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Multiplicative properties of Morin maps

GÁBOR LIPPNER

ANDRÁS SZŰCS

In the first part of the paper we construct a ring structure on the rational cobordism
classes of Morin maps (ie smooth generic maps of corank 1). We show that associating
to a Morin map its †1r (or Ar ) singular strata defines a ring homomorphism to
�� ˝Q , the rational oriented cobordism ring. This is proved by analyzing the
multiple-point sets of a product immersion. Using these homomorphisms we compute
the ring of Morin maps.

In the second part of the paper we give a new method to find the oriented Thom
polynomial of the †2 singularity type with Q coefficients. Then we provide a product
formula for the †2 singularity in Q and the †1;1 singularity in Z2 coefficients.

57R20, 57R42, 57R45

1 Introduction

The results of this paper are the first steps toward understanding how the direct product
operation affects the singularities of maps. There are two main difficulties. The first
one is that the direct product of generic maps will not be generic, so one has to take a
small perturbation. This makes it hard to understand the singular strata geometrically.
The second one is that in general the product of two singular maps even after a generic
perturbation will have more complicated singularities then the original maps had.

In Section 2 we study products of immersions. Here only the first type of difficulty
arises, namely that the self intersections will not be transverse. This can be overcome
by employing a general multiple-point formula from Braun and Lippner [2] that helps
to compute the characteristic numbers of multiple-point manifolds.

In Section 3 we study Morin maps. In this case we have to deal with the second kind
of difficulty. Instead we get around it by increasing the dimension of the target space
by one.

In Section 4 we set out to compute the ring MorQ (the ring of rational cobordism classes
of Morin maps) defined at the end of Section 3. First, in Section 4.1, we identify the
components of MorQ as subgroups of the rational oriented cobordism ring ��˝Q.
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1438 Gábor Lippner and András Szűcs

Then combining the results of the previous sections we show that the singular strata
behave nicely under the multiplication defined in Section 3.2. It turns out that this
information is actually enough to compute MorQ .

Finally Section 5 deals with general singular maps. We show that a Cartan-type
formula relates the homology class of †1 points of two maps with that of their direct
product. We give a new method of computing the oriented Thom polynomial of the †2

singularity with Q coefficients, the value of which was already known (see Ronga [6]).
Finally we derive a Cartan-type formula for the †2 points as well.

This research was partially supported by grant T049449 of the Hungarian Scientific
Research Fund.

2 Products of immersions

We start this section by recalling some basic notions about multiple points and the
relevant results of [2].

First we shall introduce a characteristic class ˇ that assigns to any oriented vector
bundle � over B an element

ˇ.�/D

1Y
iD1

.1Cp1.�/ti Cp2.�/t
2
i C � � � / 2H�.BIQ/ŒŒt1; t2; : : : ��

in the ring of formal power series of the variables ti over the ring H�.BIQ/. (Here
pi.�/ 2 H 4i.BIQ/ is the 4i –dimensional Pontrjagin class of � .) Since the Cartan
formula holds for Pontrjagin classes modulo 2–torsion it follows that ˇ.� ˚ �/ D
ˇ.�/ �ˇ.�/. (We have got rid of all torsion by taking Q coefficients.) It is also easily
seen that ˇ is natural, and always has an inverse element. When B is a manifold we
shall abbreviate ˇ.TB/ by ˇ.B/.

Now let f W M n!N nCk be a generic (ie selftransverse) immersion between oriented
manifolds. The manifolds and the maps representing the r –fold points of f in the
source and the target respectively will be denoted by

�r .f /W �Mr .f /!M;

 r .f /W zNr .f /!N:

When the codimension of the map k is even, these manifolds are equipped with natural
orientations. It is easy to see that the cobordism classes of these manifolds depend only
on the cobordism class of f . Our goal is to obtain information about these cobordism
classes. To this end we compute their characteristic numbers.
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Multiplicative properties of Morin maps 1439

Let us introduce the notation

mr Dmr .f /D �r .f /!.ˇ. �Mr .f ///;

nr D nr .f /D  r .f /!.ˇ. zNr .f ///:

The reason for considering these elements is the following simple observation. Eval-
uating each coefficient of mr on the fundamental class of M we get an element in
QŒŒt1; t2; : : : ��. The coefficients of this power series are exactly the Pontrjagin numbers
of �Mr .f /.

The classes mr and nr are related by the equality

(1) mr �ˇ.�f /D f
�nr�1� e.�f /mr�1

where �f is the normal bundle of f and e is the Euler class. This is a generalization
of the well-known Herbert–Ronga formula (see the main formula of [2]).

We are going to apply this in the case when the target is a Euclidean space. Then f �D0

so (1) is simplified to mr �ˇ.�f /D�e.�f /�mr�1 . Applying this recursively one gets that
mr �ˇ.�f /

r�1D .�e.�f //
r�1 �m1 . But m1D ˇ.M / and ˇ.M / �ˇ.�f /D ˇ.R

n/D 1,
so we end up with

mr D .�e.�f //
r�1
�ˇ.M /r :

Now we can state and prove the main result of this section.

Theorem 2.1 Let gi W M
ni

i !RniCki I .i D 1; 2/ be generic immersions. Then

(2) �Mr .g1 �g2/� .�1/r�1 �Mr .g1/� �Mr .g2/

where � stands for “unoriented-cobordant”.

If both manifolds Mi are oriented and both codimensions ki are even, then the two
sides of (2) are oriented cobordant.

Proof We will only consider the oriented case. The unoriented version is proved
exactly the same way, except that there is no need to study Pontrjagin classes.

Let f D g1 �g2 . Then

mr .f /D .�e.�f //
r�1
�ˇ..M1 �M2//

r

D .�e.�g1
� �g2

//r�1
�ˇ.TM1 �TM2/

r

D .�1/r�1
�
.�e.�g1

/r�1
�ˇ.M1/

r
�
�
�
.�e.�g2

/r�1
�ˇ.M2/

r
�

D .�1/r�1mr .g1/�mr .g2/:
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1440 Gábor Lippner and András Szűcs

The following equations are easily checked.

hˇ. �Mr .f //; Œ �Mr .f /�i D hmr .f /; ŒM1 �M2�i

D h.�1/r�1mr .g1/�mr .g2/; ŒM1 �M2�i

D .�1/r�1
hˇ. �Mr .g1/; Œ �Mr .g1/�i � hˇ. �Mr .g2/; Œ �Mr .g2/�i

D .�1/r�1
hˇ.. �Mr .g1/� �Mr .g2///; Œ �Mr .g1/� �Mr .g2/�i:

We have obtained equality of two formal power series, so the corresponding coefficients
must be equal on the two sides. As the coefficients are the Pontrjagin numbers of the
manifolds involved, we get that the Pontrjagin numbers of the two manifolds are all
equal.

To finish the proof we have to repeat the whole argument using an analogous class
instead of ˇ , namely

ˇ0.�/D

1Y
iD1

.1Cw1.�/t
1
i Cw2.�/t

2
i C � � � / 2H�.B;Z2/ŒŒt1; t2; : : : ��:

It is obvious that all the above hold for ˇ0 as well. Thus not only the Pontrjagin
numbers, but also the Stiefel–Whitney numbers of the two manifolds are equal. Since
the oriented cobordism class is determined by these numbers, the claim of the theorem
follows.

This result will no longer hold if we consider a general target space N . However the
Pontrjagin and Stiefel–Whitney numbers of the multiple-point manifolds of g1�g2 are
still expressible in terms of g1;g2 and their multiple-point manifolds. This expression
is particularly simple for the double-point set.

First we need a simple result about the embedded manifold representing a vector
bundle’s Euler class. Let �! B be a vector bundle over a manifold B . Let sW B! �

be a section transverse to the 0–section. Let us denote by �� the submanifold in B that
is the inverse image of the 0–section by s , and let ı� W �� ! B denote the inclusion.

Lemma 2.2 hˇ.��/; Œ�� �i D hˇ.B/ � .e.�/=ˇ.�//; ŒB�i:

Proof It suffices to show that

ı� !
.ˇ.��//D ˇ.B/ �

e.�/

ˇ.�/
:
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Multiplicative properties of Morin maps 1441

By the construction of �� we have the following pullback diagram:

��
ı� //

ı�

��

B

0–section
��

B
s // �

Hence the normal bundle of ı� is just the pullback of the normal-bundle of the 0–section.
This latter is just � . Thus we have

T�� ˚ ı�
�� D ı�

�TB;

which in turn implies that

ˇ.��/D ı�
�

�
ˇ.B/

ˇ.�/

�
:

Applying the pushforward to this equation gives the conclusion of the lemma, since
f!.f

�x/D f!.1/ �x is well known and obviously ı� !
.1/D e.�/.

Theorem 2.3 Let gi W M
ni

i !N
niCki

i ; i D 1; 2; be generic immersions. Then

�M2.g1 �g2/� �M2.g1/� �M2.g2/C �M2.g1/���g2
C��g1

� �M2.g2/

where � stands for “unoriented-cobordant”. (Recall that �gi
is the normal bundle of gi

and �gi
is the zero set of a generic section of �gi

.) If the Mi are oriented and the ki

are even, then the same is true up to oriented cobordism.

Proof We proceed in a similar manner as in the previous theorem. Let us put f D
g1 �g2 and M DM1 �M2 again. Then using (1) we get

ˇ.�f /�m2.f /D f
�ˇ.N /�e.�f /�ˇ.M /D g�1ˇ.N1/�g�2ˇ.N2/�e.�f /�ˇ.M /

D
�
ˇ.�g1

/m2.g1/Ce.�g1
/�ˇ.M1/

�
�
�
ˇ.�g2

/m2.g2/Ce.�g2
/�ˇ.M2/

�
�e.�f /�ˇ.M /

D ˇ.�f /�

�
m2.g1/�m2.g2/Cm2.g1/�ˇ.M2/

e�g2

ˇ.�g2
/
Cˇ.M1/

e�g1

ˇ.�g1
/
�m2.g2/

�
:

Now we can divide by ˇ.�f / as it is an invertible element. We evaluate both sides on
ŒM �D ŒM1�� ŒM2�. Finally we have to apply the previous lemma to get that all the
corresponding characteristic numbers are equal for the two manifolds in question. As
before, we can repeat the argument for Stiefel–Whitney numbers in Z2 coefficients
and Pontrjagin numbers in Q coefficients, so we get both parts of the theorem at the
same time.
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1442 Gábor Lippner and András Szűcs

Remark (1) It is possible to carry out similar calculations for triple points or points
of higher (say r ) multiplicity. But the number of terms involved in these formulas
grow exponentially with r and the authors did not manage to find a nice way to write
them down, not even recursively.

(2) It would be possible to obtain similar formulas not only for the cobordism classes of
the underlying multiple-point manifolds, but for the cobordism classes of the immersions
�r themselves. To do this one would need to consider the characteristic numbers of these
immersions instead of the characteristic numbers of the manifolds. These calculations
are more or less the same as the ones described here, but they are harder to keep track
of.

(3) It seems that the same results could be obtained using techniques of Eccles and
Grant from [4].

(4) We would like to point out that Theorem 2.3 is a nontrivial generalization of the
oriented case of Theorem A in Byun and Yi [3], which considers the case of nD k .

3 Ring structure of Morin maps

Given a smooth map f W M !N where dim M � dim N , a point x 2M is said to
be a †i point if the corank (ie the dimension of the kernel) of dfx W TxM ! Tf .x/N

is i . The set of such points is denoted by †i.f /. If i1 � i2 then we can define
†i1;i2.f / D †i2.f j†i1 .f //. This method can be continued recursively to give the
definition of †.i1;i2;:::;ir / points, where i1� i2� � � �� ir . This classification of singular
points is called the Thom–Boardman type. For details see eg Arnol 0d et al [1].

A generic smooth map f W M !N is called a Morin map if it has no †2 points. The
singularities of such maps are classified by their Thom–Boardman type, which can
only be

†

r‚ …„ ƒ
.1; 1; : : : ; 1/

D†1r

for some r � 0. (In the notation of [1] this is Ar .)

Cobordism of Morin maps is defined as usual: two Morin maps f W M n
1
! N nCk

and gW M n
2
!N nCk are said to be cobordant if there is a Morin map H W W nC1!

N nCk�Œ0; 1� such that @W DM1[M2 and H jM1�Œ0;"/Df � idŒ0;"/ , H jM2�.1�";1�D

g� id.1�";1� for a sufficiently small ".

Let us consider the set of cobordism classes of all Morin maps to Euclidean spaces
(for all nonnegative dimensions and all positive codimensions). This set is a bigraded
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Multiplicative properties of Morin maps 1443

commutative group with addition induced by the disjoint union of maps. We can take
tensor product with Q to obtain the rational cobordism group of Morin maps whose
elements will be referred to as rational cobordism classes. In this section we endow
this rational cobordism group with a bigraded ring structure. Further we will show that
the singularities can be used to define ring homomorphisms into ��˝Q, where ��
is the oriented cobordism ring of manifolds.

The main tool in constructing the multiplication will be the so-called “prim maps”,
while the ring homomorphisms will be derived from the results of the previous section.

3.1 Prim maps

Definition 3.1 A generic map f W M ! N is called prim (projected immersion) if
it can be lifted to a generic immersion, zf W M ! N �R, and this lifting is fixed up
to regular homotopy. (This is equivalent to saying that the kernel bundle of df is
trivialised.) We will always denote the lifting by a tilde.

Cobordism of prim maps can be defined in a natural way (the cobordism itself should
be a prim map into N � Œ0; 1�), and disjoint union induces a group operation on the
cobordism classes. The class of a prim map f will be denoted by Œf �. (For details see
eg Szűcs [7].)

Clearly a prim map is necessarily a Morin map. Prim maps provide a good link between
immersions and Morin maps. We shall first define multiplication of prim maps (using
their liftings to immersions) and then show how to extend it to multiplication of Morin
maps (using results of [9]). We will only work with prim maps whose target space is
Euclidean.

Let us denote l0W pt ,!R the inclusion of a point into the line.

Lemma 3.2 (a) Any two generic hyperplane projections of an immersion represent
the same prim cobordism class.

(b) Hyperplane projections of cobordant immersions represent the same prim cobor-
dism class.

Proof (a) Instead of taking two projections of the same immersion we can take
projection to the same hyperplane of two immersions which differ only by a rotation.
This rotation can be realized by a regular homotopy. Regular homotopy is a special
case of cobordism, hence a) will follow from b).

(b) A generic hyperplane projection of the cobordism connecting the two immersions
gives a prim cobordism of the prim maps obtained on the boundaries.

Algebraic & Geometric Topology, Volume 10 (2010)
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Definition 3.3 For two prim maps fi W Mi!Rni ; i D 1; 2, consider the product map

g D f1 �f2 � l0W M1 �M2!Rn1Cn2 �R:

The map g might not yet be prim, but we can turn it into such by a small perturbation.
Take liftings zf1 and zf2 that are sufficiently close to f1 � l0 and f2 � l0 . Now
zf1 �
zf2W M1�M2!Rn1Cn2�R2 is a nongeneric immersion. Let us take a sufficiently

small perturbation of this product so that it becomes a generic immersion. Finally take
a generic projection of this immersion to a hyperplane “close” to Rn1Cn2 �R, where
the last R factor is the diagonal in R2 . We obviously get a prim map g0 that can be
arbitrarily close to g . Let us denote g0 D f1 �f2 and let us define the multiplication
on prim cobordism classes as follows: Œf1�� Œf2�D Œf1 �f2�.

Theorem 3.4 The above definition is correct, that is the cobordism class Œf1 �f2� is
independent of the choice of f1 and f2 within their cobordism class and of any other
choices made in the definition. The multiplication defined in this way together with the
addition being the disjoint union gives rise to a ring structure.

Proof The liftings are given up to regular homotopy. Also the perturbation of zf1�
zf2

is unique up to regular homotopy. Thus Lemma 3.2 implies that the resulting prim map
is independent of these choices.

Now suppose Œf1�D Œg1�. Then there is a prim cobordism H joining f1 and g1 . We
can take its lifting zH which is an immersed cobordism between zf1 and zg1 , and so
zf1�
zf2 and zg1�

zf2 are regularly homotopic via zH � zf2 . So their projections are prim
cobordant, and this is what we wanted to prove. (The definition is symmetric so the
other factor can be handled the same way.)

The last claim only requires checking distributivity, which is obvious.

3.2 Morin maps

In this section we only consider maps between oriented manifolds. Let us denote the
group of cobordism classes of oriented Morin maps f W M n!RnCk by Cob†1.n; k/

and the cobordism classes of oriented prim maps f W M n!RnCk by Prim.n; k/. As
a prim map is automatically Morin and prim cobordant maps are Morin cobordant as
well, we have a natural forgetful map F W Prim.n; k/! Cob†1.n; k/, that induces a
map FQW Prim.n; k/˝Q! Cob†1.n; k/˝Q. The following key result is proved
in [9] as Remark 103.

Lemma 3.5 The map FQ is epimorphic.
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This lemma says that every Morin map has a nonzero multiple that is Morin-cobordant
to a prim map. Using this result and the construction in the previous section we can
now define a multiplication on

�L
n;k Cob†1.n; k/

�
˝Q.

Definition 3.6 Let us take two Morin maps gi W M
ni

i !RniCki . By Lemma 3.5 we
can find prim maps f1 and f2 that are rationally Morin cobordant to g1 and g2 . Let
us define Œg1�� Œg2� WDFQ.Œf1�f2�/, where Œf � denotes the rational Morin cobordism
class of the Morin map f .

Theorem 3.7 The above definition is correct, that is Œg1�� Œg2� is independent of the
choices made. The multiplication defined this way gives rise to a ring structure on�L

n;k Cob†1.n; k/
�
˝Q.

Proof There is only one thing left that needs to be checked: if f1 and f 0
1

are Morin
cobordant prim-representatives of g1 , then f1 �f2 is Morin cobordant to f 0

1
�f2 . Let

us take the Morin cobordism H connecting f1 and f 0
1

. Then H � .f2 � l0/ is still a
Morin cobordism after a sufficiently small perturbation, since the factor f2� l0 can be
perturbed to an immersion. This Morin cobordism connects exactly the two desired
maps.

Definition 3.8 Let MorQ denote the group
L

n;k Cob†1.n; k/˝Q with this ring
structure. MorQ is a bigraded ring, the two grades being n and kC 1. Note that this
implies that the direct sum

L
k odd;n Cob†1.n; k/˝Q is a subring of MorQ .

4 Computing MorQ

In this section we show that the rational cobordism class of an oriented Morin map is
actually determined by those of its singular strata. Then we will show that the singular
strata are ring homomorphisms from MorQ . This provides a complete computation of
the ring MorQ .

4.1 The structure of Cob†1.n; k/

Let f W M n! RnCk be a generic oriented Morin map of codimension k . To such
a map we can associate the subset †1r .f / � M n introduced at the beginning of
Section 3. This subset is actually a submanifold whose codimension is r � .kC1/. The
cobordism class of this submanifold is invariant under a Morin cobordism of f , since
the †1r points of the cobordism of f give a cobordism between the †1r points of f .
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If we tensor with Q then this submanifold becomes an element in ��˝Q. Thus by
abuse of notation we get maps

†1r W Cob†1.n; k/˝Q!��˝Q; Œf � 7! Œ†1r .f /�;

whose image we denote by Im.†1r /. Let ImmSO.n; k/ denote the oriented cobordism
group of immersions of n–dimensional oriented manifolds to RnCk . Our goal in this
section is to prove the following theorem:

Theorem 4.1 (i) If k D 2l then Cob†1.n; k/˝QD ImmSO.n; k C 1/˝Q and
Im.†1r /D 0 for any r � 1.

(ii) If k D 2l C 1 then

Cob†1.n; k/˝QD
M
r�0

Im.†1r /D
M
i�0

Im.†12i /

where Im.†12iC1/D 0 and Im.†12i /DfŒL�2�n�2i.kC1/˝QW pI ŒL�D 0 for
any Pontrjagin monomial pI which has a factor pj with index j � lg

Proof Part (i) is stated explicitly in [9] in Section 14/A.

To show part (ii) we need some preparations. For any stable singularity type � there
is a bundle z�� that plays the role of the universal normal bundle for this singularity
type. This means the following: Whenever for a map f W M ! N one of its most
complicated singularities is � then the �–points of f form a submanifold of M . The
restriction of f to this submanifold is an immersion to N . The normal bundle of this
immersion is induced from z�� . (See Rimányi and Szűcs [5] for details.)

Let us write z�r D
z�†1r for short. Let Immz�r .n � r.k C 1/; r.k C 1/C k/ denote

the cobordism group of oriented immersions f W M n�r.kC1/!RnCk whose normal
bundles are induced from z�r .

We need two results from [9] which we state here in a lemma.

Lemma 4.2 Let k � 1 be odd. Then

Cob†1.n; k/˝QŠ
1M

iD0

Imm
z�2i .n� 2i.kC 1/; 2i.kC 1/C k/˝Q;(3)

HnCk.T z�2i IQ/DHn�2i.kC1/.BSO.k/IQ/:(4)

Remark The above isomorphism (3) is given roughly speaking by the direct sum of
the maps †2i , for all nonnegative integer values of i .
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More precisely for a map f that represents the cobordism class Œf � 2 Cob†1.n; k/

the isomorphism of (3) is defined by successively removing the most singular points
from f by cobordism. (Note that if r.kC1/ > n than f has no †1r singular points.)
In each step we take the submanifold consisting of the most singular points of the map.
This submanifold is immersed into RnCk – by the restriction of the map to it – and
has the normal z�s –structure (if this is the submanifold of †1s points), and thus gives
the s–th coordinate of the image of Œf � on the right hand side. (It turns out that for s

odd the cobordism class of this immersion is always trivial rationally, that is why we
have on the right hand side summands only for s even.)

Proof of Lemma 4.2 Equation (3) is an immediate consequence of [9, Example 118].

For Equation (4) we cite from [9] that the bundle z�� has a counterpart denoted by
�� which is the universal normal bundle of the �–points of a map in the source
manifold. The two bundles �� and z�� have the same base space BG� where G�
is the maximal compact subgroup of the symmetry group of the singularity �. This
implies that the homologies of T z�� and T �� are the same up to a dimension shift
equal to rank z��� rank �� D k , that is, HnCk.T z�r IQ/DHn.T �r IQ/. Lemma 102/b
in [9] implies that for even r we have Hn.T �r IQ/DHn�r.kC1/.BSO.k/IQ/. The
statement follows.

Now we can return to the proof of Theorem 4.1 which will follow fairly easily from (3)
of Lemma 4.2. Let us introduce the notation aD n� r.kC1/ and bD r.kC1/Ck D

nC k � a for convenience. Let us consider the sequence of forgetful maps

(5) Imm
z�r .a; b/

z̨
! ImmSO.a; b/

ž

!�a;

where we first forget about the extra structure on the normal bundle, and then forget
about the immersion and just take the underlying source manifold. On the level of
Thom spaces this corresponds to the standard maps

T z�r ! T  SO
b ! T  SO;

and on the level of base spaces to

BSO.k/
˛
! BSO.b/

ˇ
! BSO:

The map ˛ induces z�r from  SO
b

and ˇ is just the standard inclusion map.

Using the well-known Pontrjagin–Thom construction and (4) of Lemma 4.2 we get that

Imm
z�r .a; b/˝QŠ �S

nCk.T
z�r /˝QŠHnCk.T z�r IQ/DHa.BSO.k/IQ/:
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Similarly we have

ImmSO.a; b/˝QŠ �S
nCk.T 

SO
b /˝QŠHnCk.T 

SO
b IQ/DHa.BSO.b/IQ/;

and �a˝QŠHa.BSOIQ/. In this context the forgetful map in (5) becomes

Ha.BSO.k/IQ/
˛�
!Ha.BSO.b/IQ/

ˇ�
!Ha.BSOIQ/:

We want to prove that this map is injective, and compute its image. Since we work
with rational coefficients it is enough to show that the dual map

H a.BSO.k/IQ/
˛�

 H a.BSO.b/IQ/
ˇ�

 H a.BSOIQ/

is surjective, and compute its kernel. H�.BSOIQ/DQŒp1;p2; : : : � and since k is
odd H�.BSO.k/IQ/DQŒp1;p2; : : : ;p.k�1/=2�. The induced homomorphism ˛�ˇ�

takes the total Pontrjagin class p D 1C p1C p2C � � � to the total Pontrjagin class
of z�r preserving the grading. It is known (see [8, Lemma 2]) that p.z�r /D p. SO

k
/r D

.1Cp1Cp2C� � �Cp.k�1/=2/
r 2H�.BSO.k/IQ/. Now easy computation shows that

indeed every pi 2H�.BSO.k/IQ/ is in the image of ˛�ˇ� so the map is surjective.
On the other hand the kernel is generated exactly by those Pontrjagin monomials in
which there is at least one factor with index larger than .k � 1/=2. Thus the image
of žz̨W Immz�r .a; b/ ! �a is generated by the cobordism classes of exactly those
manifolds L for which pI ŒL� D 0 for any Pontrjagin monomial pI which has a
factor pj with index j � .k � 1/=2.

To finish the proof of the theorem we just have to observe that †1r is the composition
of the projection in the splitting (3) and the forgetful map in (5): Cob†1.n; k/˝Q!
Immz�r .n� r.kC 1/; r.kC 1/C k/˝Q!�n�r.kC1/˝Q.

4.2 Ring homomorphisms

We can consider †1r as a map from MorQ to the rational oriented cobordism ring:

†1r W

M
k;n

Cob†1.n; k/˝Q!��˝Q:

Theorem 4.3 The map †1r is a ring homomorphism. In other words

†1r .f �g/�†1r .f /�†1r .g/

holds for any two Morin maps f;g to Euclidean spaces where � now stands for
rationally cobordant (in the oriented sense).
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Proof The only case that requires proof is when k is odd and r > 0 is even, since
otherwise †1r .f / is always 0 and for r D 0 the statement is obvious. (Note that
†0.f /D †10.f / is the rational cobordism class of the source manifold of f .) We
will proceed along the lines explained earlier, that is we will use prim maps as a link
between Morin maps and immersions. Then the multiplicative properties of multiple
points of immersions will provide the result.

Let us first consider prim maps. The same argument as above gives a map

†1r
PrimW

� M
k odd;n

Prim.n; k/
�
˝Q!��˝Q

where †1r
Prim D†

1r ıFQ .

Given an immersion f W M n!RnCkC1 , let us denote by �.f / its generic projection
to a hyperplane. This map is a prim map whose prim cobordism class is well defined and
depends only on the cobordism class of the immersion f according to Lemma 3.2. The
direct sum

L
k odd;n ImmSO.n; kC 1/ has a natural ring structure with multiplication

being the direct product. It is clear from the definitions that the map

� W
M

k odd;n

ImmSO.n; kC 1/!
M

k odd;n

Prim.n; k/; Œf � 7! Œ�.f /�

is a ring homomorphism with respect to the direct product on the left, and �–product
on the right. The same remains true after forming the tensor product with Q.

In Theorem 2.1 we have shown that

�MrC1W

M
k odd;n

ImmSO.n; kC 1/!��

is a ring homomorphism, and obviously the same is true after forming the tensor product
with Q.

To finish the proof we have to recall a result from [8] which in our notation reads as:

Theorem 4.4 �MrC1˝ idQD†
1r
Prim ı .�˝ idQ/ ie the rational cobordism class of the

manifold of r C 1–tuple points of an immersion f W M n!RnCkC1 coincides with
that of the manifold of †1r (or Ar ) points of its hyperplane projection.
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Thus the following diagram is commutative.�L
k odd;n ImmSO.n; kC 1/

�
˝Q�MrC1˝idQ

**
�˝idQ

���L
k odd;n Prim.n; k/

�
˝Q

†1r
Prim //

FQ
��

��˝Q

�L
k odd;n Cob†1.n; k/

�
˝Q

†1r
44

The vertical maps are ring epimorphisms and �MrC1 is a ring homomorphism. This
implies that †1r

Prim and †1r are ring homomorphisms too.

We can summarize our results as follows. The ring MorQ is the direct sum of clearly
identified subgroups of �� ˝Q as stated in Theorem 4.1. An element in MorQ is
completely determined by its grading and its collection of †1r strata. Then Theo-
rem 4.3 shows that the multiplication in MorQ corresponds to the direct product of
cobordism classes representing the singular strata. The manifolds corresponding to
the various †1r strata multiply independently of each other. Thus the ring MorQ is
completely computed.

5 Singular strata of direct products

Our goal in this final section is to show that the cohomology class represented by the
submanifold formed by the closure of the set of certain singular points of a direct
product f �g depends only on those of f , g and some maps closely related to them.
Before formulating the theorems, we have to introduce some notation.

Definition 5.1 For j > 0 let qj W �! Sj denote the inclusion of a point into Sj and
let q.�j/W S

j ! � be the map that takes the sphere to a point. Now for any integer
j ¤ 0 we define f 0j D f � qj , take fj to be a generic perturbation of f 0j , and set
f0 D f .

Finally let idj
M D idM � qj W M !M �Sj .

5.1 The †1 stratum

In this section we work with Z2 coefficients. Let †1f D†1.f / denote the closure of
the set of all singular points in the source manifold of f . (The parenthesis are omitted
for easier reading of the formulas below.) The Thom polynomial of this singularity type
is wkC1 (see Thom [10]). That is, given a map f W M n! N nCk , the cohomology
class Poincaré dual to the homology class represented by †1f is equal to wkC1.�f /
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where �f stands for the virtual normal bundle of f . This dual cohomology class will
be denoted by Œ†1f � for simplicity.

Theorem 5.2 Let f W M n1

1
! N n1Ck1 ;gW M

n2

2
! N

n2Ck2

2
be two generic maps.

Then for a generic perturbation of their product we have

Œ†1.f �g/�D
X
j�1

�
Œ†1fj�1�� .idj

M2
/�Œ†1g.�j/�C .id

j
M1
/�Œ†1f.�j/�� Œ†

1gj�1�
�
:

Proof As a first step let us notice that since �f�g D �f � �g we can write

wk1Ck2C1.�f�g/D

k1Ck2C1X
rD0

wr .�f /�wk1Ck2C1�r .�g/

D

X
j�1

�
wk1Cj .�f /�wk2�jC1.�g/Cwk1�jC1.�f /�wk2Cj .�g/

�
:

Now we have to take a closer look at wk1Cj .�f /. If j D 1 then this characteristic
class just represents †1f . When this is not the case, we have to find an appropriate
replacement for f that has the right codimension, whose normal bundle however
is stably equivalent to that of f . This replacement map is exactly fj�1 . Indeed,
�fj�1

D �f ˚ "
j�1 so wk1Cj .�f /Dwk1Cj .�fj�1

/ which in turn is equal to Œ†1fj�1�

since this map has the right codimension.

The argument is just slightly more complicated in the case of wk2�jC1.�g/. Here
first we take the map g.�j/W M

n2

2
� Sj ! N

n2Ck2

2
. This has codimension k2 � j

so Œ†1g.�j/� D wk2�jC1.�g.�j//. The only problem is that this class lives in the
cohomology of M2 �Sj . This is why we have to pull it back to M2 by idj

M2
. Since

the composition of idj
M2

and g.�j/ is just a perturbation of g and w.�qj / D 1 it
follows that .idj

M2
/�wk2�jC1.�g.�j//D wk2�jC1.�g/.

Putting all these together gives the result of the theorem.

5.2 The †2 stratum

A very similar result can be proved about the †2 stratum of oriented maps. For that
we need the Thom polynomial of the †2 stratum in the oriented case. This is known
(see Ronga [6]) but we shall include a new proof for the sake of completeness. We will
work with rational coefficients.

Theorem 5.3 Let f W M n! N nCk be a generic map where k D 2t � 2. Then the
rational cohomology class dual to the closure of the set of †2 –points of f (for short
Œ†2f �) equals pt .�f /, where pt 2H 4t .M IQ/ is the t –th Pontrjagin class.
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Proof By definition the Thom polynomial tp†2 of the †2 –stratum is a cohomology
class in H 4t .BSOIQ/DQŒp1;p2;p3; : : : �. We want to show that tp†2 D pt . It is
enough to show that these two cohomology classes evaluated on any homology class
in H4t .BSOIQ/ are equal.

Lemma 5.4 All homology classes in H4t .BSOIQ/ can be represented by a normal
map, ie by a map hW L4t ! BSO of an oriented 4t –manifold L4t corresponding to
the stable normal bundle of L4t .

Proof It is enough to consider BSO.N /; .N � 1/. By the Pontrjagin–Thom con-
struction an embedding L4t ,! SK gives a map h0W SK !M SO.K� 4t/ such that
L4t D h0.�1/.BSO.K � 4t// and the restriction map h0jL4t W L4t ! BSO.K � 4t/

corresponds to the normal bundle of the embedding L4t ,! SK . The homotopy
class Œh0� 2 �K .M SO.K � 4t// is mapped by the composition of the Hurewicz ho-
momorphism and the Thom isomorphism into a homology class x D h0�.ŒL

4t �/ 2

H4t .BSO.K � 4t//. Hence this class x is represented by a normal map. Since the
Hurewicz homomorphism in stable dimensions .K � 8tC2/ is a rational isomorphism,
we obtain the statement of the lemma.

To evaluate a 4t –dimensional cohomology class on a 4t –dimensional homology class
represented by a manifold, one just pulls back the cohomology class to the manifold
and evaluates it on the fundamental class.

Now it is enough to prove that for every oriented M 4t the map ��W H 4t .BSOIQ/!
H 4t .M IQ/ induced by the normal mapping �W M 4t ! BSO takes pt and tp†2 to
the same cohomology class in H 4t .M IQ/. As ��.pt /Dpt .�M / and ��.tp†2/ is the
dual of the †2 stratum of a generic map M 4t !R6t�2 we have reduced the problem
of finding the Thom polynomial tp†2 to the special case of maps M 4t !R6t�2 .

If we take an immersion f W M 4t!R6t , and project it to two nonparallel hyperplanes,
then we get a map f 0W M 4t ! R6t�2 . Let us denote the two hyperplanes H1;H2 .
The projection of f to Hi shall be called fi . It is obvious that those and only those
points belong to †2f 0 which belong to †1f1 and †1f2 at the same time. This means
that for this f 0 we have Œ†2f 0� D Œ†1f1�[ Œ†

1f2�. The two cohomology classes
on the right are both equal to the Thom polynomial of the †1 singularity, which is
the Euler class of the normal bundle of f (see eg Szűcs [8]). As this normal bundle
has rank 2t , the square of its Euler class is equal to pt .�f /, which is the same as
pt .�M /. Thus we have proved our claim for those maps M 4t ! R6t�2 where the
source manifold can be immersed into R6t .

Let us recall that by ImmSO.4t; 2t/ we denote the cobordism group of oriented im-
mersions from 4t –dimensional manifolds to R6t . There is the natural forgetful map
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 W ImmSO.4t; 2t/! �4t taking the cobordism class of an immersion to that of its
underlying manifold. To finish the proof of the theorem it is sufficient to show, that this
map has finite cokernel. According to the Pontrjagin–Thom construction and Serre’s
theorem on the stable Hurewicz homomorphism

ImmSO.4t; 2t/Š �S
6tM SO.2t/

Q
ŠH6t .M SO.2t//

�4t Š �
S
4t .M SO/

Q
ŠH4t .M SO/D lim H4tCn.M SO.n//;and

where
Q
Š means “isomorphic if tensored with Q”. The forgetful map composed with

these isomorphisms is clearly

i�W H6t .M SO.2t//!H4t .M SO/

where i W M SO.2t/ ,!M SO is the natural inclusion. (Since M SO is not a space
but a spectrum the meaning of “the inclusion i W M SO.2t/!M SO” needs an ex-
planation. We mean here that the homomorphism i� is induced by the inclusion
SN M SO.2t/!M SO.2tCN / composed – from the left and the right – with the iso-
morphisms H6t .M SO.2t/�H6tCN .S

N M SO.2t// and H6tCN .M SO.2tCN //�

H4t .M SO/.) Thus  has finite cokernel if and only if

i�˝QW H6t .M SO.2t/IQ/!H4t .M SOIQ/

is epimorphic. The latter is equivalent to (by taking the dual morphism in cohomology)

i�W H 4t .M SOIQ/!H 6t .M SO.2t/IQ//

being monomorphic. We can apply the Thom isomorphism to further reduce the
problem to showing that

j �W H 4t .BSOIQ/!H 4t .BSO.2t/IQ/

is monomorphic. Here j W BSO.2t/ ,! BSO is the natural inclusion map. The coho-
mology ring of BSO.2t/ is the polynomial ring QŒp1;p2; : : : ;pt�1; �2t � generated
by the Pontrjagin classes and the Euler class, whose square is pt . On the other
hand H�.BSOIQ/ŠQŒp1;p2; : : : �. As j takes each Pontrjagin class to the same
Pontrjagin class, we get that j � is indeed injective in dimension 4t . This completes
the proof of tp†2 D pt .

The proof of the next theorem copies the proof of the previous section. The equality
below in the Theorem is meant in the cohomology groups with rational coefficients.
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Theorem 5.5 Let f W M n1

1
!N n1Ck1 ;gW M

n2

2
!N

n2Ck2

2
be two generic maps of

even codimension. Then for a generic perturbation of their product we have

Œ†2.f�g/�D
X
j�1

�
Œ†2f2j�2��.id2j

M2
/�Œ†2g.�2j/�C.id

2j
M1
/�Œ†2f.�2j/��Œ†

2g2j�2�
�
:
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