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Comultiplication in link Floer homology
and transversely nonsimple links

JOHN A BALDWIN

For a word w in the braid group Bn , we denote by Tw the corresponding transverse
braid in .R3; �rot/ . We exhibit, for any two g; h 2 Bn , a “comultiplication” map on
link Floer homology ẑ W eHFL.m.Thg//! eHFL.m.Tg#Th// which sends z�.Thg/

to z�.Tg#Th/ . We use this comultiplication map to generate infinitely many new
examples of prime topological link types which are not transversely simple.

57M27, 57R17

1 Introduction

Transverse links feature prominently in the study of contact 3–manifolds. They arise
very naturally – for instance, as binding components of open book decompositions – and
can be used to discern important properties of the contact structures in which they sit
(see Baker, Etnyre and Van Horn-Morris [1, Theorem 1.15] for a recent example). Yet,
transverse links, even in the standard tight contact structure �std on R3 , are notoriously
difficult to classify up to transverse isotopy.

A transverse link T comes equipped with two “classical” invariants which are preserved
under transverse isotopy: its topological link type and its self-linking number sl.T /. For
transverse links with more than one component, it makes sense to refine the notion of
self-linking number as follows. Let T and T 0 be two transverse representatives of some
l –component topological link type, and suppose there are labelings T D T1[ � � � [Tl

and T 0 D T 0
1
[ � � � [T 0

l
of the components of T and T 0 such that

(1) there is a topological isotopy sending T to T 0 which sends Ti to T 0i for each i ,
(2) sl.S/D sl.S 0/ for any sublinks S D Tn1

[ � � � [Tnj and S 0 D T 0n1
[ � � � [T 0nj .

Then we say that T and T 0 have the same self-linking data, and we write SL.T /D
SL.T 0/. A basic question in contact geometry is how to tell, given two transverse repre-
sentatives T and T 0 of some topological link with the same self-linking data, whether
T and T 0 are transversely isotopic; that is, whether the classical data completely
determines the transverse link type. We say that a topological link type is transversely
simple if any two transverse representatives T and T 0 which satisfy SL.T /DSL.T 0/
are transversely isotopic. Otherwise, the link type is said to be transversely nonsimple.
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From this point on, we shall restrict our attention to transverse links in the tight
rotationally symmetric contact structure �rot on R3 , which is contactomorphic to �std .
There are several well-known examples of knot types which are transversely simple.
Among these are the unknot by Eliashberg [7], torus knots by Etnyre [9] and the figure
eight by Etnyre and Honda [10].

Only recently, however, have knot types been discovered which are not transversely
simple. These include a family of 3–braids found by Birman and Menasco [5] using
the theory of braid foliations and the .2; 3/ cable of the .2; 3/ torus knot, which was
shown to be transversely nonsimple by Etnyre and Honda using contact-geometric
techniques [12]. Matsuda and Menasco have since identified two explicit transverse
representatives of this cabled torus knot which have identical self-linking numbers, but
which are not transversely isotopic [18]. Their examples take center stage in Section 5
of this paper.

There has been a flurry of progress in finding transversely nonsimple link types in the
last couple years, spurred by the discovery of a transverse invariant � in link Floer
homology by Ozsváth, Szabó and Thurston [25]; this discovery, in turn, was made
possible by the combinatorial description of HFL� found by Manolescu, Ozsváth
and Sarkar in [16] (see also Manolescu, Ozsváth, Szabó and Thurston [17]).1 This �
invariant is applied by Ng, Ozsváth and Thurston in [20] to identify several examples
of transversely nonsimple links, including the knot 10132 . In [28], Vértesi proves
a connected sum formula for � , which she wields to find infinitely many examples
of nonprime knots which are transversely nonsimple (Kawamura has since proven a
similar result without using Floer homology [13]; both hers and Vértesi’s results follow
from Etnyre and Honda’s work on Legendrian connected sums [11]).

Finding infinite families of transversely nonsimple prime knots is generally more
difficult. Using a slightly different invariant, which we shall denote by � , derived from
knot Floer homology and discovered by Lisca, Ozsváth, Szabó and Stipsicz in [15],
Ozsváth and Stipsicz identify such an infinite family among two-bridge knots [23].
And, most recently, Khandhawit and Ng use the invariant � to construct a 2–parameter
infinite family of prime transversely nonsimple knots, which generalizes the example
of 10132 [14].

In this paper, we formulate and apply a strategy for generating a slew of new infinite
families of transversely nonsimple prime links. This strategy hinges on the “naturality”
results below. For a word w in the braid group Bn , we denote by Tw the corresponding
transverse braid in .R3; �rot/.

1There are several versions of this � invariant, denoted by �� , y� and z� .
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Theorem 1.1 There exists a map on link Floer homology

ẑ W eHFL.m.Tw�i
//! eHFL.m.Tw//

which sends z�.Tw�i
/ to z�.Tw/, where �i is one of the standard generators of Bn .

This theorem implies the existence of a “comultiplication” map on link Floer homology,
similar in spirit to the map which we discovered in [2]:

Theorem 1.2 For any two braid words h and g in Bn , there exists a map

z�W eHFL.m.Thg//! eHFL.m.Tg#Th//

which sends z�.Thg/ to z�.Tg#Th/.

One may combine Theorem 1.2 with Vértesi’s result governing the behavior of � under
connected sums to conclude the following.

Theorem 1.3 If y�.Tg/ and y�.Th/ are both nonzero, then so is y�.Thg/.

Here, we sketch one potential way to use these results to find transversely nonsimple
links. Start with some w1 , w2 2Bn for which Tw1

and Tw2
are topologically isotopic

and have the same self-linking data, but for which y�.Tw1
/D 0 while y�.Tw2

/¤ 0, so
that Tw1

and Tw2
are not transversely isotopic. Now, choose an h 2 Bn for which

y�.Th/¤ 0. Theorem 1.3 then implies that y�.Thw2
/¤ 0 as well. If one can show that

y�.Thw1
/D 0, that Thw1

and Thw2
still represent the same topological link type, and

that SL.Thw1
/D SL.Thw2

/ (this is automatic if Thw1
and Thw2

are knots), then one
may conclude that Thw1

represents a transversely nonsimple link type.

An advantage of this approach for generating new transversely nonsimple link types from
old over, say, that of Vértesi [28] and Kawamuro [13], is that there is no a priori reason
to expect that the links so formed are composite. We demonstrate the effectiveness of
this approach in Section 5 of this paper. In doing so, we describe an infinite family of
prime transversely nonsimple link types (half are knots; the other half are 3–component
links) which generalizes the .2; 3/ cable of the .2; 3/ torus knot. Moreover, it is
clear that this example only scratches the surface of the potential of our more general
technique.

Lastly, it is tempting to conjecture that the two invariants � and � agree for transverse
links in .R3; �rot/, as they share many formal properties. We prove a partial result in
this direction, which follows from Theorem 1.1 together with work of Vela-Vick on
the � invariant [27].

Theorem 1.4 y�.T / and y�.T / agree for positive, transverse, connected braids T in
.R3; �rot/.
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Organization

In the next section, we outline the relationship between grid diagrams, Legendrian links
and their transverse pushoffs. In Section 3, we review the grid diagram construction
of link Floer homology and describe some important properties of the transverse
invariant � . In Section 4, we prove Theorems 1.1, 1.2, 1.3 and 1.4. And, in Section 5,
we outline a general strategy for using our comultiplication result to produce new
examples of transversely nonsimple link types, and we give an infinite family of such
examples which are prime.

Acknowledgements I wish to thank Lenny Ng for helpful correspondence. His sug-
gestions were key in developing some of the strategy formulated in Section 5. Thanks
also to the referee for helpful comments.

The author was supported by an NSF Postdoctoral Fellowship.

2 Grid diagrams, Legendrian and transverse links

In this section, we provide a brief review of the relationship between Legendrian links
in .R3; �std/, transverse braids in .R3; �rot/ and grid diagrams, largely following the
discussion in [14]. For a more detailed account, see Khandhawit and Ng [14] and Ng
and Thurston [21]. The standard tight contact structure �std on R3 is given as

�std D ker.dz�ydx/:

An oriented link L� .R3; �std/ is called Legendrian if it is everywhere tangent to �std ,
and transverse if it is everywhere transverse to �std such that dz�ydx > 0 along the
orientation of L. Any smooth link can be perturbed by a C 0 isotopy to be Legendrian
or transverse. We say that two Legendrian (resp. transverse) links are Legendrian (resp.
transversely) isotopic if they are isotopic through Legendrian (resp. transverse) links.

A Legendrian link L can be perturbed to a transverse link (which is arbitrarily close to
L in the C1 topology) by pushing L along its length in a generic direction transverse
to the contact planes in such a way that the orientation of the pushoff agrees with that
of L. The resulting link LC is called a positive transverse pushoff of L. Legendrian
isotopic links give rise to transversely isotopic pushoffs. Conversely, every transverse
link is the positive transverse pushoff of some Legendrian link; however, two such
Legendrian links need not be Legendrian isotopic. The precise relationship between
Legendrian and transverse links is best explained via front projections.

The front projection of a Legendrian link is its projection onto the xz plane. The
front projection of a generic Legendrian link has no vertical tangencies and has only
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semicubical cusps and transverse double points as singularities. Moreover, at each
double point, the slope of the overcrossing is more negative than the slope of the
undercrossing. See Figure 2 (c) for the front projection of a right-handed Legendrian
trefoil.

The positive (resp. negative) stabilization of a Legendrian link L along some compo-
nent C of L is the Legendrian link whose front projection is obtained from that of
L by adding a zigzag along C with downward (resp. upward) pointing cusps. See
Figure 1. Two Legendrian links are said to be negatively stably isotopic if they are
Legendrian isotopic after each has been negatively stabilized some number of times
along some of its components. The following theorem implies that the classification of
transverse links up to transverse isotopy is equivalent to the classification of Legendrian
links up to Legendrian isotopy and negative stabilization.

(a) (b)

C

Figure 1: (a) and (b) are local pictures of the positive and negative stabiliza-
tions, respectively, of a Legendrian link along one of its components C .

Theorem 2.1 [8; 22] Two Legendrian links are negatively stably isotopic if and only
if their positive transverse pushoffs are transversely isotopic.

Consider the rotationally symmetric tight contact structure on R3 defined by

�rot D ker.dz�ydxCxdy/:

The diffeomorphism of R3 given by

(1) �.x;y; z/D .x; 2y;xyC z/

sends �rot to �std . One can define transverse links for �rot in the same way that one does
for �std . Since � sends a transverse link in .R3; �rot/ to a transverse link in .R3; �std/,
the study of transverse links in .R3; �std/ is equivalent to that in .R3; �rot/; however,
the latter is often more convenient, per the following theorem of Bennequin.

Theorem 2.2 [3] Any transverse link in .R3; �rot/ is transversely isotopic to a closed
braid around the z–axis.

Theorem 2.2 allows us to use braid-theoretic techniques to study transverse links. For
a braid word w 2 Bn , we let Tw denote the corresponding transverse braid around
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the z–axis. Braid words which are conjugate in Bn clearly correspond to transversely
isotopic links. Recall that, for w 2Bn , a positive (resp. negative) braid stabilization of
w is the operation which replaces w by the word w�n (resp. w��1

n ) in BnC1 . We will
also refer to Tw�n

(resp. Tw��1
n

) as the positive (resp. negative) braid stabilization of
the transverse link Tw . The following theorem makes precise the relationship between
braids and transverse links in .R3; �rot/.

Theorem 2.3 [22; 30] For w 2 Bn and w0 2 Bm , the transverse links Tw and Tw0

are transversely isotopic in .R3; �rot/ if and only if w and w0 are related by a sequence
of conjugations and positive braid stabilizations and destabilizations.

In Section 5, we use a braid operation called an exchange move. If a, b and c in Bn are
words in the generators �2; : : : ; �n�1 , then an exchange move is the operation which
replaces the word w1 D a�1b��1

1
c with the word w2 D a��1

1
b�1c . An exchange

move is actually just a composition of conjugations, one positive braid stabilization
and one positive destabilization, and so the link Tw1

is transversely isotopic to Tw2

(see, for example, Ng and Thurston [21]).

It bears mentioning that the self-linking number of a transverse link admits a nice
formulation in the language of braids. If † is a Seifert surface for a transverse link T ,
then the vector bundle �rotj† is trivial and, therefore, has a nonzero section v . Recall
that the self-linking number of T is defined by

sl.T /D lk.T;T 0/;

where T 0 is a pushoff of T in the direction of v . Any two links which are transversely
isotopic have identical self-linking numbers. For a word w 2 Bn , the self-linking
number of Tw is given simply by a.w/� n, where a.w/ is the algebraic length of w .

In what remains of this section, we describe a relationship between the front diagram
of a Legendrian link in .R3; �std/ and a braid representation of its positive transverse
pushoff, thought of as a transverse link in .R3; �rot/. Grid diagrams provide the
necessary connection.

A grid diagram G is an k�k square grid along with a collection of k X ’s and k O ’s
contained in these squares such that every row and column contains exactly one O

and one X and no square contains both an O and an X . See Figure 2 (a). We call
k the grid number of G . One can produce an oriented link diagram L from G by
drawing a horizontal segment from the O ’s to the X ’s in each row and a vertical
segment from the X ’s to the O ’s in each column so that the horizontal segments pass
over the vertical segments (this is the convention used by Khandhawit and Ng [14],
and the opposite of the convention in Manolescu, Ozsváth and Sarkar [16]; see Ng and
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Thurston [21] for a discussion on the relationship between the two conventions), as
in Figure 2 (b). By rotating L 45ı clockwise, and then smoothing the upward and
downward pointing corners and turning the leftward and rightward pointing corners
into cusps, one obtains the front projection of a Legendrian link, as in Figure 2 (c). Let
us denote this Legendrian link by L.G/.

(a) (b) (c)

(d) (e)

Figure 2: In (a), a grid diagram G . In (b), the oriented link corresponding
to G . In (c), a front projection for the Legendrian link L.G/ . In (d) and (e),
the braid corresponding to G . Here, w.G/D �1�2�1�2 .

Alternatively, one can construct a braid diagram from G by drawing a horizontal
segment from the O ’s to the X ’s in each row, as before, and drawing a vertical
segment from the X ’s to the O ’s for each column in which the marking X lies under
the marking O . For those columns in which the X is above the O , we draw two
vertical segments: one from the X up to the top of the grid diagram, and the other
from the bottom of the grid diagram up to the O . As before, we require that the
horizontal segments pass over the vertical segments. Note that all vertical segments
are oriented upwards and that the closure of the diagram we have constructed is a
braid. See Figures 2 (d) and 2 (e) for an example of this procedure. Let us denote
the corresponding braid word by w.G/, read from the bottom up. The relationship
between Tw.G/ and .L.G//C is expressed in the proposition below.

Proposition 2.4 [14, Proposition 3] The contactomorphism � from .R3; �rot/ to
.R3; �std/ defined in Equation (1) sends the transverse link Tw.G/ to a link which is
transversely isotopic to .L.G//C .

3 Link Floer homology and the transverse invariant

In this section, we describe the grid diagram formulation of link Floer homology
discovered in [16; 17]. Let G be a grid diagram for a link L and suppose that G has
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grid number k . From this point forward, we think of G as a toroidal grid diagram –
that is, we identify the top and bottom sides of G and the right and left sides of G – so
that the horizontal and vertical lines become k horizontal and k vertical circles. Let
O and X denote the sets of markings fOig

k
iD1

and fXig
k
iD1

, respectively.

We associate to G a chain complex .CFL�.m.L//; @�/ as follows. The generators
of CFL�.L/ are one-to-one correspondences between the horizontal and vertical
circles of G . Equivalently, we may think of a generator as a set of k intersection
points between the horizontal and vertical circles, such that no intersection point
appears on more than one horizontal circle or on more than one vertical circle. We
denote this set of generators by S.G/. Then, CFL�.m.L// is defined to be the free
Z2ŒU1; : : : ;Uk �–module generated by the elements of S.G/, where the Ui are formal
variables corresponding to the markings Oi .

For x; y 2 S.G/, we let RectG.x; y/ denote the space of embedded rectangles in G

with the following properties. RectG.x; y/ is empty unless x and y coincide at k � 2

points. An element r 2 RectG.x; y/ is an embedded disk on the toroidal grid G

whose edges are arcs on the horizontal and vertical circles and whose four corners are
intersection points in x [ y. Moreover, we stipulate that if we traverse each horizontal
boundary component of r in the direction specified by the induced orientation on @r ,
then this horizontal arc is oriented from a point in x to a point in y. If RectG.x; y/ is
nonempty, then it consists of exactly two rectangles. See Figure 3 for an example. We
let RectoG.x; y/ denote the space of r 2RectoG.x; y/ for which r \XD Int.r/\xD∅.

Figure 3: A grid diagram G for the right-handed trefoil. The generator x
comprises the black and gray intersection points while y comprises the white
and gray intersection points. RectG.x; y/ contains the shaded rectangles in
red and blue, while RectoG.x; y/ contains only the red rectangle.

The module CFL�.m.L// is endowed with an endomorphism

@� W CFL�.m.L//! CFL�.m.L//;
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defined on S.G/ by

@�.x/D
X

y2S.G/

X
r2Recto

G
.x;y/

U
O1.r/
1

� � �U
On.r/

k
� y:

Here, Oi.r/ denotes the number of times the marking Oi appears in r . The map @� is
a differential, and, so, gives rise to a chain complex .CFL�.m.L//; @�/. The homology
of this chain complex, HFL�.m.L//DH�.CFL�.m.L//; @�/, is an invariant of the
link L, and agrees with the link Floer homology of m.L/ defined in [24]. It bears
mentioning that the complex .CFL�.m.L/; @�/ comes equipped with Maslov and
Alexander gradings, which are then inherited by HFL�.m.L//; however, we will not
discuss these gradings further as they play no role in this paper.

Suppose that the link L has l components. If Oi and Oj lie on the same component
of L, then multiplication by Ui in .CFL�.m.L//; @�/ is chain homotopic to multipli-
cation by Uj , and, so, these multiplications induce the same maps on HFL�.m.L//
[17, Lemma 2.9]. So, if we label the markings in O so that O1; : : : ;Ol lie on different
components, then we can think of HFL�.m.L// as a module over Z2ŒU1; : : : ;Ul �.

Setting U1 D � � � D Ul D 0, one obtains a chain complex .bCFL.m.L//; y@/ whose
homology we denote by bHFL.m.L//. The latter is a bigraded vector space over Z2 ,
whose graded Euler characteristic is some normalization of the multivariable Alexander
polynomial of m.L/ [24]. If one sets U1 D � � � D Uk D 0, one obtains a chain
complex .eCFL.m.L//; z@/ whose homology we denote by eHFL.m.L//. The group
bHFL.m.L// determines eHFL.m.L//. Specifically, if we let ni , for i D 1; : : : ; l ,

denote the number of markings in O on the i –th component of L, then

eHFL.m.L//D bHFL.m.L//˝
lO

iD1

V
˝.ni�1/

i ;

where Vi is a fixed two dimensional vector space [17, Proposition 2.13], and the
quotient map

j W bCFL.m.L//! eCFL.m.L//

induces an injection j� on homology.

The element zC.G/ 2 S.G/, which consists of the intersection points at the upper
right corners of the squares in G containing the markings in X, is clearly a cycle in
.CFL�.m.L//; @�/ (and, hence, also in the other chain complexes). If T is the trans-
verse link in .R3; �rot/ corresponding to the braid obtained from G as in Figure 2 (e),
then T is topologically isotopic to L, and the image of zC.G/ in HFL�.m.T // is the
transverse invariant ��.T / defined in [25]. The images of zC.G/ in bHFL.m.T // and
eHFL.m.T // are likewise denoted y�.T / and z�.T /, and are invariants of the transverse
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link T as well. Moreover, the map j� sends y�.T / to z�.T /; in particular, y�.T /D 0 if
and only if z�.T /D 0. The theorem below makes these statements about invariance
precise.

Theorem 3.1 [25, Theorem 7.1] Suppose that G and G0 are two grid diagrams whose
associated braids T and T 0 are transversely isotopic. Then, there is an isomorphism

f o
� W HFLo.m.T //! HFLo.m.T 0//;

induced by a chain map f o , which sends �o.T / to �o.T 0/.

Here, the superscript “ o ” is meant to indicate that this theorem holds for any of the
three versions of link Floer homology described above. In particular, if T and T 0

are two transverse links for which y�.T /¤ 0 and y�.T 0/D 0, then T and T 0 are not
transversely isotopic (the invariant ��.T / is always nonzero and non–Ui –torsion in
HFL�.m.T // [25, Theorem 7.3]). These transverse invariants also behave nicely under
negative braid stabilizations.

Theorem 3.2 [25, Theorem 7.2] Suppose that G and G0 are two grid diagrams with
associated braids T and T 0 , and suppose that T 0 is obtained from T by performing
a negative braid stabilization along the i –th component of T . Then, there is an
isomorphism

f �� W HFL�.m.T //! HFL�.m.T 0//;

induced by a chain map f � , which sends �.T / to Ui � �.T
0/.

Since multiplication by Ui is the same as multiplication by zero on bHFL and eHFL ,
we obtain the following corollary.

Corollary 3.3 If T 0 is obtained from a transverse braid T by performing a negative
braid stabilization along some component of T , then y�.T 0/D z�.T 0/D 0.

4 The map ˆ and comultiplication

Fix some w 2Bn and some i 2 f1; : : : ; n�1g. Figure 4 shows simultaneously a portion
of a grid diagram Gˇ for Tw�i

and the corresponding portion of a grid diagram G

for Tw . The grid diagrams Gˇ and G
 are the same except that Gˇ uses the horizontal
curve ˇ while G
 uses the horizontal curve 
 . Let k denote their common grid
number.
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Tw�i Tw

ˇ




Figure 4: A portion of the grid diagrams Gˇ and G
 . The cycle zC.Gˇ/ is
shown as a collection of black and gray dots, while zC.G
 / is represented by
the white and gray dots.

For x2S.Gˇ/ and y2S.G
 /, let Pentˇ
 .x; y/ denote the space of embedded pentagons
with the following properties. Pentˇ
 .x; y/ is empty unless x and y coincide at k � 2

points. An element p 2 Pentˇ
 .x; y/ is an embedded disk in the torus whose boundary
consists of five arcs, each contained in horizontal or vertical circles. We stipulate that
under the orientation induced on the boundary of p , the boundary may be traversed
as follows. Start at the component of x on the curve ˇ and proceed along an arc
contained in ˇ until we arrive at the right-most intersection point between ˇ and 
 ;
next, proceed along an arc contained in 
 until we reach the component of y contained
in 
 ; next, follow the arc of a vertical circle until we arrive at a component of x; then,
proceed along the arc of a horizontal circle until we arrive at a component of y; finally,
follow an arc contained in a vertical circle back to the initial component of x. Let
Pento

ˇ

.x; y/ denote the space of p 2 Pentˇ
 .x; y/ for which p\XD Int.p/\xD∅.

We construct a map

��W CFL�.m.Tw�i
//! CFL�.m.Tw//

of Z2ŒU1; : : : ;Uk �–modules as follows. For x 2 S.Gˇ/, let

��.x/D
X

y2S.G
 /

X
p2Pento

ˇ

.x;y/

U
O1.p/
1

� � �U
On.p/

k
� y:

We then define
z�W eCFL.m.Tw�i

//! eCFL.m.Tw//

to be the map on eCFL induced by �� . In other words, z� counts pentagons in
Pento

ˇ

.x; y/ which also miss the O basepoints. (This construction is inspired by the

proof of commutation invariance in [17, Section 3.1].)

Remark 4.1 Unlike z� , the map �� is not necessarily a chain map.
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The juxtaposition p � r of any p 2 Pentoˇ
 .x; y/ with any rectangle r 2 RectoG
 .y;w/
such that p\O D r \O D∅ has precisely one such decomposition and exactly one
other decomposition as r 0 �p0 , where r 0 2 RectoGˇ .x; y

0/ and p0 2 Pentoˇ
 .y0;w/ and
r 0\O D p0\O D∅. It follows that z� is a chain map and, so, induces a map

ẑ W eHFL.m.Tw�i
//! eHFL.m.Tw//:

Moreover, it is clear that Pentoˇ
 .zC.Gˇ/; zC.G
 // consists only of the shaded pen-
tagon shown in Figure 4, and that Pentoˇ
 .zC.Gˇ/; y/ is empty for y ¤ zC.G
 /.
Therefore, ẑ sends z�.Tw�i

/ to z�.Tw/, proving Theorem 1.1.

The more general comultiplication fact stated in Theorem 1.2 follows from the above
result together with the sequence of braid moves depicted in Figure 5: The braid in (a)
represents the transverse link Thg . The braid in (b) is obtained from that in (a) by a
mixture of isotopy and positive stabilizations. The braid in (c) is obtained from that in
(b) by isotopy followed by the introduction of negative crossings. The braid in (e) is
isotopic to the braids in (c) and (d), and represents the connected sum of the transverse
links Tg and Th (for the latter statement, see Birman and Menasco [4]). Therefore, a
composition of the maps ẑ described above (one for each negative crossing introduced
in going from (b) to (c)) yields a map

z�W eHFL.m.Thg//! eHFL.m.Tg#Th//

which sends z�.Thg/ to z�.Tg#Th/.

(a) (b) (c) (d) (e)

h h h h h

g g g g g

Figure 5: Thg is transversely isotopic to the braid in (b), which, after intro-
ducing negative crossings (or, equivalently, up to braid isotopy, getting rid of
positive crossings) is transversely isotopic to Tg#Th , which is represented by
the braid in (e).

Suppose that Tg#Th is any connected sum of Tg and Th . In [28], Vértesi proves the
following refinement of the Künneth formula described in [24, Theorem 1.4]. (Her
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proof is actually for the analogous result in knot Floer homology, but it extends in an
obvious manner to a proof of the theorem below.)

Theorem 4.2 There is an isomorphism

bHFL.m.Tg#Th//Š bHFL.m.Tg//˝Z2
bHFL.m.Th//

under which y�.Tg#Th/ is identified with y�.Tg/˝ y�.Th/.

Vértesi’s theorem, used in combination with the comultiplication map z�, may be
applied to prove Theorem 1.3.

Proof of Theorem 1.3 Recall from the previous section that y�.Tw/ is nonzero if and
only if z�.Tw/ is nonzero. If y�.Tg/ and y�.Th/ are both nonzero, then, by Theorem
4.2, so is y�.Tg#Th/, and, hence, so is z�.Tg#Th/. Since z� sends z�.Thg/ to z�.Tg#Th/

this implies that z�.Thg/ is nonzero, and, hence, so is y�.Thg/.

Recall that a braid Tg is said to be quasipositive if g 2 Bn can be expressed as a
product of conjugates of the form w�iw

�1 , where w is any word in Bn .

Corollary 4.3 If Tg is a quasipositive braid, then y�.Tg/¤ 0.

Proof of Corollary 4.3 If g is a product of m conjugates as above, then after resolving
the corresponding m positive crossings, one obtains a braid isotopic to In , the trivial n–
braid. Therefore, a composition of m of the maps ẑ sends z�.Tg/ to z�.In/. Moreover,
one sees by glancing at the grid diagram for In in Figure 6 that z�.TIn

/¤ 0. Therefore,
z�.Tg/¤ 0 and the same is true of y�.Tg/.

n

Figure 6: A grid diagram Gn for the trivial braid In . It is straightforward to
check that the cycle zC.Gn/ 2 S.Gn/ , represented by the collection of black
dots, is not a boundary in eCFL.m.In// .
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Proof of Theorem 1.4 Suppose that Tw is a positive braid with one component. Then
y�.Tw/¤ 0, by the corollary above; also, Tw is a fibered knot [6]. Moreover, y�.Tw/
lies in Alexander grading .sl.Tw/C 1/=2, which, in this case, is simply the genus
of Tw [25]. Therefore, y�.Tw/ is the unique generator of bHFL.Tw;g.Tw//. To show
that y�.Tw/D y�.Tw/, it suffices to prove that y�.Tw/ is nonzero as well. Fortunately,
this has been shown by Vela-Vick in [27].

5 Finding new transversely nonsimple links

In this section, we outline and apply one strategy for using comultiplication (in particular,
Theorem 1.3) to generate a plethora of new examples of transversely nonsimple link
types. Consider the braid words

w1 D a�m
1 b��1

1 c and w2 D a��1
1 b�m

1 c

in Bn , where a, b and c are words in the generators �2; : : : ; �n�1 . The transverse
braids Tw1

and Tw2
are said to be related by a negative flype and, in particular, represent

the same topological link type. If, in addition, m is odd, or if m is even and the two
strands which cross according to �m

1
belong to the same component of Tw1

, then
SL.Tw1

/D SL.Tw2
/.

Suppose that y�.Tw1
/D0 and y�.Tw2

/¤0. The idea is to find a word h in the generators
�2; : : : ; �n�1 with y�.Th/¤ 0. Theorem 1.3 would then imply that y�.Thw2

/¤ 0. If
it is also true that y�.Thw1

/ D 0, then Thw1
and Thw2

are not transversely isotopic
although they are topologically isotopic. We would like to find examples which also
satisfy SL.Thw1

/D SL.Thw2
/ (if Thw1

is a knot, this is automatic) so as to produce
topological link types which are not transversely simple. One nice feature of this
proposed method, which differs from that in [28], is that there is no reason to believe a
priori that the link Thw1

so obtained is composite.

In principle, Theorem 1.3 eliminates half of the work in this scenario – namely, showing
that y�.Thw2

/ ¤ 0. In practice, one would like to find examples in which the other
half – showing that y�.Thw1

/ is zero – is very easy. To that end, one strategy is to pick
an example in which Tw1

is transversely isotopic to a braid which can be negatively
destabilized, and to show that the same is true of the braid Thw1

, which would guarantee
that y�.Thw1

/D 0 by Corollary 3.3. In particular, Tw1
must belong to a topological

link type with a transverse representative (that is, Tw2
) which does not maximize

self-linking number, but which cannot be negatively destabilized.

The most well-known such link type is that of the .2; 3/ cable of the .2; 3/ torus knot.
In [12], Etnyre and Honda prove the following.
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Proposition 5.1 The .2; 3/ cable of the .2; 3/ torus knot has two Legendrian repre-
sentatives, L1 and L2 , both with tb D 5 and r D 2, for which L1 is the positive
(Legendrian) stabilization of a Legendrian knot while L2 is not. Moreover, L1 and L2

are not Legendrian isotopic after any number of negative (Legendrian) stabilizations.

That L1 and L2 are not Legendrian isotopic after any number of negative stabilizations
implies that their transverse pushoffs, LC

1
and LC

2
, are not transversely isotopic (yet,

they both have sl D 3). Moreover, since L1 is the positive stabilization of a Legendrian
knot, its pushoff LC

1
is transversely isotopic to the negative stabilization of some

transverse braid.

Matsuda and Menasco have since given explicit forms for L1 and L2 [18]. Figures 7 (a)
and 7 (a 0 ) depict the rectangular diagrams corresponding to slightly modified versions
of these forms (ours are derived from the front diagrams in [20, Figure 6]). The

(a) (b) (c) (d) (e)

(a0) (b0) (c0) (d0) (e0)

Figure 7: On the top, the rectangular diagrams for L1 and its transverse
pushoff LC1 . On the bottom, those for L2 and LC2 . The circled regions in (e)
and (e 0 ) indicate that LC1 and LC2 are transversely isotopic to braids related
by a negative flype.

rectangular braid diagrams for the transverse pushoffs LC
1

and LC
2

are shown in (b)
and (b 0 ), respectively. The braids in (c) and (c 0 ) are obtained from those in (b) and (b 0 )
by isotoping the red arcs as indicated, and the braids in (d) and (d 0 ) are obtained from
those in (c) and (c 0 ) after additional simple isotopies and conjugations. The braids
in (e) and (e 0 ) are obtained from those in (d) and (d 0 ) by conjugation, and they are
related to one another by a negative flype. Indeed, Figure 7 shows that LC

1
and LC

2

are transversely isotopic to the transverse braids Tw1
and Tw2

, respectively, where
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w1 D a�2
1

b��1
1

c , w2 D a��1
1

b�2
1

c ,

aD �4�3�5�6�4�5�5�6�4�5�7�6�
�1
5 ��1

4 ��1
3 �2�3�3�4�5�

�1
4 ��1

3 ��1
2 ;

b D �5�6�7�
�1
6 ��1

5 ��1
4 ��1

6 ��1
5 ��1

4 �3�4�5�2�3�4�4�5�6�
�1
5 ��1

4 ��1
3 ��1

2 ;

c D ��1
7 ��1

6 ��1
5 :

According to Proposition 5.1, Tw1
is transversely isotopic to a braid which can be

negatively destabilized. Figure 8 shows a sequence of transverse braid moves which
demonstrates that the same is true of Thw1

for any word h 2 B8 in the generators
�3; : : : ; �6 . The braid in (b) is obtained from that in (a) by isotoping the red and blue

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

h h h h h

h h h h h

Figure 8: (a) shows a rectangular braid diagram for Thw1
. After a sequence

of braid isotopies and exchange moves, we obtain the braid in (j), which can
be negatively destabilized.

arcs as shown. The braid in (c) is related to that in (b) by an exchange move at the
circled crossings in (b). The braid in (d) is obtained from that in (c) by isotopy of
the red, blue and green arcs. The braid in (e) is obtained from that in (d) after the
indicated isotopy of the yellow, orange and purple arcs. An exchange move at the
circled crossings in (e) produces the braid in (f). The braid in (g) is obtained from that
in (f) by isotoping the red arc as shown. The braid in (h) is obtained from that in (g)
after an isotopy of the blue, green and purple arcs as shown. An exchange move at
the circled crossings in (h), followed by the indicated isotopy of the red arc produces
the braid in (i). Finally, the braid in (j) is obtained from that in (i) by an exchange
move at the circled crossings in (i), followed by the indicated isotopy of the blue arc.
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Note that the braid in (j) may be negatively destabilized at the circled crossing. The
essential point here is that the region of the braid in (a) corresponding to the word h is
not affected by this combination of isotopies and exchange moves.

To sum up: since y�.Tw2
/¤ 0 (see Ng, Ozsváth and Thurston [20]), we have proven

that for any h 2 B8 which is (1) a word in the generators �3; : : : ; �6 and for which
(2) y�.Th/ ¤ 0, it is the case that y�.Thw1

/ D 0 while y�.Thw2
/ ¤ 0. It follows that

the transverse braids Thw1
and Thw2

are not transversely isotopic though they are
topologically isotopic. If, in addition, (3) h is such that the two strands of Thw1

which cross according to the string �2
1

belong to the same component of Thw1
, then

SL.Thw1
/D SL.Thw2

/; that is, the topological link type represented by Thw1
is

transversely nonsimple.

There are infinitely many choices of h which meet criteria (1)–(3) above. In order to
give such an h, we first prove the following.

Lemma 5.2 For 1 � j � k and 0 � l � k � j , consider the map  j ;k;l W Bj ! Bk

which sends �i to �iCl . If g is a word in Bj for which y�.Tg/¤ 0, and hD j ;k;l.g/,
then y�.Th/¤ 0 as well.

See Figure 9 for a pictorial depiction of the map  j ;k;l .

g g

Tg T j ;k;l .g/

j jl k � j � l

Figure 9: On the left, the j –braid Tg . On the right, the k –braid T j ;k;l .g/ .

Proof of Lemma 5.2 If hD j ;k;l.g/, then the braid Th is easily seen to be connected
sum of Tg with the trivial braids Ik�j�lC1 and IlC1 . We know, from the proof of
Corollary 4.3, that y�.In/ ¤ 0 for any n � 1. Lemma 5.2 therefore follows from
Theorem 4.2.

It follows from Corollary 4.3 and from Lemma 5.2 that hD  4;8;3.g/ satisfies criteria
(1) and (2) above as long as Tg is a quasipositive 4–braid. Let hD  4;8;3.g/ for

g D �3�2�3�1�2�3:

It is easy to check that hn also satisfies criterion (3) (as well as criteria (1) and (2), of
course) for all n� 0.
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Corollary 5.3 The topological link types represented by Thnw1
are transversely

nonsimple for all n � 0. When n is even, Thnw1
is a knot; otherwise, Thnw1

is
a 3–component link.

Below, we prove that most of the links in Corollary 5.3 are prime. Note that Thnw1
is

obtained from Tw1
by performing n positive half twists of strands 4–7 in the region

of Tw1
where we would insert the word hn . For nD 2m, this amounts to adding m

positive full twists, which can also be accomplished by performing �1=m surgery on
an unknot U encircling strands 4–7 of Tw1

in the corresponding region. See Figure 10.

Tw1
Th2mw1

w1 w1 w1 w1

h2m m

�1=m

D D

Figure 10: Th2mw1
is obtained from Tw1

by performing m positive full
twists of strands 4–7, or, equivalently, by performing �1=m surgery on the
unknot shown on the right.

A SnapPea computation [29] combined with the Inverse Function Theorem test de-
scribed in Moser’s thesis [19] shows that the complement of the link Tw1

[ U is
hyperbolic. To be specific, SnapPea finds a triangulation of this link complement by
ideal tetrahedra and computes an approximate solution to the gluing equations. Moser’s
test then confirms, using this approximate solution, that an exact solution exists.

Thurston’s celebrated Dehn Surgery Theorem then implies that all but finitely many
Dehn fillings of the boundary component corresponding to U are hyperbolic as well [26].
In turn, this implies that the link Th2mw1

is hyperbolic, and, hence, prime for all but
finitely many m. This argument can be repeated to show that the links Th2mC1w1

are
also prime for all but finitely many m. The lemma below sums this up.

Lemma 5.4 The links Thnw1
are prime for all but finitely many values of n.
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editors) (2009) 120–136 MR2500576

[22] S Y Orevkov, V V Shevchishin, Markov theorem for transversal links, J. Knot Theory
Ramifications 12 (2003) 905–913 MR2017961
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