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A stable range description of the space of link maps

THOMAS G GOODWILLIE
BRIAN A MUNSON

We study the space Link(P, Q; N) of link maps: maps from P U Q to N such
that the images of P and Q are disjoint. We identify the homotopy fiber of the
inclusion Link(P, Q; N) — Map(P, N) x Map(Q, N) in a stable range, showing
that it has a (2(n— p—q)—3)—connected map to the infinite loopspace of a certain
Thom spectrum.

57Q45; 58D15, 57R99

1 Introduction

Let N be a smooth manifold and let P and Q be smooth compact manifolds. A
(smooth) link map of P and Q in N isapair (f: P— N, g: Q — N) of smooth maps
such that f(P) is disjoint from g(Q). The set of link maps, denoted by Link(P, Q; N),
is an open subspace of Map(P, N) x Map(Q, N) =Map(PU Q,N).

For brevity we will write M for Map(P, N)xMap(Q, N) and denote the complement
of the set of link maps in M by 3. We prove that a certain “linking number” map

¢: hofiber( f, ¢,y (M —B — M) — QQiN_(TPGBTQ) holim( P g NE 0)

is (2(n—p—q)—3)—connected, where p, ¢ and n are the dimensions of the manifolds.
The map was defined by the second author in [5], although the version we reference
below is of a more homotopy-theoretic flavor, and is given by Klein and Williams [3].
Its domain is the homotopy fiber of the inclusion M — B — M with respect to any
point ( f1,g1) € M —B. Its codomain is the infinite loopspace associated to the Thom
spectrum of a virtual vector bundle. Both of these spaces are (n— p—g—2)—connected.
In the case when p 4+ ¢ =n —1 it was shown in [5] that the effect of the map £ on m
can be interpreted as a generalized linking number.

Functor calculus (the manifold version developed by Weiss [6] and the first author
and Weiss [2]) offers one point of view on link maps. Consider the functor (U, V)
Link(U, V; N) whose domain is the poset O(P U Q) = O(P)x O(Q) of open subsets
of PU Q. Its best linear approximation is Map(U, N) x Map(V, N). Our result can
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1306 Thomas G Goodwillie and Brian A Munson

be interpreted as a statement about a quadratic approximation to the same functor, but
we will not pursue this here. This work overlaps the recent work of Klein and Williams;
in particular, some of the material in Section 3 also appears in [3].

Our main result is:

Theorem 1.1 The map
A: S hofiber(M — B — M) — QTN =TPETD) polim(p — N « Q)

adjoint to £ is (2(n—p—q)—1)—connected.

The fact that £ is (2(n— p—q)—3)—connected then follows immediately by the Freuden-
thal Theorem, since the domain of ¢ is (n—p—g—2)—connected. Note that the connec-
tivity claimed for A is negative if p + ¢ > n, so it is no loss to assume p +¢q <n.

1.1 Conventions

A space X is k—connected if for every j with —1 < j <k every map S/ — X can
be extended to a map D/ ! — X . In other words, (—1)—connected means nonempty
and if k£ > 0 then k—connected means that there is exactly one path-component and
that the homotopy groups vanish through dimension k. A map is k—connected if each
of its homotopy fibers is (k—1)—connected. A (weak) equivalence is an oco—connected
map.

We write QX = Q®X®X if X isabased space. If X is unbased, then X} means X
with a disjoint basepoint added and QX means Q(X4). For a vector bundle £ over
a space X, the unit disk bundle and the unit sphere bundle are D(X;§) and S(X;§).
The Thom space X¢ is the quotient D(X;&)/S(X; &), or equivalently the homotopy
cofiber of the projection S(X;&) — X . If £ and n are two vector bundles on X, then
by choosing a vector bundle monomorphism 7 — €’ to a trivial bundle we can define
Qi_"X = QI QXE®€'/n_This is essentially independent of the choice of i > 0 and
vector bundle monomorphism, in the sense that for large 7 the weak homotopy type of
this space is independent of those choices.

2 Sketch of the proof of Theorem 1.1

To prove Theorem 1.1 we will use the diagram (1) below and obtain the connectivity
of A from the connectivities of all the other maps. For this we must introduce another
closed set V C B. Recall that a point (f,g) € M belongs to B if the statement
f(x) =z = g(») holds for some pair (x, y) € P x Q and some point z € N. The
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closed set B has codimension n — p — ¢ in M in some sense. Inside this space B of
“bad” maps is a set V of “very bad” maps, having codimension 2(n — p —¢) in M.
A point (f, g) isin V if either the statement f(x) = z = g(») holds for more than
one choice of (x, y,z) or else it holds for one such choice in such a way that the
associated map of tangent spaces Tx P @ T, Q — T, N is not injective. The set B—V
may be regarded as a submanifold of M. It has maps to P, Q and N given by x, y
and z. Pulling back tangent bundles via these maps, we obtain vector bundles on 5—V,
which we will denote simply by TP, TQ and TN . There is also a monomorphism
TP®TQ — TN, and its cokernel TN /(T P & T Q) may be thought of as the normal
bundle of 5—V in M.

The next result immediately implies Theorem 1.1.

Theorem 2.1 In the homotopy commutative diagram below, the maps F and H are
equivalences, the maps G,C and D are (2(n—p—q)—1)—connected, and the map E
is (3(n—p—q)—2)—connected.

S hofiber(M — B — M) —2— @TN=TPOTO hojim(p N « ©)

D
G QiN_(TPQBTQ) hofiber(B—V — M)

(1) "
> hofiber(M — B — M —V) O hofiber(B —V — M)TN/(TPSTQ)

F c

hofiber(B —V — M — V)TN/(TP&TQ) £ hofiber(B —V — M)TN/(TPSTQ)

We now briefly define the maps in the diagram and explain about their connectivities.
Steps that are sketchy here will be filled in the following sections. Let c =n— p —gq.

The equivalence F is essentially an instance of the following general fact. If ¥ is a
smooth submanifold of X" and also a closed subset, then the suspension of the homotopy
fiber of the inclusion X —Y — X is equivalent to the Thom space, over the homotopy
fiber of Y — X, of the normal bundle of Y in X . This general fact will be proved,
and adapted to the present function-space setting, in Section 4.

The map G is an inclusion map. Since V has codimension 2¢ in M, the inclusion
M=V — M is (2c—1)—connected. (This will be worked out in detail in Section 3.)
Therefore the map of homotopy fibers is (2c—2)—connected and the map G of suspen-
sions is (2¢—1)—connected.
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The map E is a map of Thom spaces. For a k—connected map Z — W of spaces and a
vector bundle £ on W with fiber dimension d , the associated map Z& — W¢ is (k+d)—
connected. In our case d = ¢ and k = 2¢—2; the inclusion of hofiber(B—V — M —Y)))
into hofiber(B—Y — M) is (2c¢—2)—connected, again because the inclusion of M —V
into M is (2¢—1)—connected.

The map C is the canonical map Z — QZ, where the space Z is (c—1)—connected,
being the Thom space of a vector bundle of rank ¢. By the Freudenthal Theorem, the
map is (2c—1)—connected.

The equivalence H is simply a matter of rewriting the Thom spectrum of a virtual
vector bundle & — 7 as the suspension spectrum of the Thom space of £/1 when 5 is a
subbundle of &.

The map D arises from a (¢—1)—connected map from hofiber(B —V — M) to
holim(P — N <« Q). To explain further, we need the space B of all (f,g),x,y,2) €
Mx PxQxN suchthat f(x) =z = g(y). Projection to M glves a map from B
onto B. Let V C B be the preimage of V. The projection B-—V > B-Vis
an isomorphism. The inclusion B —V — B is (c—1)—connected for reasons of
codimension (again, the details are in Section 3), and therefore the induced map
hofiber(B — V — M) — hofiber(B — M) ~ holim(P — N < Q) is also (c—1)—
connected. There are vector bundles 7P, TQ and TN on B pulling back to their
namesakes on B—V. (The monomorphism df @dg: TP ®TQ — TN is not available
on the holim(P — N <« Q) side, which is why we switched from Thom spaces to
Thom spectra).

We end this section with a brief account of the commutativity of diagram (1). First
we need to define the map A. As mentioned in Section 1, A is adjoint to a map
¢: hofiber(, g,y (M — B — M) » QQINTFPETD olim(p — N «— ©), which is
a composite described below (also see Klein and Williams [3, Section 9]). Let ( f¢, g7) €
hofiber( 7, ¢,)(M — B — M). The map M — Map(P xQ, N xN) givenby ([, g)
J x g induces a map

hofiber( 7, ¢,)(M — B — M) — hofiberf, xg, (Map(P x O, N x N — Ay)
— Map(P x O, N x N)).
We can identify the latter homotopy fiber as a space of sections as follows.

Let E =holim(P x Q —— fl &l N XN <«— NxN—Apn).

The projection map E — P x Q is a fibration with fiber over (p, ¢) the space ®,(N) =
hofiber( £, (p),g1(g)(N X N —Any — N x N). Let I'(P x Q, E) be its space of sec-
tions. This space of sections has a preferred basepoint given by ( f1, g1). Itis equivalent
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to hofibers, o, (Map(P x O, N x N — Ay) — Map(P x O, N x N)) by inspection.
Let Q¢ Sy E — PxQ be the fibration whose fibers are QS®;(N ), where S stands for
the unreduced suspension. The canonical map I'(P x Q, E) — QI'(P x Q, Q¢ Sy E)
is easily shown to be (2n—p—g—1)—connected, and there is an equivalence

QU (P x 0, Qs S;E) ~ QTN TFETD holim(p x 0 255 TN SN < Ap)

which is the identity on the loop coordinate. Moreover, there is a homeomorphism

holim( P x Q ——— N XN <« Ay) = holim(P —> N &L 0).

The composite map

hofiber( £, ¢\ )(M =B — M) — QQTN (TPOTO) holim( P —> N &L 0)

is the map £, and A is its adjoint.

Now let (f7,gs,v) € hofiber(B—V — M — V)TN/TPOTQ  Here y is a vector of
length 0 < |v| < 1, and (f;, g¢,v) is identified to a point when |v| = 1. After
applying the maps E,C, H and D in diagram (1), it is clear that ( f;, g, v) is sent
to ((xo, 8, ¥0),v) € Q+N (TPOTO) holim(P — N < Q), where (xq, yg) € P x Q
is the unique pair such that fo(xo) = go(yo) and B: I — N is the path defined by
B(s) = fi—as(x0) for 0 <5 < 1/2 and B(s) = gas_1(ro) for 1/2<s <1.

Now we must apply F, G and A to (fz, g¢,v). A careful examination of the material
in Section 4 reveals that F sends ( f7, g¢, v) to the point s A (f,, g:), where s = 1—|v|
and (f,,g,) € hofiber(M — B — M) is defined as follows. For s <7 < 1, we
have (f,,g,) = (f(t=s)/(1—5) &(t—s5)/(1—5)) - For 0 <1 <, (ft, g+¢) has the following

properties: (f,, gr)eM—=Bfort<s, (fs,2s) = (fo, go) has aunique pair (xg, yo) €
P x Q such that fo(xo) = go(yo) = zo € N and such that f(xo) — g5 (vo) € Tz, N,
when projected to 77,/ Tx, P ® Ty, 0, is equal to v (here fo’ and g{) are the derivatives
with respect to ). From this description of F and the description of A above, the
diagram commutes.

3 Codimension and connectivity

The proof outlined above uses that the pair (M, M—=V) is (2n—2 p—2g—1)—connected
and that the pair (B, B—V) is (n—p—qg—1)—connected. We now justify these statements
more carefully.

For the first, it suffices if for every smooth manifold W of dimension k <2n—2p—24q,
and for every map of pairs ¢: (W, 0W) — (M, M —=YV), there is a homotopy of pairs
to a map that is disjoint from V.
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Consider the adjoint map ®: W x (P U Q) — N. By a preliminary homotopy we
can assume that @ is smooth, and we can make the homotopy small enough in the
C? sense so that it corresponds to a homotopy of pairs. If we can show that the
condition ¢! (V) = @ holds for a dense set of all such smooth maps @, then another
small homotopy will complete the job. For the density statement we will use the
multijet transversality theorem of Mather [4, Proposition 3.3] (which appears in [1] as
Theorem 4.13).

Recall the setup: Two smooth maps @, V: X — Y have the same m—jet at x € X if
®(x) = W(x) and ® and ¥ have the same derivatives through order m. Let X ) c X"
be the space of configurations of r distinct points in X'. The maps ® and ¥ have
the same m—multijet at (x1,...,x,) € X if for every i € {1,...r} they have the
same m—jet at x;. The manifold J,g,r)(X , Y') of multijets has a point for each r—tuple
(x1,...,x,) and each equivalence class of maps as above. A smooth map ®: X — Y
determines a smooth map j,f,r)(cb): X - J,g,r)(X ,Y). The multijet transversality
theorem asserts that, for every submanifold Z of J,Sf)(X ,Y), the set of all ® such that
j,g,r)(dD) is transverse to Z is a countable intersection of dense open sets in the function
space Map(X, Y). It follows that such a set, or even the intersection of countably many
such sets, is dense.

We now introduce various submanifolds Z of J,g,r)(W x (P U Q),N), for various
values of r and m. The point is that the condition ¢~1(V) = @ will hold if and
only if for each of these the set j,g)(d)) is disjoint from Z. The codimension of Z
will always be big enough so that in order for j,g,r)(qD) to be transverse to Z it must
be disjoint. Therefore the theorem will guarantee that there are maps W — M —V
arbitrarily close to a given map ®: W — M.

Let k& be the dimension of W . We consider the various ways in which ¢ could hit V.

(1) There might exist distinct x; and x; in P and distinct y; and y, in Q such
that for some w € W we have ®(w, x1) = ®(w, y1) and ®(w, x3) = P(w, 33).
Then the point

(w, x1), (W, x2), (W, y1), (W, ¥2)) € (W x (P LU Q)W

maps into a certain submanifold of Jé4)(W x (P U Q), N) whose codimension
is 3k 4+ 2n. (That is 3k to make four points of W equal to each other and 2n
for two coincidences in N .) This codimension is greater than the dimension
4k + 2 p + 2q of (the relevant open and closed part of) (W x (P U 0)®, so
that transverse means disjoint.

(2) There might exist distinct x; and x, in P and y in Q such that ®(w, x{) =
®(w, y) = ®(w, x,). This leads to a submanifold of J(§3)(W x(PUQ),N)
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whose codimension is 2k + 2n, greater than the dimension 3k +2p + ¢ of (part
of) (W x (PU Q).

(3) There might exist x in P and distinct y; and y, in Q such that ®(w, x) =
®(w, y1) = ®(w, y2). The relevant manifold has codimension 2k + 2n in
J(§3)(W x (P UQ), N), greater than 3k + p + 2¢.

(4) There might exist x € P and y € Q such that ®(w,x) =z = ®(w, y) and
such that the linear map 7x P & 7,0 — T, N given by differentiation of
¢(w) at x and p has rank less than p + ¢. For each fixed rank r < p + ¢
this leads to a submanifold of Jl(z)(W x (P UQ),N) whose codimension
k+ (n—r)(p+qg—r) is greater than 2k + p +¢.

This completes the proof that the pair (M, M —YV) is (2n—2p—2g—1)—connected.

To prove that the pair (E ,B=V) is (n— p—q—1)—connected, essentially the same kind
of standard dimension-counting will succeed, but a simple reference as before to the
multijet transversality theorem will not suffice because B is not simply the space of
maps from one manifold to another.

First observe that both the projection B— Px O x N and its restriction B-V—
P x Q x N are fibrations. It therefore suffices if, for a point (xg, Yo, 2 z9) E PXQO XN,
the pair (Bo. By — Vo) of fibers is (n—p—q— 1) —connected. Here By C M is the set
of all ¢ such that ¢(xg) = zo = ¢()0), and Vo C By is the set of all ¢ such that in
addition at least one of the following is true:

1) ¢(x)=¢(y) for some x € P —xy and some y € Q — yy.
(2) ¢(x)=2z¢ forsome x € P —Xxy.

(3) ¢(y) =zo forsome y € Q — yy.
(4) The linear map Tx, P @& T),Q — T, N has rank less than p +g¢.

To deal first with (4), note that 50 is fibered over the space £ of all linear maps
TxgP®Ty,Q — Tz, N. Let LT C L be the open set of maps of rank p +¢ and let
Bma" C By be its preimage. The pair (BO, Bmax) is (n—p—q)—connected (one better
than needed), because the pair (£, L") is (n— p—g)—connected, because the closed
set £ — L™ is the union of finitely many submanifolds having codimension at least
n—p—q-+1.

It remains to show that the pair (B‘max By —)70) is (n—p—q—1)—connected. Both
Bmax and By — D, fiber over L™, so we can replace the two spaces by their fibers,
say BL and BL VL, over a given L € L.
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Now given a map ¢: W — EL, we want to perturb it slightly so as to eliminate
behaviors (1), (2) and (3). None of these can occur for x near xy or y near )
anyway, given the choice of L, so we look for perturbations that are fixed near xg
and yq. In other words, we look for a small compactly supported change in the map
O: W x((P—x0)U(Q—1y9)) — N. This goes as before: case (1) leads to a subman-
ifold of Jéz)(W X ((P—x0)U(Q —y0)), N) with codimension k + n, greater than
2k + p + ¢; case (2) leads to a submanifold of Jél)(W X((P—=xo)U(Q—10)),N)
with codimension 7, greater than k + p; and case (3) leads to a submanifold of
Jél)(W X ((P—x¢)U(Q —y0)), N) with codimension n, greater than k + ¢.

4 Normal bundles and homotopy cofibers

Suppose that X is a smooth manifold, and that the closed subset ¥ C X is a smooth
submanifold with normal bundle v.

Of course, the Thom space Y" is equivalent to the homotopy cofiber of the inclusion
map X —Y — X. This follows from the fact that there is a homotopy pushout square

S(Y:;v)——= D(Y;v)

O

X-Y X.

The homotopy fibers over X of the four spaces above form another homotopy pushout
square
hofiber(S(Y;v) - X) —— hofiber(D(Y;v) — X)

| |
hofiber(X — Y — X) —— hofiber(X — X) ~ x.
Comparing homotopy cofibers of the rows in this square, we obtain an equivalence
hofiber(Y — X)" — Y hofiber(X — Y — X).
Here we have written v for the pullback of v to hofiber(Y — X).

We need statements like those above in which the manifolds X and Y are replaced
by the function spaces M —V and B —V and the role of the normal bundle is played
by the vector bundle TN/(TP & TQ) on B—YV. The only little difficulty is that the
square (2) depended on having a tubular neighborhood. We will write down a substitute
for (2) that avoids this dependence.
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Let P(Y, X) be the space of all smooth paths y: [0,1] = X such that y~1(Y) =0
and y’(0) is not tangent to Y. We have the homotopy-commutative square

PY,X)——Y

® T

X-Y——X
in which the top and left maps are evaluation at 0 and at 1 respectively.
There are equivalences
4) hocofiber(P (Y, X) — Y) — hocofiber(S(Y:v) > Y)=Y",
5) hocofiber(P (Y, X) — Y) — hocofiber(X — Y — X).
The logic is as follows:

For (4) we use the map P(Y, X) — S(Y;v) that sends y to the projection of 3’(0) in
the direction perpendicular to Y, normalized to have unit length. It is a map over Y
between two spaces fibered over Y, and it is an equivalence because for each point in
Y the map of fibers is an equivalence.

For (5) we need to see that the homotopy-commutative square (3) is a homotopy
pushout, in the sense that the associated map from the homotopy colimit of

X-Y<PY.X)>Y

to X is an equivalence. After choosing a tubular neighborhood of Y in X, one can
map S(Y;v) to P(Y, X) by using radial paths perpendicular to Y . This map is an
equivalence because it is a one-sided inverse to an equivalence. It follows that in
showing that the square is a homotopy pushout we may consider instead the square

SY;v)——=Y

| l

X-Y——X.
But this comes down to considering the same strictly commutative square (2) that we
began with.

Note that although a tubular neighborhood was used in proving (5) to be an equivalence,
the definitions of (4) and (5) did not use it. This is the point of introducing P(Y, X).

Now for the function spaces: Again we will obtain equivalences
hocofiber(P(B—V, M —-V) > M —-V) — (B-V)"
(where v now means the bundle TN/(TP & TQ) on B—V) and
hocofiber(P (B -V, M —V) - M —V) — hocofiber(M — B — M —V).
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We define the space P(B—V, M —V). A point in it is a map y: [0, ] - M meeting
the following conditions. Write y(¢) = (f7, g¢). The conditions are:

(1) y is smooth in the sense that the adjoint maps (¢, x) — f;(x) and (¢, x) — g+(x)
from [0, 1]x P and [0, 1] x O to N are smooth.
(2) Forevery t >0, y; isin M — B, thatis, f;(P)Ng:(Q) =92.

(3) yo € B—V, that is, (a) there is exactly one point (xg, zg, yo) € P X N x Q
such that fo(x) =z = go(¥) and (b) dfo ® dgo: Txy P & Ty, O — T, N is
injective.

(4) y'(0) is not tangent to B — V), that is, the vector f,(xo) — go(¥0) € Tz (N)
does not belong to the subspace (Dyx, f0)(Tx,P) ® (Dy,20)(Ty, Q). Here f’
and g’ are derivatives with respect to ¢.

Consider the homotopy-commutative square

P(B—V,.M—-V) —= BV

| |

M_B M_Va

where the upper map and the left map take y = (f,g) to (fo,go) and (fi1,g1)
respectively. We argue much as in the finite-dimensional case.

First, there is an equivalence P(B—V, M —V) — S(B — V;v) that respects the
projection to B — V), namely the map that takes y = (f, g) to the unit vector in
T:oN/(Tx, P ® Ty, Q) determined by the element f(xo)—gy(vo) of Txy P S Ty Q.
It is an equivalence because it is a map between spaces fibered over B — V and it
induces equivalences fiber by fiber.

Second, the square is a homotopy pushout. For this step, instead of trying to come up
with a tubular neighborhood we reduce to the finite-dimensional case.

To show that the map from the homotopy colimit of
M—-B«~ PB-VM-V)>B-YV

to M —V is surjective on homotopy groups, let X = § k" and take any map ¢: X —
M =V, with adjoint ® = (F,G), F: XxP - N, G: X x Q — N . Deforming by a
homotopy that stays within M —), make ® “transverse to 5—)” in the sense that F
and G together give amap X X P x Q0 — N x N which is transverse to the diagonal.
The preimage of the diagonal in X x P x Q is a submanifold, and it is embedded in X
by the projection. Call its image Y . The normal bundle of Y in X is the pullback of
TN/(TP&TQ) by ¢.
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Now inverting the equivalence
hocolim(X —Y < P(Y,X)—>Y)—> X

and composing with the obvious map
hocolim(X —Y < P(Y, X) —> Y) — hocolim(M —-B <« P(B—V, M-V) —> M-YV)
we get

X — hocolim(M —B <« P(B—-V,M—-YV) > M-YV),
a lifting (up to homotopy) of ¢. Essentially the same argument serves to lift a homotopy
and prove the injectivity.

Taking homotopy fibers over M —V all around, we obtain the needed equivalence F'.

Acknowledgments The authors would like to thank Harvard University for their
hospitality.

References
[1] M Golubitsky, V Guillemin, Stable mappings and their singularities, Graduate Texts
in Math. 14, Springer, New York (1973) MRO0341518

[2] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory. II,
Geom. Topol. 3 (1999) 103-118 MR1694808

[31 JRKlein, E B Williams, Homotopical intersection theory. I, Geom. Topol. 11 (2007)
939-977 MR2326939

[4] JN Mather, Stability of C* mappings. V. Transversality, Advances in Math. 4 (1970)
301-336 (1970) MRO0275461

[5] B A Munson, A manifold calculus approach to link maps and the linking number,
Algebr. Geom. Topol. 8 (2008) 2323-2353 MR2465743

[6] M Weiss, Embeddings from the point of view of immersion theory. I, Geom. Topol. 3
(1999) 67-101 MR1694812

Department of Mathematics, Brown University
Box 1917, Providence RI 02912-0001

Department of Mathematics, Wellesley College
106 Central Street, Wellesley MA 02481

tomg@math.brown.edu, bmunson@wellesley.edu

http://palmer.wellesley.edu/~munson

Received: 26 October 2009 Revised: 20 February 2010

Algebraic €& Geometric Topology, Volume 10 (2010)






