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The characterization of a line arrangement
whose fundamental group of the complement

is a direct sum of free groups

MEITAL ELIYAHU

ERAN LIBERMAN

MALKA SCHAPS

MINA TEICHER

Kwai Man Fan proved that if the intersection lattice of a line arrangement does not
contain a cycle, then the fundamental group of its complement is a direct sum of
infinite and cyclic free groups. He also conjectured that the converse is true as well.
The main purpose of this paper is to prove this conjecture.

14F35, 32S22; 14N30, 52C30

1 Introduction

An arrangement of lines is a finite collection of C–affine subspaces of dimension 1.
For such an arrangement † � C2 , there is a natural projective arrangement †� of
lines in CP2 associated to it, obtained by adding to each line its corresponding point at
infinity. The problem of finding connections between the topology of C2�† and the
combinatorial theory of † is one of the main problems in the theory of line arrangements
(see for example Cohen and Suciu [3]). The main motivations for studying the topology
of C2�† are derived from the areas of hypergeometric functions, singularity theory
and algebraic geometry.

Given an arrangement †, we define the graph G.†/ in the way it is defined by Fan [7].
We first connect all higher multiple points of † which lie on a line Li by an arbitrary
simple arc ˛i � Li which does not go through any double point of †. Taking the
union of the set of all higher multiple points and all of this simple arcs, we obtain
G.†/. Note that if 3 points are on the same line we do not consider it as a cycle.

In 1994, Jiang and Yau [11] defined the concept of a “nice” arrangement. For †, they
define a graph G.V;E/: The vertices are the multiple points of †, and vertices u; v

are connected by an edge if there exists l 2† such that u; v 2 l . For v 2 V define a
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subgraph G†.v/: The vertex set is v and all his neighbors from † (note this definition
differs from the definition of Fan).

An arrangement † is nice if there is V 0 � V such that E†.v/\E†.u/D∅ for all
u; v 2 V 0 , and if we delete the vertex v and the edges of its subgraph G†.v/ from G ,
for all v 2 V 0 we get a forest (ie a graph without cycles).

Jiang and Yau have proven several properties of nice arrangements:

(a) If A1;A2 are nice arrangements and their lattices are isomorphic, then their
complements C2�A1 and C2�A2 are diffeomorphic. This property naturally
implies that �1.C

2�A1/Š �1.C
2�A2/.

(b) As a consequence of (a), they showed that the presentation of the fundamental
group of the complement can be written explicitly and depends only on the
lattice of the line arrangement.

In 2005, Wang and Yau [20] continued in this direction and proved that the results of
Jiang and Yau hold for a much larger family of arrangements, which they call simple
arrangements.

Falk [4] finds several examples of line arrangements with the same homotopy types
but with different lattices. Fan [6] proved that for up to 6 lines, the fundamental group
of a real line arrangement is determined by the lattice. Garber, Teicher and Vishne [9]
proved this for a real line arrangement with up to 8 lines.

Let G;H be groups whose abelianizations are free abelian groups of finite rank.
Choudary, Dimca and Papadima [2] defined a set ˆ of natural group isomorphisms
�W G!H (which they call a 1–marking). In the case of GD�1.C

2�†/ (where † is
an affine arrangement), � takes the topological structure of C2�† into consideration.
They prove that if A;B are line arrangements and B is nice in the sense of Jiang and
Yau, then the lattices are isomorphic if and only if there is an isomorphism � 2 ˆ

where �W �1.C
2�A/

�
!�1.C

2�B/.

Fan [7] showed that if the graph G.†/ is a forest (ie a graph without cycles), then
the fundamental group is a direct sum of free groups. He also conjectured that the
converse of his theorem is true. In [5] Fan proved that if the fundamental group of
the complement is a direct sum of free groups, then the arrangement is composed of
parallel lines.

In this paper, we prove his conjecture. Our theorem will state that if the fundamental
group is isomorphic to a direct sum of free groups, then the graph has no cycles. We
would like to emphasize that we make no restrictions on our isomorphisms.
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The structure of the paper is as follows. In Section 2, we give basic definitions related
to groups. In Section 3 we give basic definitions related to line arrangements and the
fundamental group of the complement of a line arrangement. In Section 4, we define a
function and a special set induced by it. Section 5 deals with some special properties
of fundamental groups of the complements of line arrangements which are direct sum
of free groups. In Section 6, we prove the main result of the paper.

2 Definitions and notation

This section presents the needed definitions for the paper.

2.1 Lower central series

We start by defining the lower central series of a group G which will be used throughout
the paper.

Definition 2.1 (Commutator group and lower central series) Let G be a group. The
commutator group of G is

G0 DG2 D ŒG;G�D haba�1b�1
j a; b 2Gi

The subgroup G0 is normal in G with an abelian quotient. We can define the lower
central series of G recursively:

G1 DG

G2 D ŒG;G�

G3 D ŒG;G2�
:::

Gn D ŒG;Gn�1�:

Since GnC1 contains the commutators of Gn , we have GnC1 GGn and the quotient
Gn=GnC1 is abelian for all n 2N .

To understand these groups, the following identities are needed.

Proposition 2.2 (Witt–Hall identities [15])

(1) Œa; b�Œb; a�D e .

(2) Œa; bc�D Œa; b�Œa; c�ŒŒc; a�; b�.

(3) Œab; c�D Œa; Œb; c��Œb; c�Œa; c�.
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From the second and third identities we get:

Lemma 2.3 Let G be a group and let fx1; : : : ;xkg be the generators of G . Then

G2=G3 D hŒxi ;xj � j i ¤ j ; 1� i; j � ki:

Proof If Œxy; z� 2G2 , then

Œxy; z�D xyz.xy/�1z�1
D xyzy�1x�1z�1

D xŒy; z�x�1Œx; z�:

Over G3 , we have Œx; Œy; z��D xŒy; z�x�1Œy; z��1 D e) Œy; z�D xŒy; z�x�1 . We get

Œxy; z�D Œy; z�Œx; z� over G3 .

This result means that G2=G3 is finitely generated by the set

fŒxi ;xj � j i ¤ j ; 1� i; j � kg;

where x1; : : : ;xk are the generators of G .

Proposition 2.4 Let G D hx1; : : : ;xk j Ri, where the relations R are commutator
type relations (ie every relation r 2 R can be written as r D Œw1; w2�; w1; w2 2 G ).
Then

G2=G3 D

*
Œxi ;xj �

ˇ̌̌̌
ˇ
Œxk ;xl �D Œxl ;xk �

�1;

all generators commute;
R�

+
where R� is set of the relations R written by means of the generators of G2 , taken
modulo G3 .

The next Definition and theorem will give us a better understanding of G2=G3 and
help us in the future.

Definition 2.5 [10, page 165] Let G be a group generated by x1; : : : ;xr . We
consider formal words or strings b1 � b2 � � � bn where each b is one of the generators.
We also introduce formal commutators cj and weights !.cj / by the rules:

(1) ci D xi ; i D 1; : : : ; r are the commutators of weight 1; ie !.xi/D 1.

(2) If ci and cj are commutators, then ck D Œci ; cj � and !.ck/D !.ci/C!.cj /.

Theorem 2.6 (Basis theorem [10]) If F is the free group with free generators
y1; : : : ;yr and if in a sequence of basic commutators c1; : : : ; ct are those of weights
1; 2; : : : ; n then an arbitrary element f 2F has a unique representation f Dc

e1

1
c

e2

2
� � �c

et

t

mod FnC1 .

The basic commutators of weight n form a basis for the free abelian group Fn=FnC1 .
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2.2 Line arrangements

Definition 2.7 (Line arrangement) A line arrangement †D fL1; : : : ;Lsg �C2 is a
union of copies of C1 .

Remark 2.8 Each time we are mentioning a line arrangement †�C2 , we assume
that there are no parallel lines in †. Pay attention we can project every line arrangement
in CP2 to C2 such that the new arrangement does not contain parallel lines.

Definition 2.9 Let † be a line arrangement. An intersection point in † is called
simple if there are precisely two lines which meet at that point. Otherwise, we call it
multiple.

Definition 2.10 (Cycle) A cycle is a nonempty ordered set of multiple intersection
points fp1; : : : ;pkg, such that any pair of adjacent points pj ;pjC1 and the points
p1;pk are connected by lines of the arrangement. Moreover, if 1� j � k � 2, then
the line connecting pj to pjC1 and the line connecting pjC1 to pjC2 are different.
Also, the line connecting pk�1 to pk is different from the line connecting pk to p1 .

Let † � CP2 be a line arrangement. The invariant ˇ.†/ which is defined in [7],
counts the number of independent cycles in the graph.

Fan [7] showed that ˇ.†/D 0 if and only if G.†/ has no cycles.

In an analogous way for † � C2 , we define ˇ.†/ WD ˇ.† [ L1/ where L1 is
the projective line at infinity of C2 and G.†/ WD G.†[L1/. Note that the new
definitions are well defined.

One of the most important invariants of a line arrangement is the fundamental group of
its complement, denoted by �1.C

2�†/.

The next lemma presents its computation.

Lemma 2.11 (Constructing the fundamental group [1; 18; 19; 3, page 304]) Let
†D fL1; : : : ;Lng �C2 be a line arrangement that is enumerated as in [3].

We associate a generator �i to each line Li with base point as in [3] such that

G D �1.C
2
�†/D h�1; : : : ; �n jRi;

where R is a set of relations generated as follows.

Every intersection point of lines Li1
; : : : ;Lim

creates a set of relations

�
x1

i1
�

x2

i2
� � ��

xm

im
D �

xm

im
�

x1

i1
� � ��

xm�1

im�1
D �

x2

i2
� � ��

xm

im
�

x1

i1

where xi 2G and �xi

i D xi
�1�ixi .
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It is easy to see that this set is equivalent to the following set:

Œ�
xj

ij
; �

x1

i1
� � ��

xm

im
�D e; 1� j �m:

We get a similar presentation for a real arrangement by using the Moishezon–Teicher
algorithm [16] and the van Kampen Theorem [13].

Notation 2.12 We denote by P the set of intersection points. For p 2 P , we denote
by �.p/ the set of generators attached to the lines passing through the point p and by
�.p/c the set of generators attached to the lines not passing through the point p .

3 Decomposition of G2=G3

Let G be a group. The abelianization of G , denoted by xG , is xG DG=G2 . If g 2G ,
we denote xg D g �G2 .

Remark 3.1 Let † 2 C2 be a line arrangement, and let p 2 P . Then, G D

�1.C
2�†/D h�.p/; �.p/c jRi,

G=G2 D
xG D Ab.G/D h�.p/; �.p/c jR; Œx;y�D e;x;y 2 �.p/[�.p/ci:

This Lemma is an immediate implementation of the last section.

Lemma 3.2 (An implementation for line arrangements) Let † be a line arrangement,
then the abelian group G2=G3 can be written as

G2=G3 D

*
Œ�i ; �j �

ˇ̌̌̌
ˇ
Œ�i ; �j �D Œ�j ; �i �

�1;

Œ�i �; �j �Œ�k ; �l �D Œ�k ; �l �Œ�i ; �j �;Q
�x2�.p/ Œ�x; �y �; p 2 P; �y 2 �.p/

+
:

Proof A simple implementation of Proposition 2.4 on the presentation of G from
Lemma 2.11.

Remark 3.3 We can see that if �1 and �2 are associated with lines meeting in one
point and �3 and �4 are associated with lines meeting in a different point, there is no
relation combining Œ�1; �2� and Œ�3; �4�. Therefore,

G2=G3 D

M
p2P

Cp
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where

CpD

*
Œ�i ;�j �;�i ;�j2�.p/

ˇ̌̌̌
ˇ
Œ�i ;�j �D Œ�j ;�i �

�1;

Œ�i ;�j �Œ�k ;�l �D Œ�k ;�l �Œ�i ;�j �;�i ;�j ;�k ;�l2�.p/;Q
�x2�.p/ Œ�x;�y �;�y 2 �.p/

+
:

We can see that the generators of the different groups Cp in the direct sum are disjoint.
Consequently, let x 2G2=G3 , then x D

L
p2P cp , where cp 2 Cp .

For each r 2 P , consider the projection

�r W G2=G3! Cr

�r .x/D �r

�M
p2P

cp

�
D cr :given by

If �i 2 �.r/
c , then for all �j ; �r .Œ�i ; �j �/D �r .Œ�j ; �i �/D e . If �i ; �j 2 �.r/, then

�r .Œ�i ; �j �/D Œ�i ; �j �.

4 The stabilizer of an intersection point

Let G D �1.C
2�†/. Define

f W G=G2 �G=G2 �!G2=G3

f .xa; xb/D Œa; b�=G3:by

This function is well-defined: If Sa1 D Sa2 and Sb1 D
Sb2 , then a2 D a1x where x 2G2 ,

b2 D b1y where y 2G2 . Then, by Proposition 2.2,

Œa2; b2�D Œa1x; b1y�D Œa1x; b1�Œa1x;y�D Œa1x; b1�D Œa1; b1�Œx; b1�D Œa1; b1�;

so f .Sa1; Sb1/D f .Sa2; Sb2/.

The following lemma presents some properties of f :

Lemma 4.1 Let a; b; c 2G=G2 . Then:

(1) f .a � b; c/D f .a; c/ �f .b; c/.

(2) f .a; b � c/D f .a; b/ �f .a; c/.

(3) f .an; bm/D f .a; b/nm for m; n 2 Z.

(4) f .b; a/D .f .a; b//�1 .
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Proof (1) Let A;B;C 2G such that xAD a, xB D b , and xC D c . This means that
AB D ab , so by definition, f .ab; c/D ŒAB;C �=G3 D .ŒA;C �ŒB;C �/=G3 which by
definition is equal to f .a; c/f .b; c/.

(2) The proof is the same as .1/.

(3) Simple induction on .1/ and .2/.

(4) Let A;B 2G such that xAD a, xB D b . By definition,

f .b; a/D ŒB;A�=G3 D .ŒA;B�=G3/
�1
D .f .a; b//�1:

Now for any xx 2G=G2 we define

S.xx/D fy 2G=G2 j f .xy; xx/D eG3
g:

By Lemma 4.1, S.xx/ is a subgroup of G=G2 .

From now on, we talk about a specific intersection point Q. The lines passing through
this point are fLi1

; : : : ;Lim
g. Define M D�

x1

i1
�

x2

i2
� � ��

xm

im
. Then, as noted in Lemma

2.11, the relations induced from the point Q can be translated to Œ�x1

i1
;M � D � � � D

Œ�
xm

im
;M �D e .

Let SM D �i1
��i2
� � ��im

.

Since for each j , �ij D �
xj

ij
we get that

(1) f .�ij ;
SM /D Œ�

xj

ij
;M �=G3 D eG3

:

Theorem 4.2 Let Q 2 P be an intersection point. Let �.Q/D f�i1
; : : : ; �im

g and
M D �

x1

i1
� � ��

xm

im
. Then

S. SM /D

�
�.Q/[

� \
�2�.Q/

S.x�/

��
:

We call S. SM / the stabilizer of the intersection point Q.

Proof We start by proving that

S. SM /�

�
�.Q/[

� \
�2�.Q/

S.x�/

��
:

�.Q/ � S. SM /: We have already shown that if � 2 �.Q/, then f .x�; SM / D xe and
hence f . SM ; x�/D f ..x�; SM //�1 D xe .
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T
�2�.Q/ S.x�/� S. SM /: If x 2

T
�2�.Q/ S.x�/, then for any � 2 �.Q/, we have

f .x�;x/De . This means that also the product
Q

�2�.Q/ f .
x�;x/Dxe , so by Lemma 4.1,

xe D
Y

�2�.Q/

f .x�;x/D f

�� Y
�2�.Q/

x�

�
;x

�
D f . SM ;x/:

Therefore x 2 S. SM /.

Since S. SM / is a subgroup and we have shown that it contains the union of �.Q/ andT
�2�.Q/ S.x�/, it clearly contains the subgroup generated by the union.

To complete the proof, we prove the opposite inclusion:

S. SM /�

�
�.Q/[

� \
�2�.Q/

S.x�/

� �
:

Let xx 2 S. SM / � G=G2 D h�.Q/; �.Q/
c
j xRi. Then xx can be written as xx D xz � xy

where xz 2 h�.Q/i; xy 2 h�.Q/ci. We will prove xy 2
T

�2�.Q/ S.x�/.

Since z�1 2 h�.Q/i � S. SM /, so xy D z�1 � xz � xy D z�1xx . Hence we get xy 2 S. SM /.

Let lx be a line passing through Q and �x be the generator associated with it. Recall
that xy 2 S.x�/ if f .x�; xy/D xe . We need to prove that f .�x; xy/D xe in G2=G3 . From
Remark 3.3 we know that G2=G3 is a direct sum of groups

G2=G3 D

M
p2P

Cp;

so it remains to prove that f .Œ�x; xy�/D xe in Cp , for all p 2 P . Let p 2 P . We have
to show that the projection of the coset Œ�x; xy�=G3 on Cp is trivial.

We separate our proof into three cases.

Case 1 p DQ.

Since xy 2 h�.Q/ci D h�.p/ci then the projection is trivial by the definition of Cp .

Case 2 lx does not pass through p .

In this case, �x 2 h�.p/ci and therefore the projection is trivial, by the definition
of Cp .

Case 3 p ¤Q and lx does pass through p .

By definition of S, f .
Q

�2�.Q/
x�; xy/D xe . This means by the properties of f (Lemma

4.1) that
Q

�2�.Q/ f .
x�; xy/D xe . Since lx passes through p , all the other lines passing
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through Q do not cross p . So if we project any f .�z; xy/ where �z is any other
generator from �.Q/, we get the identity. So in Cp ,

xe D
Y

�2�.Q/

f .x�; xy/D f .�x; xy/;

and thus f .�x; xy/D xe .

5 Fundamental groups which are semidirect product

Theorem 5.1 Let GD
�Ln

iD1 Ai

�
˚Zl where Ai are free groups and let  W G�!G

be a projection where im. /D hy1; : : : ;yki Š Fk . Then, there exists r; 1 � r � n,
such that for all g 2 G; prr .g/ D e implies that  .g/ D e and  D  ı prr , where
prr W G!G is the projection onto the subgroup of G naturally isomorphic to Ar .

Proof Let us denote the Zl component as A0 . Since  is a projection,  .y1/D y1

and  .y2/D y2 . Then  .Œy1;y2�/D Œy1;y2�¤ e . Note

Œy1;y2�D

nM
iD1

pri.Œy1;y2�/C pr0.Œy1;y2�/:

Since A0 is abelian, pr0.Œy1;y2�/D e , and therefore

Œy1;y2�D

nM
iD1

pri.Œy1;y2�/:

Since  is a homomorphism,

 .Œy1;y2�/D  .pr1.Œy1;y2�/˚ � � �˚ prn.Œy1;y2�//

D  .pr1.Œy1;y2�//˚ � � �˚ .prn.Œy1;y2�//¤ e:

This means that there is r; 1 � r � n, such that  .prr Œy1;y2�/¤ e , so if we denote
a WD prr .y1/ and b WD prr .y2/ we get Œ .a/;  .b/�¤ e .

Since a; b 2Ar , if x 2Aj where j ¤ r , then Œx; a�D Œx; b�D e . We get that

Œ .x/;  .a/�D Œ .x/;  .b/�D e:

So  .x/ commutes with two noncommutative elements in a free group and hence
 .x/ D e , for all x 2 Aj , j ¤ r . This means that if g 2 G and prr .g/ D e , then
 .g/D e .
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For each g 2 G , g D v1 ˚ � � � ˚ vn ˚ w; vj 2 Aj ; w 2 Zl ; we have that  .g/ D
 .v1˚� � �˚vn˚w/D .v1/˚� � �˚ .vn/˚ .w/D .vr /D .prr .g//. Therefore
 D  ı prr .

For proving the next result, we use the following theorem from Lyndon and Schupp [14]:

Theorem 5.2 Let � be an epimorphism from a finitely generated free group F to a
free group G . Then F has a basis ZDZ1[Z2 such that � maps hZ1i isomorphically
onto G and maps hZ2i to e .

Corollary 5.3 Let GD
�Ln

iD1 Ai

�
˚Zl where Ai are free groups and let  W G�!G

be a projection where im. /D hy1; : : : ;yki Š Fk . For the same r as in Theorem 5.1,
we can find elements fz1; : : : ; zm jm� 0g �Ar such that

fprr .y1/; : : : ; prr .yk/; z1; : : : ; zm jm� 0g

are generators of Ar and  .zi/D e .

Proof From Theorem 5.1 and the fact that  is a projection ( ı D ), we get that
prr ı ı prr ı D prr ı . Therefore, prr ı is a projection.

Now since .prr ı /.Ar /�Ar ,

.prr ı /jAr
ı .prr ı /jAr

D ..prr ı / ı .prr ı //jAr
D .prr ı /jAr

:

By assumption,

(�) im. /D hy1; : : : ;yki is a free group.

Now we claim fprr .y1/; : : : ; prr .yk/g are the generators of free group Fk . If not, there
is a nontrivial word wDW .y1; : : : ;yk/ so that prr.w/DW .prr .y1/; : : : ; prr .yk//De .
Therefore

. ı prr /.w/D  .prr .w//D  .e/D e:

By Theorem 5.1,  D  ı prr , therefore  .w/D . ı prr /.w/D e which means that
w D e , a contradiction to (�).

In conclusion, we get that .prrı /jAr
W Ar!Ar is a projection such that im.prr ı /D

hprr .y1/; : : : ; prr .yk/i Š Fk (prr .y1/; : : : ; prr .yk/ are the generators of Fk ).

By Theorem 5.2, Ai has a basis B D B1 [ B2 such that im.prr ı  / D hB1i

and .prr ı  /.B2/ D e . Since prr ı  is a projection, we can assume that B1 D

hprr .y1/; : : : ; prr .yk/i. Let B2 D fz1; : : : ; zm j prr ı .zi/ D eg, which means that
. ı prr ı /.zi/D e . As we proved earlier,  ı prr D  , so . ı /.zi/D e . But
 ı D  , therefore  .zi/D e .
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This implies that Ar has generators

fprr .y1/; : : : ; prr .yk/; z1; : : : ; zmg

which satisfy the needed properties.

Without loss of generality, we temporarily change to a local numeration.

Let G D �1.C
2�†/D h�1; : : : ; �n; �nC1; : : : ; �l jRi, where �.A/D f�1; : : : ; �ng

are the generators of the lines which participate in a specific multiple intersection point
called A.

Definition 5.4 [12] Let G be a group with a given presentation G D hX j Ri.
A Tietze transformation Ti .1� i � 4/ is a transformation of hX jRi to a presentation
G D hX 0 jR0i of one of the following types:

(T1 ) If r is a word in hX i and r D e is a relation that holds in G , then let X 0 D

X;R0 DR[frg:

(T2 ) If r 2R is such that the relation r D e holds in the group hX jR� ri, then let
X 0 DX;R0 DR n frg.

(T3 ) If w is a word in hX i and z …X , put X 0 DX [fzg;R0 DR[fwz�1g.

(T4 ) If z 2 X and w is a word in the other elements of X such that wz�1 2 R,
then substitute w for z in every other element of R to get zR and take X 0 D

X �fzg;R0 D zR.

Before introducing the notion of a braid monodromy [16], we have to make some
constructions. From now, we will work in C2 . Let E (resp. D ) be a closed disk
on x–axis (resp. y–axis), and let C be a part of an algebraic curve in C2 located
in E �D . Let �1W E �D! E and �2W E �D! D be the canonical projections,
and let � D �1jC W C ! E . Assume � is a proper map, and deg� D n. Let N D

fx 2 E j #��1.x/ < ng, and assume N \ @E D ∅. Now choose M 2 @E and let
K D K.M / D ��1.M /. By the assumption that deg� D n .) #K D n/, we can
write K D fa1; a2; : : : ; ang. Under these constructions, from each loop in E �N , we
can define a braid in BnŒM �D;K� in the following way:

(1) Since deg� D n, we can lift any loop in E �N with a base point M to a
system of n paths in .E �N /�D which start and finish at fa1; a2; : : : ; ang.

(2) Project this system into D (by �2 ), to get n paths in D which start and end at
the image of K in D (under �2 ). These paths actually form a motion.

(3) Induce a braid from this motion; see Garber [8].

Algebraic & Geometric Topology, Volume 10 (2010)



Characterization of line arrangements 1297

To conclude, we can match a braid to each loop. So we get a map ˛W �1.E �N;M /!

BnŒM �D;K�, which is also a group homomorphism. This map is called the braid
monodromy of C with respect to E �D; �1;M [16; 8].

The following remark demonstrates the necessity of the condition that there are no
parallel lines in the affine plane:

Remark 5.5 Let † be a line arrangement with no parallel line in the affine plane. Let
�1; : : : ; �l be the generators of �1.C

2�†/. Then

�1 � � ��l 2Z.�1.C
2
�†//:

Proof Let ˛W �1.C � †/ ! Bn be the braid monodromy of †. By Remark 4.7
in [3], the closed braid determined by the product ˛.�1/ � � �˛.�l/ is actually a link
of the curve at infinity. In a generic curve, we have ˛.�1/ � � �˛.�l/D�

2 , where �
is the braid which rotates by 180ı counterclockwise all the strands together. One of
the presentations of the fundamental group is h�1; : : : ; �l j ˛.si/.�j /D �j ; 8i; 8j i,
where si is the loop created in the x–axis as a result of the projection of the line
arrangement on the plane [13]. Therefore, ˛.si/ is a braid acting on the generators
of the fundamental group. As a result ˛.s1 � � � sn/.�j /D �j , for all j , which means
�2.�j / D �j , for all j . It is known that �2.x/ D x�1����l and thus �j

�1����l D �j .
Hence, �1 � � ��l 2Z.�1.C

2�†//.

Let G D �1.C
2�†/D h�1; : : : �n; �nC1; : : : ; �l jRi, where �.A/D f�1; : : : ; �ng

are the generators of the lines which pass through in a specific multiple intersection
point called A.

Let us recall that the lines passing through Q are fLi1
; : : : ;Lim

g. Recall also M D

�
x1

i1
�

x2

i2
� � ��

xm

im
.

Theorem 5.6 With the same assumptions of Theorem 5.1 and Remark 5.5, let H WD

h�i1
; : : : ; �im�1

i. Let N be the normal closure of f�.Q/c ;M g. Let f1W H ! G be
the natural embedding and f2W G!G=N the natural homomorphism. Then:

(1) G=N Š Fm�1 which is generated by f2.�ij /, 1� j �m� 1.

(2) H Š Fm�1 .

(3) G DN Ì Fm�1 .

(4) There exists a projection hW G ! G .h2 D h/, such that im.h/ D H and
ker.h/DN .
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Proof (1) We can present G=N Dh�.Q/; �.Q/c jR;M; �.Q/ci. Denote �.Q/cD
fz1; : : : ; zkg. By applying iteratively Tietze’s transformation (T4 ) for every zi 2

�.Q/c , we obtain G=N D h�.Q/ j yR; �M i, where yR; �M are obtained from R;M by
substituting e for zi , 1� i � k , in every other element of R and M , respectively.

Let v 2P with v¤Q be an intersection point, and let r be the relations induced by v .

Now we can get the following:

(a) If there is a line L that goes through both points v and Q and the generator
attached to L is �ij for some j , 1 � j � m, then the relations r become
Œ�x

ij
; 1; : : : ; 1� for some x . These relations are trivial.

(b) If the points v and Q do not share any line, then the relations r become Œ1; : : : ; 1�,
which are also trivial.

Let us denote by �W the word W after rewriting. Due to the above observations, using
the presentation G=N D h�.Q/ j zR; �M i, then

G=N D h�i1
; : : : ; �im

j Œ�
fxi1

i1
; : : : ; �

exim

im
�; �M i:

This is equal to

h�i1
; : : : ; �im

j Œ�
fxi1

i1
; �M �; : : : ; Œ�

exim

im
; �M �; �M i D Fm�1:

(2) Assume otherwise. Then there exists a nontrivial word w.�i1
; : : : ; �im�1

/D e .
So applying f2 , we get a nontrivial word w.f2.�i1

/; : : : ; f2.�im�1
// which is not

possible by (1).

(3) From the first paragraph, we get that f2 ıf1 is a surjective function from Fm�1

to Fm�1 and therefore it is an isomorphism.

(4) Derived directly from (2) and (3).

By the last theorem: Let Q 2 P , �.Q/D f�i1
; : : : ; �im

g. Then there is a projection
hW G ! G such that im.h/ D h�i1

; : : : ; �im
i and ker.h/ is the normal closure of

h�.Q/c ;M i.

By Theorem 5.1 and Corollary 5.3 we get that there is r , 1 � r � n, such that
Ar D fw1; : : : ; wn�1; z1; : : : ; zk j k � 0g and h D h ı prr , prr ı h is a projection,
�i D h.wi/; h.zi/D e; bi D �iwi

�1; h.bi/D e (note that h has the role of  ).

Claim 5.7 Ar D prxr .S. SM //.
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Proof We start by proving that prr .M / D e : for all x;y and j1 ¤ j2 . Since �ij1

and �ij2
are different generators of the free group im.h/, h.Œ�x

ij1

�y
ij2

�/¤ e . We know
that hD h ı prr , so we get

.h ı prr /.Œ�
x
ij1
�y

ij2
�/D h.Œ�x

ij1
�y

ij2
�/¤ e;

so prr .Œ�
x
ij1

�y
ij2

�/¤ e . Hence, for xD xj1
;y D xj2

, prr .Œ�
xj1
ij1

; �xj2
ij2

�/¤ e . We know
that Œ�xj1

ij1

;M �D e , so the elements prr .�
xj
ij
/; j D 1; 2, commute with M but do not

commute with each other in the free group Ar , therefore prr .M /D e .

The next step is to prove that Ar � S. SM /. Let a 2 Ar . Then there exists a� 2 Ar

such that a� D a. Since prr .M / D e and a� 2 Ar , by the properties of direct sum
Œa�;M � D e . Therefore Œa�;M �=G3 D eG3

. By definition f .a; SM / D eG3
which

implies that a 2 S. SM /.

Hence, we have Ar � prxr .S. SM //. The opposite inclusion is trivial by definition, and
thus Ar D prxr .S. SM //.

By Theorem 4.2, S. SM /D
˝
f�i1

; : : : ; �im
g[

˚Tm
kD1 S.�ik

/
	˛

, therefore

Ar D prxr

��
f�i1

; : : : ; �im
g[

m\
kD1

S.�ik
/

��

D

�
fprxr .�i1

/; : : : ; prxr .�im
/g[ prxr

� m\
kD1

S.�ik
/

��
:

We claim that the right part of this generating set is trivial:

Claim 5.8 prxr
�Tm

kD1 S.�ik
/
�
D feg.

Proof It is known that for any two sets A;B and a function F that F.A\B/ �

F.A/\F.B/. Therefore prxr
�Tm

kD1 S.�ik
/
�
�
Tm

kD1

�
prxr .S.�ik

//
�
.

As we mentioned Ar D hprr .�1/; : : : ; prr .�m/; z1; : : : ; zq j q � 0i.

In other words, Ar D hˇ1; : : : ; ˇmCqi where

ˇk D

(
prr .�ik

/ k 6 m;

zk�m mC 1 6 k 6 mC q:

Let xg 2 prxr .S.�ik
//�Ar , therefore xg D ˇ1

t1 � � �ˇqCm
tmCq . Without loss of gener-

ality, we can choose that g D ˇ
t1

1
� � �ˇ

tmCq

mCq . By Theorem 5.1 we know that

G DA1˚ � � �˚Ar ˚ � � �˚An˚Z`:
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We define D DA1˚ � � �˚
cAr ˚ � � �˚An˚Z` , then G DAr

L
D .

Hence, there exists g2 2D such that xg˚g2 2 S.�ik
/.

Let 'W G!D be the natural projection, and define �k WD '.�ik
/. Hence, it implies

that �ik
D prr .�ik

/˚ �k .

eG3
D f .�ik

;g˚g2/D f .prr .�ik
/˚ �k ;g˚g2/

D f .prr .�ik
/; xg/f .prr .�ik

/;g2/f .�k ; xg/f .�k ;g2/:

By the definition of f , this implies that

Œprr .�ik
/; xg�Œprr .�ik

/;g2�Œ�k ; xg�Œ�k ;g2� 2G3:

Since prr .�ik
/;g2Ar , and g2; �k 2D , then Œprr .�ik

/;g2�D Œ�k ;g�DeG3
. Therefore

Œprr .�ik
/;g�Œ�k ;g2� 2 G3 D .Ar /3 ˚D3 , which means Œprr .�ik

/;g� 2 .Ar /3 and
Œ�k ;g2� 2D3 .

The fact that .Ar /2=.Ar /3 D hŒˇi ; ǰ � j 1 � i < j �mC qi is derived directly from
the definition of Ar . Hence, .Ar /3 3 Œprr .�ik

/;g�D Œˇk ;g�D Œˇk ; ˇ
t1

1
� � �ˇ

tmCq

mCq �D

Œˇk ; ˇ1�
t1 � � � Œˇk ; ˇk �

tk � � � Œˇk ; ˇmCq �
tmCq .

Note that Œˇk ; ˇk � D e . By [10], fŒˇk ; ǰ � j j ¤ kg are generators (or inverses) of
.Ar /2=.Ar /3 which is a free abelian group. Since every generator appears at most
once, we get tj D 0 for all j ¤ k .

In conclusion, xg D ˇk
tk 2 hˇki D hprr .�ik

/i. So xg 2 hprxr .�ik
/i.

To summarize, we have shown that if xg 2 hprxr
�
S.�ik

/
�
i then xg 2 hprxr

�
�ik

�
i. There-

fore, hprxr
�
S.�ik

/
�
i � hprxr .�ik

/i.

In conclusion,
Tm

kD1hprxr .S.�ik
//i �

Tm
kD1hprxr .�ik

/i D e , so prxr
�Tm

kD1 S.�ik
/
�
D

feg as claimed.

Since �i1
� � ��im

D e , Ar D h�i1
; : : : ; �im�1

i. As a result, Ar D prxr h�i1
; : : : ; �im�1

i.
Consequently, rank.Ar /�m� 1.

We know that Ar D hw1; : : : ; wm�1; z1; : : : ; zt j t � 0i. Combining these two facts to-
gether and by Theorem 5.2, we get Ar D hw1; : : : ; wm�1i, where yi D .prr ı h/.�

xj

ij
/.

From Theorem 5.1, h ı prr D h. Since h is a projection h2 D h. Hence, we get

prr ı h ı prr ı hD prr ı h ı hD prr ı h;

which means that prr ı h is a projection too. Recall that

Ar D h.prr ı h/.�i1
/; : : : ; .prr ı h/.�im�1

/i:
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Therefore .prr ı h/.wj /D .prr ı h/ ı .prr ı h/.�ij /D .prr ı h/.�ij /D wj . Hence we
get that .prr ı h/.Ar /DAr .

Now if li is a line that does not pass through the point Q and �i is the generator of li ,
then h.�i/D e and therefore .prr ı h/.�i/D prr .e/D e .

From this investigation, we get the following theorem.

Theorem 5.9 Let † be a line arrangement and �1.C
2�†/' .

Ln
iD1 Ai/˚Zl where

Ai is a free group. Then for any multiple point Q in the arrangement with k lines,
namely, fl1; : : : ; lkg, there exists r; 1� r � n,and a projection onto Ar , 'QW G!G

such that Ar D h'Q.�1/; : : : ; 'Q.�k/i Š Fk�1 . If lj is a line which does not pass
through the point, then 'Q.�j /D e .

Moreover, if p1; : : : ;pm are the multiple points of † and ni is the number of lines
pass through the point pi , then G Š

�Lm
iD1 Ci

�
˚B , where Ci Š Fni�1 . If l is a

line which does not pass through pi and let � be its corresponding generator, then
pri.�/D e ( where pri is the projection onto Ci ).

6 Main theorems

Theorem 6.1 Let †�C2 be a line arrangement which has no pair of parallel lines.
Then if

�1.C
2
�†/D

rM
iD1

Ai ˚Zl ;

where Ai are free groups. Then ˇ.†/D 0.

Proof Assume by negation that ˇ.†/¤ 0 which means that there is at least one cycle
in the graph of †. Let us pick a minimal cycle in the following sense. The cycle
contains r points, namely fp1; : : : ;pr g and pi is connected in the cycle only to pi�1

and piC1 (the indices are taken modulo r ). In other words, a cycle with no subcycles.

By Theorem 5.9, we can write G D .
Lr

iD1 Ci/ ˚ B1 where B1 is not necessar-
ily abelian. If l is a line that does not pass through the points in the cycle and
let � be its corresponding generator, then pri.�/ D e; 1 � i � r . Define N D

h�X1
; : : : ; �Xt

; �1 � � ��ni, where �X1
; : : : ; �Xt

are the generators of lines that do not
participate in an intersection point pi ; 1 � i � r . Denote Z D �1 � � ��n . Let
H WDG=N .

Let ni be the number of lines passing through pi .
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On one hand, since we have b WD
Pr

iD1 .ni � 1/ lines participating in the cycle, then
if we denote by �1; : : : ; �b the generators associated with the lines participating in the
cycle, then H Š h�1; : : : ; �b j

zR; zZi where zR is the relations which are derived from
the original relations. Therefore, it is easy to see that rank. xH /� b� 1.

On the other hand, for 1� i � r and 1� j � t , pri.�Xj
/D e and also �1 � � ��n 2Z.G/

so pri.�1 � � ��n/ D e . Thus pri.N / D e and hence Ci=N Š Ci . This implies that
H DG=N Š

�Lr
iD1 Ci ˚B1

�
=N . Since CiŠFni�1 and Ci Š Zni�1 , we have xH D

.
Lr

iD1 Ci/˚B1=N which implies that xH D .
Lr

iD1 Zni�1/˚B1=N Š Zb˚B1=N .
Thus rank. xH /� b , a contradiction.

We are now ready to prove the converse of Fan’s theorem.

Theorem 6.2 Let †�CP2 be a line arrangement. If

�1.CP2
�†/D

rM
iD1

Ai ˚Zl ;

where Ai are free groups, then ˇ.†/D 0.

Proof Suppose that † � CP2 is an arrangement of complex projective lines such
that �1.CP2

n†/ is isomorphic to a direct product of free groups. Let L0 �CP2 be
a complex projective line which is in general position to †. Then L0 and † intersect
at double points. Choose an arbitrary complex projective line of † and denote this line
by L1 . Note that C2 ŠCP2

nL0 ŠCP2
nL1 . By applying the product theorem of

Oka and Sakamoto [17], we have

�1.CP2
n .†[L0//D �1..CP2

nL1/ n ..† nL1/[L0//

Š �1..CP2
nL1/ n .† nL1//˚�1..CP2

nL1/ nL0/

Š �1.CP2
n†/˚Z:

This calculation shows that �1.CP2
n .†[L0// is a product of free group. Note that

�1.CP2
n .†[L0//D �1..CP2

nL0/ n .† nL0//:

Note that †nL0 is a union of complex lines in the complex plane CP2
nL0 such that

no two lines of this arrangement are parallel.

By Theorem 6.1 ˇ.† nL0/D 0, therefore ˇ.†/D ˇ.† nL0/D 0.
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