

��
B

CC
�
‚
�y�

�
q1=2 yZ�1

j ;2
yZ�1

i
yZ�1

l;1
yZ2

j ;2
yZ2

i

��
D

CE
�
‚
�y�

�
q�3=2 yZ�1

j ;2
yZ�1

i
yZ�1

l;1
yZ2

i
yZ2

l;1

��
F

DA
�
Z�1

j ;1

�
Zi CZ�1

i

��1
Z�1

l;2

�
1C qZ2

i

�
Z2

j ;1Z�2
i

�
1C qZ2

i

�
Z2

l;2

C q�1Z�1
j ;1

�
Zi CZ�1

i

��1
Z�1

l;2 Z�2
i CZ�1

j ;1

�
Zi CZ�1

i

��1
Z�1

l;2

�
B

CC
�
q1=2Z�1

j ;1

�
Zi CZ�1

i

��1
Z�1

l;2

�
1C qZ2

i

�
Z2

j ;1Z�2
i

�
D

CE
�
q�3=2Z�1

j ;1

�
Zi CZ�1

i

��1
Z�1

l;2 Z�2
i

�
1C qZ2

i

�
Z2

l;2

�
F

DA
�
Z�1

j ;1Zi

�
1CZ2

i

��1�
1CZ2

i

�
Z�1

l;2 Z2
j ;1Z�2

i

�
1C qZ2

i

�
Z2

l;2

CZ�1
j ;1

�
Zi CZ�1

i

��1
Z�2

i Z�1
l;2 CZ�1

j ;1

�
Zi CZ�1

i

��1
Z�1

l;2

�
B

CC
�
q1=2Zj ;1Z�1

i Z�1
l;2

�
DCE

�
q�1=2Z�1

j ;1Z�1
i Zl;2

�
F

DA
�
Zj ;1

�
Z�1

i CZi

�
Zl;2CZ�1

j ;1Z�1
i

�
1CZ�2

i

��1�
Z�2

i C 1
�
Z�1

l;2

�
B

CC
�
q1=2Zj ;1Z�1

i Z�1
l;2

�
DCE

�
q�1=2Z�1

j ;1Z�1
i Zl;2

�
F

DA
�
Zj ;1ZiZl;2CZj ;1Z�1

i Zl;2CZ�1
j ;1Z�1

i Z�1
l;2

�
B

CC
�
q1=2Zj ;1Z�1

i Z�1
l;2

�
DCE

�
q�1=2Z�1

j ;1Z�1
i Zl;2

�
F D T �

˛

Algebraic & Geometric Topology, Volume 10 (2010)



1272 Christopher Hiatt

where A;B;C;D;E;F 2 T q1=4

�
.

Lemma 35 is now a direct corollary of Proposition 31 and Lemma 36.

Lemma 35 proves that the definition of T �
˛ is independent of the choice of triangulation

�� .

Consider two triangulations � and y� and an essential simple closed curve ˛ . From the
above definition we have that there exists an ˛–simple ideal triangulation �� such that

T �
˛ D‚���

�
T ��

˛

�
and T

y�
˛ D‚y���

�
T ��

˛

�
:

Thus
‚�1
���

�
T �
˛

�
D‚�1

y���

�
T
y�
˛

�
;

which implies that
T �
˛ D‚���

�
‚�1
y���

�
T
y�0

˛

��
:

Since we know that

‚�1
y���
D‚

��y�
and ‚

�y�
D‚��� ı‚��y�

this implies that
T �
˛ D‚�y�

�
T
y�
˛

�
:

Thus property (1) of Theorem 34 holds.

Now we must show that if ˛ is a simple closed curve in S and is homotopic to the
boundary, then T �

˛ also satisfies property (1) of Theorem 34. The main step is to prove
the following lemma.

Lemma 37 For any two ideal triangulations � and y� of S , ‚
�y�

�
T
y�
˛

�
D T �

˛ .

Proof The main step in the proof is the following.

Lemma 38 Given two ideal triangulations � and y� which differ by only one diagonal
exchange, ‚

�y�

�
T
y�
˛

�
D T �

˛ .

Proof of Lemma 38 We must separate this into four cases, each of which are repre-
sented in Figure 16. In each case we have ˛ 2†.S/ homotopic to the boundary and �
and y� differing only by exchanging edge �i and y�i . The edges of the quadrilaterals
involved in the diagonal exchange are �i , �j , �k , �l , �m , y�i , y�j , y�k , y�l and y�m

with the quadrilaterals edges in � and y� ordered as represented in Figure 17. This
lemma follows from simple calculations nearly identical to those in Lemma 36 which
we omit for the sake of brevity.
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�j
y�j

�l y�l

�i

y�i�m
y�m�k

y�k
˛

˛

Case 1

�j
y�j

�l y�l

�i
y�i

�m
y�m�k

y�k

˛ ˛

Case 2

�j
y�j

�l
y�l

�i

y�i

�m
y�m�k

y�k

˛
˛

Case 3

�j
y�j

�l y�l

�i y�i

�m
y�m�k

y�k˛ ˛

Case 4
Figure 16

�j
y�j

�l
y�l

�i
y�i�m

y�k�k
y�m

T1

T2

T1

T2

Figure 17: Diagonal exchange

Lemma 37 is now a direct corollary of Theorem 24 and Lemma 38.

Properties (2) and (3) of Theorem 34 both follow from definitions. Property (4) of
Theorem 34 follows from the way we defined the non-quantum traces and the fact
that this definition is well-defined. This concludes the proof of Theorem 34 (Theorem
29).

We now prove Theorem 30 which we restate for the sake of the reader.

Theorem 39 The traces T �
˛ of Theorem 34 satisfy the following property: If ˛ and

ˇ meet in one point, and if ˛ˇ and ˇ˛ are obtained by resolving the intersection point
as in Figure 18, then

T �
˛ T �

ˇ D q1=2T �
˛ˇC q�1=2T �

ˇ˛:

In addition, T �
˛ with ˛ non-separating is the only one which satisfy this property and

conditions (1) and (4) of Theorem 34.
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˛ ˇ ˛ˇ
ˇ˛

Figure 18: Resolving crossing in the torus
�j

�k

�i

�h

˛

ˇ

˛ˇ

˛ˇˇ˛

ˇ˛

Figure 19: Quadrilateral labeling

�i �0i �00i
�h

�0
h �00

h

Figure 20: Diagonal moves in the torus

Proof Notice that Property (1) from Theorem 34 implies that it suffices to show
T �
˛ T �

ˇ
D q1=2T �

˛ˇ
C q�1=2T �

ˇ˛
for one particular �. So, we can choose � to be the

ideal triangulation represented in Figure 19. In particular, ˛ , ˇ and ˛ˇ are �–simple
and ˇ˛ is not. From Theorem 34 T �

˛ , T �
ˇ

, and T �
˛ˇ

are uniquely determined and:

T �
˛ D q1=4Zk;1ZhZiZk;3C q1=4Zk;1Z�1

h ZiZk;3

C q1=4Zk;1Z�1
h Z�1

i Zk;3C q1=4Z�1
k;1Z�1

h Z�1
i Z�1

k;3

T �
ˇ D q1=4Zj ;1ZhZiZj ;3C q1=4Z�1

j ;1ZhZiZ
�1
j ;3

C q1=4Z�1
j ;1Z�1

h ZiZ
�1
j ;3C q1=4Z�1

j ;1Z�1
h Z�1

i Z�1
j ;3

T �
˛ˇ DZk;1Z�1

h Z�1
i Zk;3Zj ;1ZhZiZj ;3CZ�1

k;1Z�1
h Z�1

i Z�1
k;3Zj ;1ZhZiZj ;3

CZ�1
k;1Z�1

h Z�1
i Z�1

k;3Z�1
j ;1ZhZiZ

�1
j ;3
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To find T �
ˇ˛

we perform two diagonal exchanges, changing � to �0 and then �00

respectively, as represented in Figure 20. Because ˇ˛ is �00–simple T �00

ˇ˛
can be

determined. To calculate T �
ˇ˛

we simply use the coordinate change maps and set
T �
ˇ˛
D‚��00.T

�00

ˇ˛
/. The computations use Lemma 22 four times, and yield:

T �
ˇ˛ D‚��00.T

�00

ˇ˛ /

DZk;1ZhZiZk;3Zj ;1ZhZiZj ;3CZk;1ZhZiZk;3Z�1
j ;1ZhZiZ

�1
j ;3

CZk;1ZhZiZk;3Z�1
j ;1Z�1

h ZiZ
�1
j ;3CZk;1ZhZiZk;3Z�1

j ;1Z�1
h Z�1

i Z�1
j ;3

CZk;1Z�1
h ZiZk;3Zj ;1ZhZiZj ;3CZk;1Z�1

h ZiZk;3Z�1
j ;1ZhZiZ

�1
j ;3

CZk;1Z�1
h ZiZk;3Z�1

j ;1Z�1
h ZiZ

�1
j ;3CZk;1Z�1

h ZiZk;3Z�1
j ;1Z�1

h Z�1
i Z�1

j ;3

CZk;1Z�1
h Z�1

i Zk;3Z�1
j ;1ZhZiZ

�1
j ;3CZk;1Z�1

h Z�1
i Zk;3Z�1

j ;1Z�1
h ZiZ

�1
j ;3

CZk;1Z�1
h Z�1

i Zk;3Z�1
j ;1Z�1

h Z�1
i Z�1

j ;3CZ�1
k;1Z�1

h Z�1
i Z�1

k;3Z�1
j ;1Z�1

h ZiZ
�1
j ;3

CZ�1
k;1Z�1

h Z�1
i Z�1

k;3Z�1
j ;1Z�1

h Z�1
i Z�1

j ;3

Finally we directly compute that T �
˛ T �

ˇ
D q1=2T �

˛ˇ
C q�1=2T �

ˇ˛
in the following way:

T �
˛ T �

ˇ D q1=2Zk;1ZhZiZk;3Zj ;1ZhZiZj ;3Cq1=2Zk;1ZhZiZk;3Z�1
j ;1ZhZiZ

�1
j ;3

Cq1=2Zk;1ZhZiZk;3Z�1
j ;1Z�1

h ZiZ
�1
j ;3Cq1=2Zk;1ZhZiZk;3Z�1

j ;1Z�1
h Z�1

i Z�1
j ;3

Cq1=2Zk;1Z�1
h ZiZk;3Zj ;1ZhZiZj ;3Cq1=2Zk;1Z�1

h ZiZk;3Z�1
j ;1ZhZiZ

�1
j ;3

Cq1=2Zk;1Z�1
h ZiZk;3Z�1

j ;1Z�1
h ZiZ

�1
j ;3Cq1=2Zk;1Z�1

h ZiZk;3Z�1
j ;1Z�1

h Z�1
i Z�1

j ;3

Cq1=2Zk;1Z�1
h Z�1

i Zk;3Zj ;1ZhZiZj ;3Cq1=2Zk;1Z�1
h Z�1

i Zk;3Z�1
j ;1ZhZiZ

�1
j ;3

Cq1=2Zk;1Z�1
h Z�1

i Zk;3Z�1
j ;1Z�1

h ZiZ
�1
j ;3Cq1=2Zk;1Z�1

h Z�1
i Zk;3Z�1

j ;1Z�1
h Z�1

i Z�1
j ;3

Cq1=2Z�1
k;1Z�1

h Z�1
i Z�1

k;3Zj ;1ZhZiZj ;3Cq1=2Z�1
k;1Z�1

h Z�1
i Z�1

k;3Z�1
j ;1ZhZiZ

�1
j ;3

Cq1=2Z�1
k;1Z�1

h Z�1
i Z�1

k;3Z�1
j ;1Z�1

h ZiZ
�1
j ;3Cq1=2Z�1

k;1Z�1
h Z�1

i Z�1
k;3Z�1

j ;1Z�1
h Z�1

i Z�1
j ;3

D q1=2T �
˛ˇCq�1=2T �

ˇ˛

For any non-separating simple closed curve ˛ in S the uniqueness of T �
˛ follows

from the following two facts. The first is that property (1) from Theorem 34 implies
T �
˛ D‚�y�.T

y�
˛ / if ˛ is y�–simple. The second is that Property (4) from Theorem 34

implies T
y�
˛ is uniquely determined which implies T �

˛ is uniquely determined. This
concludes the proof of Theorem 39 (Theorem 30)
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9 Spheres with four holes

Figure 21: The four times punctured sphere

Figure 22: A sphere with four holes

Let S be the surface obtained from the compact surface of genus zero with k boundary
components by removing p points from its interior and at least one point from each
boundary component, with kCp D 4, we call this surface a sphere with four holes.
Let †.S/ be the set of simple closed unoriented curves in S not homotopic to the
boundary.

We now state the two main theorems of the section.

Theorem 40 Let S be a sphere with four holes. There exists a family of T �
˛ 2

T q1=4

�
.˛/, with � ranging over all ideal triangulations of S and ˛ over all non-

separating simple closed curves of S , which satisfies:

(1) If ˛ is in †.S/ and � and y� are two triangulations of S , then ‚
�y�

�
T
y�
˛

�
D T �

˛ .

(2) as q! 1, T �
˛ converges to the non-quantum trace function T˛ in T .S/:

(3) If ˛ and ˇ are disjoint, T �
˛ and T �

ˇ
commute.

(4) If ˛ meets each edge of � at most once then T
q
˛ is obtained from the classical

trace T˛ of Section 4 by multiplying each monomial by the Weyl ordering
coefficient.

Theorem 41 The traces T �
˛ of Theorem 40 satisfy the following property:
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If ˛ and ˇ meet in two points, and if ˛ˇ and ˇ˛ are obtained by resolving the
intersection point as depicted in Figure 23, then

T �
˛ T �

ˇ D qT �
˛ˇC q�1T �

ˇ˛CT �
1

T �
2
CT �

3
T �
4
;

for all �.

In addition, T �
˛ , with ˛ non-separating, is the only one which satisfy this property and

conditions (1) and (4) of Theorem 40.

˛

ˇ
˛ˇ ˇ˛

1

2

3

4

Figure 23: Resolving crossings in the sphere

A key result used to prove Theorem 40 is the following proposition.

Proposition 42 For a curve ˛ in †.S/ and ˛–simple ideal triangulations � and y� of
S , there exists a sequence of ˛–simple ideal triangulations

�D �0; �1; �2; : : : ; �m�1; �m
D y�

such that each �iC1 is obtained from �i by a single diagonal exchange.

S1

S2

S3

S4

S5

Figure 24: Quadrilateral in the surface

Proof To prove Proposition 42 we must prove the following lemma.
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Lemma 43 If � and y� are ˛–simple ideal triangulations of S , there exists a sequence
of ˛–simple ideal triangulations �D �0; �1; : : : ; �m such that �lC1 is obtained from
�l by a single diagonal exchange and a sequence of ˛–simple ideal triangulations
y�D y�0; y�1; : : : ; y�n such that y�lC1 is obtained from y�l by a single diagonal exchange
and four edges K and yK of �m and y�n respectively such that one component C1 of
S �K and one component yC1 of S � yK are both spheres with four spikes at infinity.
Also �m and y�n coincide outside of C1 .

Proof of Lemma 43 We will use the following proof for both � and y�. Con-
sider a quadrilateral as represented in Figure 24 with endpoints S1;S2;S3;S4 where
S1;S2;S3;S4 are all points at infinity and the edge from S1 to S2 is a boundary curve
and the edges in this quadrilateral are edges S1 to S2 , S1 to S3 , S1 to S4 , S2 to S3

and S3 to S4 . If S1 D S2 then we are done. Assume from now on that S1 ¤ S2

Case 1 If S3 D S1 and S4 D S1 then doing a diagonal exchange on both � and y�
in this quadrilateral lowers the number of edges ending at S1 by one. Also since ˛
cannot cross the edge connecting S1 to S2 when you do this diagonal exchange the
resulting triangulation remains ˛–simple.

Case 2 If S1D S3 and S1¤ S4 , then doing a diagonal exchange on both � and y� in
this quadrilateral lowers the number of edges ending at S1 by two. Also, the resulting
triangulation remains ˛–simple.

Case 3 If S1 ¤ S3 and S1 ¤ S4 , then doing a diagonal exchange on both � and y�
in this quadrilateral decreases the number of edges ending at S1 by one. Also, the
resulting triangulation remains ˛–simple.

Case 4 If S1¤S3 and S1DS4 . then after doing a diagonal exchange on both � and
y� in this quadrilateral if we consider the new quadrilateral created with edges S1 to
S2 , S2 to S4 , S1 to S4 and a new point S5 and edges S1 to S5 and S4 to S5 then
we see that we are again in Case 2 or Case 3. Thus after another diagonal exchange on
both � and y� in this new quadrilateral we reduce the number of edges ending at S1 by
one or two. For the same reason as above after the first diagonal exchange the resulting
triangulation remains ˛–simple and similarly after the second diagonal exchange the
resulting triangulation remains ˛–simple.

Now if we repeat this process until there are only two edges going to S1 then we
can effectively “forget” about the point at infinity S1 and then repeat this process for
another point at infinity. By the method of the proof we automatically get �m and y�n

to coincide outside of C1 .
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If we continue this process for each of the four wide holes of S then we are left with
spheres with four spikes at infinity. By the method of the proof we automatically get
�m and y�n to coincide outside of C1 .

Lemma 44 After changing the ideal triangulation � by ˛–simple diagonal exchanges,
we can arrange so that the following hold:

(1) � satisfies the conditions of Lemma 43, namely there exists four edges K such
that one component C1 of S �K is a sphere with four spikes at infinity as
represented in Figure 25.

(2) Only two edges of � cross ˛

(3) ˛ splits C1 into two components, each of which contains four edges that are
disjoint from ˛ and two boundary edges.

˛

Figure 25: Triangulation of the sphere

Proof of Lemma 44 For the first condition we simply apply Lemma 43 to �.

The second condition can be realized using moves similar to those represented in Figure
26. The third condition follows from the second condition.

Applying Lemma 43 and 44, we can assume without loss of generality that � and y�
satisfy the conclusions of Lemma 44. By inspection, the two edges of � that cross
˛ must go to a single boundary component of C1 on one side of ˛ , and to a single
boundary component of C1 on the other side of ˛ .

Using the moves illustrated in Figure 27 we can arrange that the edges A and B of �
and y� crossing ˛ go to the same boundary components of C1 .

Finally, by using the moves represented in Figure 28, we can arrange that the two edges
A and B wrap around ˛ the same number of times. An application of the moves
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˛

˛

Figure 26: Reducing crossings for the sphere

Figure 27: Changing spikes in the sphere

Figure 28: Changing windings in the sphere

illustrated in Figure 29 ensures that A and B wrap around the boundary components
of C1 the same number of times.

After these moves the two ideal triangulations now coincide.

All of this argument also works for the surface S that is obtained from the compact
surface of genus zero with k boundary components by removing p points from its
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Figure 29: Diagonal exchange moves in the sphere

interior and at least one point from each boundary component, with kCpD 4. In fact,
some of the arguments become simpler. This completes the proof of Proposition 42.

We now prove Theorem 40 which we restate for the sake of the reader.

Theorem 45 Let S be a sphere with four holes. There exists a family of T �
˛ 2

T q1=4

�
.˛/, with � ranging over all ideal triangulations of S and ˛ over all non-

separating simple closed curves of S , which satisfies:

(1) If ˛ is in †.S/ and � and y� are two triangulations of S , then ‚
�y�
.T
y�
˛ /D T �

˛ .

(2) As q! 1, T �
˛ converges to the non-quantum trace function T˛ in T .S/

(3) If ˛ and ˇ are disjoint, T �
˛ and T �

ˇ
commute.

(4) If ˛ meets each edge of � at most once then T
q
˛ is obtained from the classical

trace T˛ of Section 4 by multiplying each monomial by the Weyl ordering
coefficient.

Proof The proof is identical to the proof of Theorem 34 replacing Proposition 31 with
Proposition 42.

˛

ˇ
˛ˇ ˇ˛

1

2

3

4

Figure 30: Resolving crossings in the sphere

We conclude with the proof of Theorem 41, which we repeat here for the convenience
of the reader.
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Theorem 46 The traces T �
˛ of Theorem 45 satisfy the following property:

If ˛ and ˇ meet in two points, and if ˛ˇ and ˇ˛ are obtained by resolving the
intersection point as in Figure 30, then

T �
˛ T �

ˇ D qT �
˛ˇC q�1T �

ˇ˛CT �
1

T �
2
CT �

3
T �
4

for all �

In addition, T �
˛ , with ˛ non-separating, is the only one which satisfy this property and

conditions (1) and (4) of Theorem 45.

Proof Property (1) from Theorem 45 implies that it suffices to show T �
˛ T �

ˇ
D qT �

˛ˇ
C

q�1T �
ˇ˛
CT �

1
T �
2
CT �

3
T �
4

for one particular �. Let � be the ideal triangulation as
illustrated in Figure 31. The triangulation is ˛–simple, ˇ–simple, ˛ˇ–simple, but not
ˇ˛–simple.

˛

ˇ

Figure 31: ˛–simple, ˇ–simple, ˛ˇ–simple, but not ˇ˛–simple triangulation

The quantum traces T �
˛ , T �

ˇ
and T �

˛ˇ
are determined by Condition (4) of Theorem

45. To compute T �
ˇ˛

, we use the triangulation y� of Figure 32 and use Condition (4) of
Theorem 45 to determine T

y�
ˇ˛

and compute T �
ˇ˛
D‚y��

�
T
y�
ˇ˛

�
.

At this point checking the relation T �
ˇ˛
D‚y��

�
T
y�
ˇ˛

�
unfortunately requires considering

476 terms. This computation was verified using Mathematica.
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